Properties

Label 6664.2.a.t.1.2
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.15751800.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 8x^{4} + 6x^{3} + 16x^{2} - 7x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.66208\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.29428 q^{3} +1.75649 q^{5} -1.32483 q^{9} +0.221093 q^{11} -4.11360 q^{13} -2.27339 q^{15} +1.00000 q^{17} +0.347250 q^{19} -5.77360 q^{23} -1.91475 q^{25} +5.59756 q^{27} +8.59467 q^{29} +6.49819 q^{31} -0.286157 q^{33} +9.04411 q^{37} +5.32416 q^{39} -7.17538 q^{41} +6.05010 q^{43} -2.32705 q^{45} +7.97382 q^{47} -1.29428 q^{51} -11.5617 q^{53} +0.388347 q^{55} -0.449440 q^{57} -14.3481 q^{59} -6.78173 q^{61} -7.22549 q^{65} -3.18814 q^{67} +7.47268 q^{69} +11.8751 q^{71} +6.96039 q^{73} +2.47823 q^{75} +11.0481 q^{79} -3.27033 q^{81} -16.2749 q^{83} +1.75649 q^{85} -11.1239 q^{87} -4.88198 q^{89} -8.41050 q^{93} +0.609940 q^{95} -1.92023 q^{97} -0.292910 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 4 q^{5} + 4 q^{9} + 2 q^{11} - 6 q^{13} - 16 q^{15} + 6 q^{17} + 4 q^{19} - 4 q^{23} + 8 q^{25} + 14 q^{27} - 6 q^{29} - 16 q^{31} - 8 q^{33} - 12 q^{37} + 10 q^{39} - 22 q^{41} + 2 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.29428 −0.747255 −0.373627 0.927579i \(-0.621886\pi\)
−0.373627 + 0.927579i \(0.621886\pi\)
\(4\) 0 0
\(5\) 1.75649 0.785525 0.392763 0.919640i \(-0.371519\pi\)
0.392763 + 0.919640i \(0.371519\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.32483 −0.441610
\(10\) 0 0
\(11\) 0.221093 0.0666620 0.0333310 0.999444i \(-0.489388\pi\)
0.0333310 + 0.999444i \(0.489388\pi\)
\(12\) 0 0
\(13\) −4.11360 −1.14091 −0.570454 0.821330i \(-0.693233\pi\)
−0.570454 + 0.821330i \(0.693233\pi\)
\(14\) 0 0
\(15\) −2.27339 −0.586987
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0.347250 0.0796646 0.0398323 0.999206i \(-0.487318\pi\)
0.0398323 + 0.999206i \(0.487318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.77360 −1.20388 −0.601940 0.798541i \(-0.705605\pi\)
−0.601940 + 0.798541i \(0.705605\pi\)
\(24\) 0 0
\(25\) −1.91475 −0.382950
\(26\) 0 0
\(27\) 5.59756 1.07725
\(28\) 0 0
\(29\) 8.59467 1.59599 0.797995 0.602664i \(-0.205894\pi\)
0.797995 + 0.602664i \(0.205894\pi\)
\(30\) 0 0
\(31\) 6.49819 1.16711 0.583555 0.812074i \(-0.301661\pi\)
0.583555 + 0.812074i \(0.301661\pi\)
\(32\) 0 0
\(33\) −0.286157 −0.0498135
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.04411 1.48684 0.743421 0.668823i \(-0.233202\pi\)
0.743421 + 0.668823i \(0.233202\pi\)
\(38\) 0 0
\(39\) 5.32416 0.852549
\(40\) 0 0
\(41\) −7.17538 −1.12061 −0.560303 0.828288i \(-0.689315\pi\)
−0.560303 + 0.828288i \(0.689315\pi\)
\(42\) 0 0
\(43\) 6.05010 0.922632 0.461316 0.887236i \(-0.347377\pi\)
0.461316 + 0.887236i \(0.347377\pi\)
\(44\) 0 0
\(45\) −2.32705 −0.346896
\(46\) 0 0
\(47\) 7.97382 1.16310 0.581551 0.813510i \(-0.302446\pi\)
0.581551 + 0.813510i \(0.302446\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.29428 −0.181236
\(52\) 0 0
\(53\) −11.5617 −1.58813 −0.794063 0.607836i \(-0.792038\pi\)
−0.794063 + 0.607836i \(0.792038\pi\)
\(54\) 0 0
\(55\) 0.388347 0.0523647
\(56\) 0 0
\(57\) −0.449440 −0.0595298
\(58\) 0 0
\(59\) −14.3481 −1.86796 −0.933979 0.357329i \(-0.883688\pi\)
−0.933979 + 0.357329i \(0.883688\pi\)
\(60\) 0 0
\(61\) −6.78173 −0.868312 −0.434156 0.900838i \(-0.642953\pi\)
−0.434156 + 0.900838i \(0.642953\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.22549 −0.896211
\(66\) 0 0
\(67\) −3.18814 −0.389494 −0.194747 0.980854i \(-0.562389\pi\)
−0.194747 + 0.980854i \(0.562389\pi\)
\(68\) 0 0
\(69\) 7.47268 0.899605
\(70\) 0 0
\(71\) 11.8751 1.40932 0.704660 0.709545i \(-0.251099\pi\)
0.704660 + 0.709545i \(0.251099\pi\)
\(72\) 0 0
\(73\) 6.96039 0.814652 0.407326 0.913283i \(-0.366461\pi\)
0.407326 + 0.913283i \(0.366461\pi\)
\(74\) 0 0
\(75\) 2.47823 0.286162
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0481 1.24301 0.621503 0.783412i \(-0.286522\pi\)
0.621503 + 0.783412i \(0.286522\pi\)
\(80\) 0 0
\(81\) −3.27033 −0.363371
\(82\) 0 0
\(83\) −16.2749 −1.78640 −0.893201 0.449657i \(-0.851546\pi\)
−0.893201 + 0.449657i \(0.851546\pi\)
\(84\) 0 0
\(85\) 1.75649 0.190518
\(86\) 0 0
\(87\) −11.1239 −1.19261
\(88\) 0 0
\(89\) −4.88198 −0.517489 −0.258744 0.965946i \(-0.583309\pi\)
−0.258744 + 0.965946i \(0.583309\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.41050 −0.872128
\(94\) 0 0
\(95\) 0.609940 0.0625785
\(96\) 0 0
\(97\) −1.92023 −0.194970 −0.0974849 0.995237i \(-0.531080\pi\)
−0.0974849 + 0.995237i \(0.531080\pi\)
\(98\) 0 0
\(99\) −0.292910 −0.0294386
\(100\) 0 0
\(101\) −17.2228 −1.71373 −0.856865 0.515541i \(-0.827591\pi\)
−0.856865 + 0.515541i \(0.827591\pi\)
\(102\) 0 0
\(103\) −0.324544 −0.0319783 −0.0159891 0.999872i \(-0.505090\pi\)
−0.0159891 + 0.999872i \(0.505090\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.36785 0.905625 0.452812 0.891606i \(-0.350421\pi\)
0.452812 + 0.891606i \(0.350421\pi\)
\(108\) 0 0
\(109\) −13.2046 −1.26477 −0.632386 0.774653i \(-0.717924\pi\)
−0.632386 + 0.774653i \(0.717924\pi\)
\(110\) 0 0
\(111\) −11.7056 −1.11105
\(112\) 0 0
\(113\) −1.43010 −0.134532 −0.0672661 0.997735i \(-0.521428\pi\)
−0.0672661 + 0.997735i \(0.521428\pi\)
\(114\) 0 0
\(115\) −10.1413 −0.945678
\(116\) 0 0
\(117\) 5.44982 0.503836
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9511 −0.995556
\(122\) 0 0
\(123\) 9.28698 0.837379
\(124\) 0 0
\(125\) −12.1457 −1.08634
\(126\) 0 0
\(127\) −20.6878 −1.83575 −0.917873 0.396875i \(-0.870095\pi\)
−0.917873 + 0.396875i \(0.870095\pi\)
\(128\) 0 0
\(129\) −7.83055 −0.689442
\(130\) 0 0
\(131\) 1.71540 0.149876 0.0749378 0.997188i \(-0.476124\pi\)
0.0749378 + 0.997188i \(0.476124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 9.83204 0.846207
\(136\) 0 0
\(137\) −7.45883 −0.637251 −0.318625 0.947881i \(-0.603221\pi\)
−0.318625 + 0.947881i \(0.603221\pi\)
\(138\) 0 0
\(139\) 2.25977 0.191671 0.0958354 0.995397i \(-0.469448\pi\)
0.0958354 + 0.995397i \(0.469448\pi\)
\(140\) 0 0
\(141\) −10.3204 −0.869134
\(142\) 0 0
\(143\) −0.909487 −0.0760551
\(144\) 0 0
\(145\) 15.0964 1.25369
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.0395 1.64170 0.820850 0.571144i \(-0.193500\pi\)
0.820850 + 0.571144i \(0.193500\pi\)
\(150\) 0 0
\(151\) −16.5493 −1.34677 −0.673383 0.739294i \(-0.735160\pi\)
−0.673383 + 0.739294i \(0.735160\pi\)
\(152\) 0 0
\(153\) −1.32483 −0.107106
\(154\) 0 0
\(155\) 11.4140 0.916794
\(156\) 0 0
\(157\) 3.10918 0.248139 0.124070 0.992274i \(-0.460405\pi\)
0.124070 + 0.992274i \(0.460405\pi\)
\(158\) 0 0
\(159\) 14.9641 1.18673
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.7490 −1.15523 −0.577614 0.816310i \(-0.696016\pi\)
−0.577614 + 0.816310i \(0.696016\pi\)
\(164\) 0 0
\(165\) −0.502631 −0.0391297
\(166\) 0 0
\(167\) 9.97009 0.771509 0.385754 0.922602i \(-0.373941\pi\)
0.385754 + 0.922602i \(0.373941\pi\)
\(168\) 0 0
\(169\) 3.92170 0.301669
\(170\) 0 0
\(171\) −0.460047 −0.0351807
\(172\) 0 0
\(173\) 1.71541 0.130420 0.0652102 0.997872i \(-0.479228\pi\)
0.0652102 + 0.997872i \(0.479228\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.5704 1.39584
\(178\) 0 0
\(179\) 5.04041 0.376738 0.188369 0.982098i \(-0.439680\pi\)
0.188369 + 0.982098i \(0.439680\pi\)
\(180\) 0 0
\(181\) −19.2854 −1.43347 −0.716737 0.697343i \(-0.754365\pi\)
−0.716737 + 0.697343i \(0.754365\pi\)
\(182\) 0 0
\(183\) 8.77748 0.648850
\(184\) 0 0
\(185\) 15.8859 1.16795
\(186\) 0 0
\(187\) 0.221093 0.0161679
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.7050 1.13637 0.568187 0.822899i \(-0.307645\pi\)
0.568187 + 0.822899i \(0.307645\pi\)
\(192\) 0 0
\(193\) 9.53724 0.686506 0.343253 0.939243i \(-0.388471\pi\)
0.343253 + 0.939243i \(0.388471\pi\)
\(194\) 0 0
\(195\) 9.35183 0.669698
\(196\) 0 0
\(197\) 7.83077 0.557919 0.278959 0.960303i \(-0.410010\pi\)
0.278959 + 0.960303i \(0.410010\pi\)
\(198\) 0 0
\(199\) −21.2158 −1.50395 −0.751975 0.659191i \(-0.770899\pi\)
−0.751975 + 0.659191i \(0.770899\pi\)
\(200\) 0 0
\(201\) 4.12636 0.291051
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.6035 −0.880264
\(206\) 0 0
\(207\) 7.64904 0.531645
\(208\) 0 0
\(209\) 0.0767745 0.00531060
\(210\) 0 0
\(211\) 15.8080 1.08827 0.544134 0.838998i \(-0.316858\pi\)
0.544134 + 0.838998i \(0.316858\pi\)
\(212\) 0 0
\(213\) −15.3698 −1.05312
\(214\) 0 0
\(215\) 10.6269 0.724751
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.00872 −0.608753
\(220\) 0 0
\(221\) −4.11360 −0.276711
\(222\) 0 0
\(223\) 6.80165 0.455472 0.227736 0.973723i \(-0.426868\pi\)
0.227736 + 0.973723i \(0.426868\pi\)
\(224\) 0 0
\(225\) 2.53672 0.169115
\(226\) 0 0
\(227\) 17.4926 1.16103 0.580513 0.814251i \(-0.302852\pi\)
0.580513 + 0.814251i \(0.302852\pi\)
\(228\) 0 0
\(229\) −23.1693 −1.53107 −0.765537 0.643392i \(-0.777527\pi\)
−0.765537 + 0.643392i \(0.777527\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.49404 −0.556463 −0.278232 0.960514i \(-0.589748\pi\)
−0.278232 + 0.960514i \(0.589748\pi\)
\(234\) 0 0
\(235\) 14.0059 0.913646
\(236\) 0 0
\(237\) −14.2994 −0.928843
\(238\) 0 0
\(239\) 1.57059 0.101593 0.0507966 0.998709i \(-0.483824\pi\)
0.0507966 + 0.998709i \(0.483824\pi\)
\(240\) 0 0
\(241\) −25.6050 −1.64936 −0.824680 0.565599i \(-0.808645\pi\)
−0.824680 + 0.565599i \(0.808645\pi\)
\(242\) 0 0
\(243\) −12.5599 −0.805720
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.42845 −0.0908899
\(248\) 0 0
\(249\) 21.0643 1.33490
\(250\) 0 0
\(251\) −1.31691 −0.0831226 −0.0415613 0.999136i \(-0.513233\pi\)
−0.0415613 + 0.999136i \(0.513233\pi\)
\(252\) 0 0
\(253\) −1.27650 −0.0802530
\(254\) 0 0
\(255\) −2.27339 −0.142365
\(256\) 0 0
\(257\) −25.9322 −1.61761 −0.808803 0.588080i \(-0.799884\pi\)
−0.808803 + 0.588080i \(0.799884\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.3865 −0.704806
\(262\) 0 0
\(263\) 19.4338 1.19834 0.599169 0.800623i \(-0.295498\pi\)
0.599169 + 0.800623i \(0.295498\pi\)
\(264\) 0 0
\(265\) −20.3080 −1.24751
\(266\) 0 0
\(267\) 6.31866 0.386696
\(268\) 0 0
\(269\) −8.42441 −0.513645 −0.256823 0.966459i \(-0.582676\pi\)
−0.256823 + 0.966459i \(0.582676\pi\)
\(270\) 0 0
\(271\) −4.25002 −0.258170 −0.129085 0.991634i \(-0.541204\pi\)
−0.129085 + 0.991634i \(0.541204\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.423338 −0.0255282
\(276\) 0 0
\(277\) 18.0331 1.08350 0.541751 0.840539i \(-0.317761\pi\)
0.541751 + 0.840539i \(0.317761\pi\)
\(278\) 0 0
\(279\) −8.60900 −0.515407
\(280\) 0 0
\(281\) −22.2919 −1.32982 −0.664911 0.746923i \(-0.731530\pi\)
−0.664911 + 0.746923i \(0.731530\pi\)
\(282\) 0 0
\(283\) −17.2009 −1.02248 −0.511242 0.859437i \(-0.670815\pi\)
−0.511242 + 0.859437i \(0.670815\pi\)
\(284\) 0 0
\(285\) −0.789435 −0.0467621
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 2.48532 0.145692
\(292\) 0 0
\(293\) −15.7587 −0.920632 −0.460316 0.887755i \(-0.652264\pi\)
−0.460316 + 0.887755i \(0.652264\pi\)
\(294\) 0 0
\(295\) −25.2022 −1.46733
\(296\) 0 0
\(297\) 1.23758 0.0718116
\(298\) 0 0
\(299\) 23.7503 1.37351
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 22.2912 1.28059
\(304\) 0 0
\(305\) −11.9120 −0.682081
\(306\) 0 0
\(307\) 8.60510 0.491119 0.245559 0.969382i \(-0.421028\pi\)
0.245559 + 0.969382i \(0.421028\pi\)
\(308\) 0 0
\(309\) 0.420052 0.0238959
\(310\) 0 0
\(311\) −32.1821 −1.82488 −0.912439 0.409213i \(-0.865803\pi\)
−0.912439 + 0.409213i \(0.865803\pi\)
\(312\) 0 0
\(313\) 13.5676 0.766886 0.383443 0.923564i \(-0.374738\pi\)
0.383443 + 0.923564i \(0.374738\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.4960 −0.589514 −0.294757 0.955572i \(-0.595239\pi\)
−0.294757 + 0.955572i \(0.595239\pi\)
\(318\) 0 0
\(319\) 1.90022 0.106392
\(320\) 0 0
\(321\) −12.1247 −0.676733
\(322\) 0 0
\(323\) 0.347250 0.0193215
\(324\) 0 0
\(325\) 7.87652 0.436911
\(326\) 0 0
\(327\) 17.0905 0.945108
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 15.6571 0.860589 0.430295 0.902688i \(-0.358410\pi\)
0.430295 + 0.902688i \(0.358410\pi\)
\(332\) 0 0
\(333\) −11.9819 −0.656605
\(334\) 0 0
\(335\) −5.59994 −0.305957
\(336\) 0 0
\(337\) −1.58505 −0.0863432 −0.0431716 0.999068i \(-0.513746\pi\)
−0.0431716 + 0.999068i \(0.513746\pi\)
\(338\) 0 0
\(339\) 1.85095 0.100530
\(340\) 0 0
\(341\) 1.43670 0.0778018
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 13.1257 0.706662
\(346\) 0 0
\(347\) 0.982978 0.0527690 0.0263845 0.999652i \(-0.491601\pi\)
0.0263845 + 0.999652i \(0.491601\pi\)
\(348\) 0 0
\(349\) 5.13822 0.275042 0.137521 0.990499i \(-0.456086\pi\)
0.137521 + 0.990499i \(0.456086\pi\)
\(350\) 0 0
\(351\) −23.0261 −1.22904
\(352\) 0 0
\(353\) −16.5818 −0.882559 −0.441280 0.897370i \(-0.645475\pi\)
−0.441280 + 0.897370i \(0.645475\pi\)
\(354\) 0 0
\(355\) 20.8585 1.10706
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.9442 0.894279 0.447139 0.894464i \(-0.352443\pi\)
0.447139 + 0.894464i \(0.352443\pi\)
\(360\) 0 0
\(361\) −18.8794 −0.993654
\(362\) 0 0
\(363\) 14.1739 0.743934
\(364\) 0 0
\(365\) 12.2258 0.639930
\(366\) 0 0
\(367\) −14.8844 −0.776958 −0.388479 0.921458i \(-0.626999\pi\)
−0.388479 + 0.921458i \(0.626999\pi\)
\(368\) 0 0
\(369\) 9.50616 0.494871
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.67248 −0.190154 −0.0950770 0.995470i \(-0.530310\pi\)
−0.0950770 + 0.995470i \(0.530310\pi\)
\(374\) 0 0
\(375\) 15.7199 0.811775
\(376\) 0 0
\(377\) −35.3550 −1.82088
\(378\) 0 0
\(379\) −12.9081 −0.663044 −0.331522 0.943448i \(-0.607562\pi\)
−0.331522 + 0.943448i \(0.607562\pi\)
\(380\) 0 0
\(381\) 26.7759 1.37177
\(382\) 0 0
\(383\) −5.06434 −0.258776 −0.129388 0.991594i \(-0.541301\pi\)
−0.129388 + 0.991594i \(0.541301\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.01536 −0.407444
\(388\) 0 0
\(389\) 37.9647 1.92489 0.962444 0.271480i \(-0.0875129\pi\)
0.962444 + 0.271480i \(0.0875129\pi\)
\(390\) 0 0
\(391\) −5.77360 −0.291984
\(392\) 0 0
\(393\) −2.22022 −0.111995
\(394\) 0 0
\(395\) 19.4058 0.976413
\(396\) 0 0
\(397\) 25.7985 1.29479 0.647396 0.762154i \(-0.275858\pi\)
0.647396 + 0.762154i \(0.275858\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.8993 −0.793973 −0.396986 0.917824i \(-0.629944\pi\)
−0.396986 + 0.917824i \(0.629944\pi\)
\(402\) 0 0
\(403\) −26.7309 −1.33156
\(404\) 0 0
\(405\) −5.74430 −0.285437
\(406\) 0 0
\(407\) 1.99959 0.0991159
\(408\) 0 0
\(409\) −30.5484 −1.51052 −0.755260 0.655425i \(-0.772490\pi\)
−0.755260 + 0.655425i \(0.772490\pi\)
\(410\) 0 0
\(411\) 9.65384 0.476189
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −28.5867 −1.40326
\(416\) 0 0
\(417\) −2.92478 −0.143227
\(418\) 0 0
\(419\) 12.4866 0.610012 0.305006 0.952350i \(-0.401342\pi\)
0.305006 + 0.952350i \(0.401342\pi\)
\(420\) 0 0
\(421\) −3.20785 −0.156341 −0.0781704 0.996940i \(-0.524908\pi\)
−0.0781704 + 0.996940i \(0.524908\pi\)
\(422\) 0 0
\(423\) −10.5640 −0.513637
\(424\) 0 0
\(425\) −1.91475 −0.0928791
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.17713 0.0568326
\(430\) 0 0
\(431\) −26.2084 −1.26241 −0.631207 0.775615i \(-0.717440\pi\)
−0.631207 + 0.775615i \(0.717440\pi\)
\(432\) 0 0
\(433\) −4.47940 −0.215266 −0.107633 0.994191i \(-0.534327\pi\)
−0.107633 + 0.994191i \(0.534327\pi\)
\(434\) 0 0
\(435\) −19.5391 −0.936827
\(436\) 0 0
\(437\) −2.00488 −0.0959066
\(438\) 0 0
\(439\) 33.9573 1.62070 0.810348 0.585949i \(-0.199278\pi\)
0.810348 + 0.585949i \(0.199278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.65893 −0.126330 −0.0631649 0.998003i \(-0.520119\pi\)
−0.0631649 + 0.998003i \(0.520119\pi\)
\(444\) 0 0
\(445\) −8.57513 −0.406500
\(446\) 0 0
\(447\) −25.9368 −1.22677
\(448\) 0 0
\(449\) −3.71667 −0.175400 −0.0877001 0.996147i \(-0.527952\pi\)
−0.0877001 + 0.996147i \(0.527952\pi\)
\(450\) 0 0
\(451\) −1.58642 −0.0747018
\(452\) 0 0
\(453\) 21.4195 1.00638
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.2976 −0.528481 −0.264240 0.964457i \(-0.585121\pi\)
−0.264240 + 0.964457i \(0.585121\pi\)
\(458\) 0 0
\(459\) 5.59756 0.261272
\(460\) 0 0
\(461\) −31.4569 −1.46509 −0.732546 0.680717i \(-0.761668\pi\)
−0.732546 + 0.680717i \(0.761668\pi\)
\(462\) 0 0
\(463\) −1.04755 −0.0486836 −0.0243418 0.999704i \(-0.507749\pi\)
−0.0243418 + 0.999704i \(0.507749\pi\)
\(464\) 0 0
\(465\) −14.7729 −0.685079
\(466\) 0 0
\(467\) −18.8507 −0.872306 −0.436153 0.899873i \(-0.643659\pi\)
−0.436153 + 0.899873i \(0.643659\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.02416 −0.185423
\(472\) 0 0
\(473\) 1.33763 0.0615045
\(474\) 0 0
\(475\) −0.664898 −0.0305076
\(476\) 0 0
\(477\) 15.3173 0.701332
\(478\) 0 0
\(479\) −22.5428 −1.03001 −0.515003 0.857189i \(-0.672209\pi\)
−0.515003 + 0.857189i \(0.672209\pi\)
\(480\) 0 0
\(481\) −37.2039 −1.69635
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.37286 −0.153154
\(486\) 0 0
\(487\) 1.39837 0.0633664 0.0316832 0.999498i \(-0.489913\pi\)
0.0316832 + 0.999498i \(0.489913\pi\)
\(488\) 0 0
\(489\) 19.0893 0.863249
\(490\) 0 0
\(491\) −12.6812 −0.572293 −0.286146 0.958186i \(-0.592374\pi\)
−0.286146 + 0.958186i \(0.592374\pi\)
\(492\) 0 0
\(493\) 8.59467 0.387085
\(494\) 0 0
\(495\) −0.514493 −0.0231248
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.88953 0.397950 0.198975 0.980005i \(-0.436239\pi\)
0.198975 + 0.980005i \(0.436239\pi\)
\(500\) 0 0
\(501\) −12.9041 −0.576514
\(502\) 0 0
\(503\) 0.263810 0.0117627 0.00588136 0.999983i \(-0.498128\pi\)
0.00588136 + 0.999983i \(0.498128\pi\)
\(504\) 0 0
\(505\) −30.2516 −1.34618
\(506\) 0 0
\(507\) −5.07579 −0.225424
\(508\) 0 0
\(509\) −25.1765 −1.11593 −0.557965 0.829864i \(-0.688418\pi\)
−0.557965 + 0.829864i \(0.688418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.94375 0.0858187
\(514\) 0 0
\(515\) −0.570057 −0.0251197
\(516\) 0 0
\(517\) 1.76295 0.0775347
\(518\) 0 0
\(519\) −2.22023 −0.0974573
\(520\) 0 0
\(521\) 41.7031 1.82705 0.913524 0.406786i \(-0.133350\pi\)
0.913524 + 0.406786i \(0.133350\pi\)
\(522\) 0 0
\(523\) 9.76281 0.426898 0.213449 0.976954i \(-0.431530\pi\)
0.213449 + 0.976954i \(0.431530\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.49819 0.283066
\(528\) 0 0
\(529\) 10.3345 0.449326
\(530\) 0 0
\(531\) 19.0087 0.824909
\(532\) 0 0
\(533\) 29.5166 1.27851
\(534\) 0 0
\(535\) 16.4545 0.711391
\(536\) 0 0
\(537\) −6.52372 −0.281519
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 41.7460 1.79480 0.897401 0.441216i \(-0.145453\pi\)
0.897401 + 0.441216i \(0.145453\pi\)
\(542\) 0 0
\(543\) 24.9608 1.07117
\(544\) 0 0
\(545\) −23.1937 −0.993511
\(546\) 0 0
\(547\) −9.94333 −0.425146 −0.212573 0.977145i \(-0.568184\pi\)
−0.212573 + 0.977145i \(0.568184\pi\)
\(548\) 0 0
\(549\) 8.98464 0.383455
\(550\) 0 0
\(551\) 2.98450 0.127144
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.5608 −0.872758
\(556\) 0 0
\(557\) 16.2207 0.687291 0.343646 0.939099i \(-0.388338\pi\)
0.343646 + 0.939099i \(0.388338\pi\)
\(558\) 0 0
\(559\) −24.8877 −1.05264
\(560\) 0 0
\(561\) −0.286157 −0.0120815
\(562\) 0 0
\(563\) −2.37117 −0.0999329 −0.0499664 0.998751i \(-0.515911\pi\)
−0.0499664 + 0.998751i \(0.515911\pi\)
\(564\) 0 0
\(565\) −2.51195 −0.105678
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.3068 −1.77359 −0.886796 0.462161i \(-0.847074\pi\)
−0.886796 + 0.462161i \(0.847074\pi\)
\(570\) 0 0
\(571\) −21.8460 −0.914226 −0.457113 0.889409i \(-0.651117\pi\)
−0.457113 + 0.889409i \(0.651117\pi\)
\(572\) 0 0
\(573\) −20.3267 −0.849162
\(574\) 0 0
\(575\) 11.0550 0.461026
\(576\) 0 0
\(577\) −2.81255 −0.117088 −0.0585441 0.998285i \(-0.518646\pi\)
−0.0585441 + 0.998285i \(0.518646\pi\)
\(578\) 0 0
\(579\) −12.3439 −0.512995
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.55621 −0.105868
\(584\) 0 0
\(585\) 9.57254 0.395776
\(586\) 0 0
\(587\) 45.5253 1.87903 0.939516 0.342505i \(-0.111275\pi\)
0.939516 + 0.342505i \(0.111275\pi\)
\(588\) 0 0
\(589\) 2.25650 0.0929773
\(590\) 0 0
\(591\) −10.1352 −0.416908
\(592\) 0 0
\(593\) −17.2590 −0.708740 −0.354370 0.935105i \(-0.615305\pi\)
−0.354370 + 0.935105i \(0.615305\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 27.4593 1.12383
\(598\) 0 0
\(599\) −15.9024 −0.649754 −0.324877 0.945756i \(-0.605323\pi\)
−0.324877 + 0.945756i \(0.605323\pi\)
\(600\) 0 0
\(601\) 35.0052 1.42789 0.713946 0.700201i \(-0.246906\pi\)
0.713946 + 0.700201i \(0.246906\pi\)
\(602\) 0 0
\(603\) 4.22375 0.172004
\(604\) 0 0
\(605\) −19.2355 −0.782034
\(606\) 0 0
\(607\) 38.8739 1.57784 0.788922 0.614493i \(-0.210639\pi\)
0.788922 + 0.614493i \(0.210639\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.8011 −1.32699
\(612\) 0 0
\(613\) −7.47434 −0.301886 −0.150943 0.988542i \(-0.548231\pi\)
−0.150943 + 0.988542i \(0.548231\pi\)
\(614\) 0 0
\(615\) 16.3125 0.657782
\(616\) 0 0
\(617\) 2.89649 0.116608 0.0583041 0.998299i \(-0.481431\pi\)
0.0583041 + 0.998299i \(0.481431\pi\)
\(618\) 0 0
\(619\) −23.0211 −0.925298 −0.462649 0.886542i \(-0.653101\pi\)
−0.462649 + 0.886542i \(0.653101\pi\)
\(620\) 0 0
\(621\) −32.3181 −1.29688
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −11.7600 −0.470399
\(626\) 0 0
\(627\) −0.0993679 −0.00396837
\(628\) 0 0
\(629\) 9.04411 0.360612
\(630\) 0 0
\(631\) −8.30072 −0.330446 −0.165223 0.986256i \(-0.552834\pi\)
−0.165223 + 0.986256i \(0.552834\pi\)
\(632\) 0 0
\(633\) −20.4601 −0.813214
\(634\) 0 0
\(635\) −36.3379 −1.44202
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −15.7326 −0.622370
\(640\) 0 0
\(641\) 24.0704 0.950722 0.475361 0.879791i \(-0.342317\pi\)
0.475361 + 0.879791i \(0.342317\pi\)
\(642\) 0 0
\(643\) 29.7528 1.17334 0.586668 0.809828i \(-0.300439\pi\)
0.586668 + 0.809828i \(0.300439\pi\)
\(644\) 0 0
\(645\) −13.7543 −0.541574
\(646\) 0 0
\(647\) −28.7782 −1.13139 −0.565694 0.824615i \(-0.691392\pi\)
−0.565694 + 0.824615i \(0.691392\pi\)
\(648\) 0 0
\(649\) −3.17225 −0.124522
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.1677 −1.10229 −0.551144 0.834410i \(-0.685808\pi\)
−0.551144 + 0.834410i \(0.685808\pi\)
\(654\) 0 0
\(655\) 3.01309 0.117731
\(656\) 0 0
\(657\) −9.22134 −0.359759
\(658\) 0 0
\(659\) −46.2520 −1.80172 −0.900862 0.434107i \(-0.857064\pi\)
−0.900862 + 0.434107i \(0.857064\pi\)
\(660\) 0 0
\(661\) −24.1010 −0.937421 −0.468710 0.883352i \(-0.655281\pi\)
−0.468710 + 0.883352i \(0.655281\pi\)
\(662\) 0 0
\(663\) 5.32416 0.206773
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −49.6222 −1.92138
\(668\) 0 0
\(669\) −8.80326 −0.340354
\(670\) 0 0
\(671\) −1.49939 −0.0578834
\(672\) 0 0
\(673\) −21.7745 −0.839346 −0.419673 0.907675i \(-0.637855\pi\)
−0.419673 + 0.907675i \(0.637855\pi\)
\(674\) 0 0
\(675\) −10.7179 −0.412533
\(676\) 0 0
\(677\) 7.59712 0.291981 0.145991 0.989286i \(-0.453363\pi\)
0.145991 + 0.989286i \(0.453363\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −22.6404 −0.867582
\(682\) 0 0
\(683\) −24.1319 −0.923381 −0.461690 0.887041i \(-0.652757\pi\)
−0.461690 + 0.887041i \(0.652757\pi\)
\(684\) 0 0
\(685\) −13.1013 −0.500576
\(686\) 0 0
\(687\) 29.9877 1.14410
\(688\) 0 0
\(689\) 47.5603 1.81190
\(690\) 0 0
\(691\) 47.5473 1.80878 0.904392 0.426703i \(-0.140325\pi\)
0.904392 + 0.426703i \(0.140325\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.96925 0.150562
\(696\) 0 0
\(697\) −7.17538 −0.271787
\(698\) 0 0
\(699\) 10.9937 0.415820
\(700\) 0 0
\(701\) −11.2887 −0.426369 −0.213184 0.977012i \(-0.568384\pi\)
−0.213184 + 0.977012i \(0.568384\pi\)
\(702\) 0 0
\(703\) 3.14057 0.118449
\(704\) 0 0
\(705\) −18.1276 −0.682726
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 31.4948 1.18281 0.591406 0.806374i \(-0.298573\pi\)
0.591406 + 0.806374i \(0.298573\pi\)
\(710\) 0 0
\(711\) −14.6368 −0.548924
\(712\) 0 0
\(713\) −37.5180 −1.40506
\(714\) 0 0
\(715\) −1.59750 −0.0597432
\(716\) 0 0
\(717\) −2.03279 −0.0759160
\(718\) 0 0
\(719\) 17.9567 0.669673 0.334836 0.942276i \(-0.391319\pi\)
0.334836 + 0.942276i \(0.391319\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 33.1401 1.23249
\(724\) 0 0
\(725\) −16.4567 −0.611185
\(726\) 0 0
\(727\) −24.1635 −0.896176 −0.448088 0.893989i \(-0.647895\pi\)
−0.448088 + 0.893989i \(0.647895\pi\)
\(728\) 0 0
\(729\) 26.0671 0.965449
\(730\) 0 0
\(731\) 6.05010 0.223771
\(732\) 0 0
\(733\) 9.90212 0.365743 0.182872 0.983137i \(-0.441461\pi\)
0.182872 + 0.983137i \(0.441461\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.704876 −0.0259644
\(738\) 0 0
\(739\) −48.7915 −1.79483 −0.897413 0.441192i \(-0.854556\pi\)
−0.897413 + 0.441192i \(0.854556\pi\)
\(740\) 0 0
\(741\) 1.84882 0.0679179
\(742\) 0 0
\(743\) −18.7369 −0.687390 −0.343695 0.939081i \(-0.611679\pi\)
−0.343695 + 0.939081i \(0.611679\pi\)
\(744\) 0 0
\(745\) 35.1991 1.28960
\(746\) 0 0
\(747\) 21.5615 0.788893
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −33.7387 −1.23114 −0.615571 0.788081i \(-0.711075\pi\)
−0.615571 + 0.788081i \(0.711075\pi\)
\(752\) 0 0
\(753\) 1.70445 0.0621138
\(754\) 0 0
\(755\) −29.0687 −1.05792
\(756\) 0 0
\(757\) 31.7560 1.15419 0.577095 0.816677i \(-0.304186\pi\)
0.577095 + 0.816677i \(0.304186\pi\)
\(758\) 0 0
\(759\) 1.65216 0.0599694
\(760\) 0 0
\(761\) 2.97707 0.107919 0.0539593 0.998543i \(-0.482816\pi\)
0.0539593 + 0.998543i \(0.482816\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.32705 −0.0841346
\(766\) 0 0
\(767\) 59.0221 2.13117
\(768\) 0 0
\(769\) −26.0967 −0.941071 −0.470535 0.882381i \(-0.655939\pi\)
−0.470535 + 0.882381i \(0.655939\pi\)
\(770\) 0 0
\(771\) 33.5636 1.20876
\(772\) 0 0
\(773\) 50.2181 1.80622 0.903110 0.429409i \(-0.141278\pi\)
0.903110 + 0.429409i \(0.141278\pi\)
\(774\) 0 0
\(775\) −12.4424 −0.446945
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.49165 −0.0892726
\(780\) 0 0
\(781\) 2.62551 0.0939481
\(782\) 0 0
\(783\) 48.1092 1.71928
\(784\) 0 0
\(785\) 5.46123 0.194920
\(786\) 0 0
\(787\) −12.7574 −0.454752 −0.227376 0.973807i \(-0.573015\pi\)
−0.227376 + 0.973807i \(0.573015\pi\)
\(788\) 0 0
\(789\) −25.1528 −0.895463
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 27.8973 0.990663
\(794\) 0 0
\(795\) 26.2843 0.932209
\(796\) 0 0
\(797\) −28.1558 −0.997330 −0.498665 0.866795i \(-0.666176\pi\)
−0.498665 + 0.866795i \(0.666176\pi\)
\(798\) 0 0
\(799\) 7.97382 0.282094
\(800\) 0 0
\(801\) 6.46779 0.228528
\(802\) 0 0
\(803\) 1.53889 0.0543063
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.9036 0.383824
\(808\) 0 0
\(809\) 39.5645 1.39101 0.695506 0.718520i \(-0.255180\pi\)
0.695506 + 0.718520i \(0.255180\pi\)
\(810\) 0 0
\(811\) 33.2336 1.16699 0.583495 0.812117i \(-0.301685\pi\)
0.583495 + 0.812117i \(0.301685\pi\)
\(812\) 0 0
\(813\) 5.50073 0.192919
\(814\) 0 0
\(815\) −25.9064 −0.907460
\(816\) 0 0
\(817\) 2.10090 0.0735011
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.2159 −0.740439 −0.370219 0.928944i \(-0.620717\pi\)
−0.370219 + 0.928944i \(0.620717\pi\)
\(822\) 0 0
\(823\) −28.9374 −1.00869 −0.504347 0.863501i \(-0.668267\pi\)
−0.504347 + 0.863501i \(0.668267\pi\)
\(824\) 0 0
\(825\) 0.547919 0.0190761
\(826\) 0 0
\(827\) 46.3822 1.61287 0.806433 0.591325i \(-0.201395\pi\)
0.806433 + 0.591325i \(0.201395\pi\)
\(828\) 0 0
\(829\) −17.5216 −0.608552 −0.304276 0.952584i \(-0.598414\pi\)
−0.304276 + 0.952584i \(0.598414\pi\)
\(830\) 0 0
\(831\) −23.3399 −0.809653
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 17.5123 0.606039
\(836\) 0 0
\(837\) 36.3740 1.25727
\(838\) 0 0
\(839\) 11.5741 0.399584 0.199792 0.979838i \(-0.435973\pi\)
0.199792 + 0.979838i \(0.435973\pi\)
\(840\) 0 0
\(841\) 44.8684 1.54719
\(842\) 0 0
\(843\) 28.8520 0.993716
\(844\) 0 0
\(845\) 6.88841 0.236969
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.2628 0.764057
\(850\) 0 0
\(851\) −52.2171 −1.78998
\(852\) 0 0
\(853\) 51.3617 1.75859 0.879295 0.476277i \(-0.158014\pi\)
0.879295 + 0.476277i \(0.158014\pi\)
\(854\) 0 0
\(855\) −0.808067 −0.0276353
\(856\) 0 0
\(857\) −36.2390 −1.23790 −0.618950 0.785430i \(-0.712442\pi\)
−0.618950 + 0.785430i \(0.712442\pi\)
\(858\) 0 0
\(859\) −24.4763 −0.835119 −0.417560 0.908650i \(-0.637115\pi\)
−0.417560 + 0.908650i \(0.637115\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.5929 0.871192 0.435596 0.900142i \(-0.356538\pi\)
0.435596 + 0.900142i \(0.356538\pi\)
\(864\) 0 0
\(865\) 3.01310 0.102448
\(866\) 0 0
\(867\) −1.29428 −0.0439562
\(868\) 0 0
\(869\) 2.44265 0.0828613
\(870\) 0 0
\(871\) 13.1147 0.444376
\(872\) 0 0
\(873\) 2.54398 0.0861006
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.71423 0.328026 0.164013 0.986458i \(-0.447556\pi\)
0.164013 + 0.986458i \(0.447556\pi\)
\(878\) 0 0
\(879\) 20.3962 0.687947
\(880\) 0 0
\(881\) 39.0076 1.31420 0.657100 0.753803i \(-0.271783\pi\)
0.657100 + 0.753803i \(0.271783\pi\)
\(882\) 0 0
\(883\) 34.0396 1.14552 0.572761 0.819722i \(-0.305872\pi\)
0.572761 + 0.819722i \(0.305872\pi\)
\(884\) 0 0
\(885\) 32.6188 1.09647
\(886\) 0 0
\(887\) −55.3660 −1.85901 −0.929505 0.368810i \(-0.879765\pi\)
−0.929505 + 0.368810i \(0.879765\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.723047 −0.0242230
\(892\) 0 0
\(893\) 2.76891 0.0926580
\(894\) 0 0
\(895\) 8.85341 0.295937
\(896\) 0 0
\(897\) −30.7396 −1.02637
\(898\) 0 0
\(899\) 55.8498 1.86270
\(900\) 0 0
\(901\) −11.5617 −0.385177
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −33.8746 −1.12603
\(906\) 0 0
\(907\) 4.88850 0.162320 0.0811599 0.996701i \(-0.474138\pi\)
0.0811599 + 0.996701i \(0.474138\pi\)
\(908\) 0 0
\(909\) 22.8173 0.756800
\(910\) 0 0
\(911\) 38.8077 1.28576 0.642879 0.765968i \(-0.277740\pi\)
0.642879 + 0.765968i \(0.277740\pi\)
\(912\) 0 0
\(913\) −3.59826 −0.119085
\(914\) 0 0
\(915\) 15.4175 0.509688
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.96699 0.130859 0.0654295 0.997857i \(-0.479158\pi\)
0.0654295 + 0.997857i \(0.479158\pi\)
\(920\) 0 0
\(921\) −11.1374 −0.366991
\(922\) 0 0
\(923\) −48.8496 −1.60790
\(924\) 0 0
\(925\) −17.3172 −0.569387
\(926\) 0 0
\(927\) 0.429966 0.0141219
\(928\) 0 0
\(929\) 0.787446 0.0258353 0.0129176 0.999917i \(-0.495888\pi\)
0.0129176 + 0.999917i \(0.495888\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 41.6527 1.36365
\(934\) 0 0
\(935\) 0.388347 0.0127003
\(936\) 0 0
\(937\) 1.89922 0.0620448 0.0310224 0.999519i \(-0.490124\pi\)
0.0310224 + 0.999519i \(0.490124\pi\)
\(938\) 0 0
\(939\) −17.5603 −0.573060
\(940\) 0 0
\(941\) −2.45806 −0.0801306 −0.0400653 0.999197i \(-0.512757\pi\)
−0.0400653 + 0.999197i \(0.512757\pi\)
\(942\) 0 0
\(943\) 41.4278 1.34907
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.6039 −0.409573 −0.204787 0.978807i \(-0.565650\pi\)
−0.204787 + 0.978807i \(0.565650\pi\)
\(948\) 0 0
\(949\) −28.6323 −0.929443
\(950\) 0 0
\(951\) 13.5848 0.440517
\(952\) 0 0
\(953\) −45.4002 −1.47066 −0.735329 0.677710i \(-0.762972\pi\)
−0.735329 + 0.677710i \(0.762972\pi\)
\(954\) 0 0
\(955\) 27.5857 0.892651
\(956\) 0 0
\(957\) −2.45942 −0.0795019
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.2265 0.362144
\(962\) 0 0
\(963\) −12.4108 −0.399933
\(964\) 0 0
\(965\) 16.7520 0.539268
\(966\) 0 0
\(967\) −10.6379 −0.342092 −0.171046 0.985263i \(-0.554715\pi\)
−0.171046 + 0.985263i \(0.554715\pi\)
\(968\) 0 0
\(969\) −0.449440 −0.0144381
\(970\) 0 0
\(971\) −37.2922 −1.19676 −0.598381 0.801212i \(-0.704189\pi\)
−0.598381 + 0.801212i \(0.704189\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10.1945 −0.326484
\(976\) 0 0
\(977\) −12.8992 −0.412683 −0.206342 0.978480i \(-0.566156\pi\)
−0.206342 + 0.978480i \(0.566156\pi\)
\(978\) 0 0
\(979\) −1.07937 −0.0344968
\(980\) 0 0
\(981\) 17.4939 0.558536
\(982\) 0 0
\(983\) −1.86470 −0.0594748 −0.0297374 0.999558i \(-0.509467\pi\)
−0.0297374 + 0.999558i \(0.509467\pi\)
\(984\) 0 0
\(985\) 13.7546 0.438259
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −34.9309 −1.11074
\(990\) 0 0
\(991\) 16.2988 0.517747 0.258874 0.965911i \(-0.416649\pi\)
0.258874 + 0.965911i \(0.416649\pi\)
\(992\) 0 0
\(993\) −20.2647 −0.643080
\(994\) 0 0
\(995\) −37.2653 −1.18139
\(996\) 0 0
\(997\) 3.00252 0.0950908 0.0475454 0.998869i \(-0.484860\pi\)
0.0475454 + 0.998869i \(0.484860\pi\)
\(998\) 0 0
\(999\) 50.6249 1.60170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.t.1.2 yes 6
7.6 odd 2 6664.2.a.q.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6664.2.a.q.1.5 6 7.6 odd 2
6664.2.a.t.1.2 yes 6 1.1 even 1 trivial