Properties

Label 6664.2.a.u
Level $6664$
Weight $2$
Character orbit 6664.a
Self dual yes
Analytic conductor $53.212$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.13431004.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} - 3x^{3} + 15x^{2} + 8x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{3} + \beta_{3} q^{5} + (\beta_{4} + \beta_{3} + \beta_1 + 1) q^{9} + (\beta_{4} + \beta_{3} - \beta_{2}) q^{11} + ( - \beta_{5} - \beta_{4}) q^{13} + ( - \beta_{5} - \beta_{4} - \beta_{2} + \cdots + 1) q^{15}+ \cdots + (\beta_{5} + 6 \beta_{4} + 3 \beta_{3} + \cdots + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} + 2 q^{5} + 8 q^{9} + 4 q^{11} - 2 q^{13} + 6 q^{17} + 8 q^{19} + 4 q^{23} + 4 q^{25} + 22 q^{27} + 12 q^{31} + 10 q^{37} - 14 q^{39} + 6 q^{41} - 2 q^{43} + 20 q^{45} - 2 q^{47} + 4 q^{51}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 8x^{4} - 3x^{3} + 15x^{2} + 8x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - \nu^{4} - 6\nu^{3} + 3\nu^{2} + 8\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 6\nu^{3} + 2\nu^{2} + 7\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 4\nu^{3} - 6\nu^{2} - 2\nu + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 6\nu^{3} - 8\nu^{2} - 10\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} - \beta_{4} - 5\beta_{3} + 5\beta_{2} - 3\beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{5} - 7\beta_{3} + 9\beta_{2} + 3\beta _1 + 26 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} - 3\beta_{4} - 13\beta_{3} + 15\beta_{2} - 5\beta _1 + 17 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.187674
1.63501
−0.838529
2.52882
−1.64932
−1.86366
0 −2.15245 0 3.34349 0 0 0 1.63305 0
1.2 0 −0.961752 0 −2.89526 0 0 0 −2.07503 0
1.3 0 −0.458339 0 0.165178 0 0 0 −2.78993 0
1.4 0 1.86611 0 −2.01690 0 0 0 0.482357 0
1.5 0 2.36956 0 3.21031 0 0 0 2.61483 0
1.6 0 3.33687 0 0.193178 0 0 0 8.13472 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6664.2.a.u yes 6
7.b odd 2 1 6664.2.a.p 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6664.2.a.p 6 7.b odd 2 1
6664.2.a.u yes 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6664))\):

\( T_{3}^{6} - 4T_{3}^{5} - 5T_{3}^{4} + 26T_{3}^{3} + 5T_{3}^{2} - 34T_{3} - 14 \) Copy content Toggle raw display
\( T_{5}^{6} - 2T_{5}^{5} - 15T_{5}^{4} + 20T_{5}^{3} + 57T_{5}^{2} - 22T_{5} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 4 T^{5} + \cdots - 14 \) Copy content Toggle raw display
$5$ \( T^{6} - 2 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 4 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{6} + 2 T^{5} + \cdots + 512 \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 8 T^{5} + \cdots + 1984 \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots - 256 \) Copy content Toggle raw display
$29$ \( T^{6} - 62 T^{4} + \cdots - 4192 \) Copy content Toggle raw display
$31$ \( T^{6} - 12 T^{5} + \cdots + 328 \) Copy content Toggle raw display
$37$ \( T^{6} - 10 T^{5} + \cdots - 352 \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + \cdots - 1252 \) Copy content Toggle raw display
$43$ \( T^{6} + 2 T^{5} + \cdots - 45256 \) Copy content Toggle raw display
$47$ \( T^{6} + 2 T^{5} + \cdots - 1728 \) Copy content Toggle raw display
$53$ \( T^{6} + 14 T^{5} + \cdots - 1004 \) Copy content Toggle raw display
$59$ \( T^{6} - 20 T^{5} + \cdots - 64 \) Copy content Toggle raw display
$61$ \( T^{6} + 16 T^{5} + \cdots - 3902 \) Copy content Toggle raw display
$67$ \( T^{6} + 6 T^{5} + \cdots + 274232 \) Copy content Toggle raw display
$71$ \( T^{6} - 12 T^{5} + \cdots + 40576 \) Copy content Toggle raw display
$73$ \( T^{6} - 18 T^{5} + \cdots + 172556 \) Copy content Toggle raw display
$79$ \( T^{6} + 2 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$83$ \( T^{6} - 34 T^{5} + \cdots + 1662400 \) Copy content Toggle raw display
$89$ \( T^{6} + 6 T^{5} + \cdots - 256 \) Copy content Toggle raw display
$97$ \( T^{6} - 389 T^{4} + \cdots - 405748 \) Copy content Toggle raw display
show more
show less