Properties

Label 6664.2.a.t
Level $6664$
Weight $2$
Character orbit 6664.a
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.15751800.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 8x^{4} + 6x^{3} + 16x^{2} - 7x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + ( - \beta_{4} + \beta_{2}) q^{5} + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{9} + ( - \beta_{5} + \beta_{4} + \beta_{3}) q^{11} + ( - \beta_{4} - \beta_{3} - 1) q^{13} + ( - \beta_{4} + 2 \beta_{2} + \beta_1 - 2) q^{15}+ \cdots + (\beta_{5} - 4 \beta_{4} - 2 \beta_{3} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 4 q^{5} + 4 q^{9} + 2 q^{11} - 6 q^{13} - 16 q^{15} + 6 q^{17} + 4 q^{19} - 4 q^{23} + 8 q^{25} + 14 q^{27} - 6 q^{29} - 16 q^{31} - 8 q^{33} - 12 q^{37} + 10 q^{39} - 22 q^{41} + 2 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 8x^{4} + 6x^{3} + 16x^{2} - 7x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + \nu^{3} + 5\nu^{2} - 3\nu - 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + \nu^{3} - 5\nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 6\nu^{3} + 6\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + \beta_{3} - 2\beta_{2} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{4} + \beta_{3} + 4\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 6\beta_{4} + 4\beta_{3} - 10\beta_{2} + \beta _1 + 20 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 3\beta_{4} + 3\beta_{3} + 9\beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.114413
−1.66208
0.527344
2.27955
2.07639
−2.10679
0 −2.44306 0 −0.0622230 0 0 0 2.96856 0
1.2 0 −1.29428 0 1.75649 0 0 0 −1.32483 0
1.3 0 0.240816 0 1.56237 0 0 0 −2.94201 0
1.4 0 0.469186 0 −3.93720 0 0 0 −2.77986 0
1.5 0 1.66484 0 0.733917 0 0 0 −0.228318 0
1.6 0 3.36251 0 −4.05336 0 0 0 8.30646 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6664.2.a.t yes 6
7.b odd 2 1 6664.2.a.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6664.2.a.q 6 7.b odd 2 1
6664.2.a.t yes 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6664))\):

\( T_{3}^{6} - 2T_{3}^{5} - 9T_{3}^{4} + 12T_{3}^{3} + 13T_{3}^{2} - 12T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{6} + 4T_{5}^{5} - 11T_{5}^{4} - 26T_{5}^{3} + 65T_{5}^{2} - 28T_{5} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 2 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 2 T^{5} + \cdots + 96 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 192 \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 4 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$23$ \( T^{6} + 4 T^{5} + \cdots - 9344 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots - 38880 \) Copy content Toggle raw display
$31$ \( T^{6} + 16 T^{5} + \cdots + 13136 \) Copy content Toggle raw display
$37$ \( T^{6} + 12 T^{5} + \cdots + 3872 \) Copy content Toggle raw display
$41$ \( T^{6} + 22 T^{5} + \cdots + 2764 \) Copy content Toggle raw display
$43$ \( T^{6} - 2 T^{5} + \cdots - 18856 \) Copy content Toggle raw display
$47$ \( T^{6} - 2 T^{5} + \cdots - 10688 \) Copy content Toggle raw display
$53$ \( T^{6} - 6 T^{5} + \cdots - 19300 \) Copy content Toggle raw display
$59$ \( T^{6} + 20 T^{5} + \cdots + 24832 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + \cdots + 55758 \) Copy content Toggle raw display
$67$ \( T^{6} + 2 T^{5} + \cdots - 376 \) Copy content Toggle raw display
$71$ \( T^{6} + 8 T^{5} + \cdots - 28032 \) Copy content Toggle raw display
$73$ \( T^{6} + 18 T^{5} + \cdots + 10804 \) Copy content Toggle raw display
$79$ \( T^{6} - 10 T^{5} + \cdots - 470144 \) Copy content Toggle raw display
$83$ \( T^{6} + 6 T^{5} + \cdots - 768 \) Copy content Toggle raw display
$89$ \( T^{6} + 6 T^{5} + \cdots - 168192 \) Copy content Toggle raw display
$97$ \( T^{6} + 36 T^{5} + \cdots - 431700 \) Copy content Toggle raw display
show more
show less