Properties

Label 6664.2.a.r.1.1
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.30091192.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 10x^{3} + 18x^{2} - 23x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.36506\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36506 q^{3} +1.89992 q^{5} +2.59349 q^{9} +3.76870 q^{11} +0.189847 q^{13} -4.49341 q^{15} +1.00000 q^{17} +0.880612 q^{19} -3.97038 q^{23} -1.39032 q^{25} +0.961410 q^{27} -6.30040 q^{29} +5.88017 q^{31} -8.91320 q^{33} -10.8935 q^{37} -0.448999 q^{39} -3.28277 q^{41} -0.477269 q^{43} +4.92742 q^{45} -2.44464 q^{47} -2.36506 q^{51} -7.16378 q^{53} +7.16022 q^{55} -2.08270 q^{57} +4.53281 q^{59} -11.3227 q^{61} +0.360693 q^{65} +8.76314 q^{67} +9.39016 q^{69} -6.72185 q^{71} -0.695543 q^{73} +3.28818 q^{75} -3.98071 q^{79} -10.0543 q^{81} +7.77110 q^{83} +1.89992 q^{85} +14.9008 q^{87} -0.237007 q^{89} -13.9069 q^{93} +1.67309 q^{95} +6.81746 q^{97} +9.77411 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - q^{5} + q^{9} - 6 q^{11} + 2 q^{13} + 6 q^{17} - 2 q^{19} - 5 q^{23} + q^{25} + 8 q^{27} - 15 q^{29} - 8 q^{31} - 11 q^{33} - 16 q^{37} - 2 q^{39} - 4 q^{41} + 24 q^{43} - 2 q^{45} + q^{47}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36506 −1.36547 −0.682733 0.730668i \(-0.739209\pi\)
−0.682733 + 0.730668i \(0.739209\pi\)
\(4\) 0 0
\(5\) 1.89992 0.849668 0.424834 0.905271i \(-0.360332\pi\)
0.424834 + 0.905271i \(0.360332\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.59349 0.864498
\(10\) 0 0
\(11\) 3.76870 1.13631 0.568154 0.822923i \(-0.307658\pi\)
0.568154 + 0.822923i \(0.307658\pi\)
\(12\) 0 0
\(13\) 0.189847 0.0526541 0.0263270 0.999653i \(-0.491619\pi\)
0.0263270 + 0.999653i \(0.491619\pi\)
\(14\) 0 0
\(15\) −4.49341 −1.16019
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0.880612 0.202026 0.101013 0.994885i \(-0.467792\pi\)
0.101013 + 0.994885i \(0.467792\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.97038 −0.827881 −0.413940 0.910304i \(-0.635848\pi\)
−0.413940 + 0.910304i \(0.635848\pi\)
\(24\) 0 0
\(25\) −1.39032 −0.278063
\(26\) 0 0
\(27\) 0.961410 0.185023
\(28\) 0 0
\(29\) −6.30040 −1.16996 −0.584978 0.811049i \(-0.698897\pi\)
−0.584978 + 0.811049i \(0.698897\pi\)
\(30\) 0 0
\(31\) 5.88017 1.05611 0.528055 0.849210i \(-0.322922\pi\)
0.528055 + 0.849210i \(0.322922\pi\)
\(32\) 0 0
\(33\) −8.91320 −1.55159
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.8935 −1.79088 −0.895440 0.445182i \(-0.853139\pi\)
−0.895440 + 0.445182i \(0.853139\pi\)
\(38\) 0 0
\(39\) −0.448999 −0.0718973
\(40\) 0 0
\(41\) −3.28277 −0.512683 −0.256341 0.966586i \(-0.582517\pi\)
−0.256341 + 0.966586i \(0.582517\pi\)
\(42\) 0 0
\(43\) −0.477269 −0.0727828 −0.0363914 0.999338i \(-0.511586\pi\)
−0.0363914 + 0.999338i \(0.511586\pi\)
\(44\) 0 0
\(45\) 4.92742 0.734537
\(46\) 0 0
\(47\) −2.44464 −0.356587 −0.178293 0.983977i \(-0.557058\pi\)
−0.178293 + 0.983977i \(0.557058\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.36506 −0.331174
\(52\) 0 0
\(53\) −7.16378 −0.984021 −0.492011 0.870589i \(-0.663738\pi\)
−0.492011 + 0.870589i \(0.663738\pi\)
\(54\) 0 0
\(55\) 7.16022 0.965484
\(56\) 0 0
\(57\) −2.08270 −0.275860
\(58\) 0 0
\(59\) 4.53281 0.590121 0.295061 0.955479i \(-0.404660\pi\)
0.295061 + 0.955479i \(0.404660\pi\)
\(60\) 0 0
\(61\) −11.3227 −1.44973 −0.724863 0.688894i \(-0.758097\pi\)
−0.724863 + 0.688894i \(0.758097\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.360693 0.0447385
\(66\) 0 0
\(67\) 8.76314 1.07059 0.535294 0.844666i \(-0.320201\pi\)
0.535294 + 0.844666i \(0.320201\pi\)
\(68\) 0 0
\(69\) 9.39016 1.13044
\(70\) 0 0
\(71\) −6.72185 −0.797737 −0.398868 0.917008i \(-0.630597\pi\)
−0.398868 + 0.917008i \(0.630597\pi\)
\(72\) 0 0
\(73\) −0.695543 −0.0814072 −0.0407036 0.999171i \(-0.512960\pi\)
−0.0407036 + 0.999171i \(0.512960\pi\)
\(74\) 0 0
\(75\) 3.28818 0.379686
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.98071 −0.447865 −0.223933 0.974605i \(-0.571890\pi\)
−0.223933 + 0.974605i \(0.571890\pi\)
\(80\) 0 0
\(81\) −10.0543 −1.11714
\(82\) 0 0
\(83\) 7.77110 0.852989 0.426495 0.904490i \(-0.359748\pi\)
0.426495 + 0.904490i \(0.359748\pi\)
\(84\) 0 0
\(85\) 1.89992 0.206075
\(86\) 0 0
\(87\) 14.9008 1.59753
\(88\) 0 0
\(89\) −0.237007 −0.0251227 −0.0125613 0.999921i \(-0.503999\pi\)
−0.0125613 + 0.999921i \(0.503999\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −13.9069 −1.44208
\(94\) 0 0
\(95\) 1.67309 0.171655
\(96\) 0 0
\(97\) 6.81746 0.692208 0.346104 0.938196i \(-0.387504\pi\)
0.346104 + 0.938196i \(0.387504\pi\)
\(98\) 0 0
\(99\) 9.77411 0.982335
\(100\) 0 0
\(101\) −16.9513 −1.68672 −0.843360 0.537349i \(-0.819426\pi\)
−0.843360 + 0.537349i \(0.819426\pi\)
\(102\) 0 0
\(103\) −2.47025 −0.243401 −0.121701 0.992567i \(-0.538835\pi\)
−0.121701 + 0.992567i \(0.538835\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.48790 −0.240514 −0.120257 0.992743i \(-0.538372\pi\)
−0.120257 + 0.992743i \(0.538372\pi\)
\(108\) 0 0
\(109\) 7.81194 0.748248 0.374124 0.927379i \(-0.377943\pi\)
0.374124 + 0.927379i \(0.377943\pi\)
\(110\) 0 0
\(111\) 25.7637 2.44539
\(112\) 0 0
\(113\) 7.15811 0.673378 0.336689 0.941616i \(-0.390693\pi\)
0.336689 + 0.941616i \(0.390693\pi\)
\(114\) 0 0
\(115\) −7.54338 −0.703424
\(116\) 0 0
\(117\) 0.492367 0.0455193
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.20313 0.291194
\(122\) 0 0
\(123\) 7.76394 0.700051
\(124\) 0 0
\(125\) −12.1411 −1.08593
\(126\) 0 0
\(127\) 5.32958 0.472924 0.236462 0.971641i \(-0.424012\pi\)
0.236462 + 0.971641i \(0.424012\pi\)
\(128\) 0 0
\(129\) 1.12877 0.0993825
\(130\) 0 0
\(131\) 5.96791 0.521419 0.260710 0.965417i \(-0.416044\pi\)
0.260710 + 0.965417i \(0.416044\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.82660 0.157209
\(136\) 0 0
\(137\) 17.0184 1.45398 0.726989 0.686649i \(-0.240919\pi\)
0.726989 + 0.686649i \(0.240919\pi\)
\(138\) 0 0
\(139\) −8.57639 −0.727440 −0.363720 0.931508i \(-0.618494\pi\)
−0.363720 + 0.931508i \(0.618494\pi\)
\(140\) 0 0
\(141\) 5.78170 0.486907
\(142\) 0 0
\(143\) 0.715477 0.0598312
\(144\) 0 0
\(145\) −11.9702 −0.994074
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.0212 −1.72213 −0.861063 0.508497i \(-0.830201\pi\)
−0.861063 + 0.508497i \(0.830201\pi\)
\(150\) 0 0
\(151\) −23.5151 −1.91363 −0.956817 0.290691i \(-0.906115\pi\)
−0.956817 + 0.290691i \(0.906115\pi\)
\(152\) 0 0
\(153\) 2.59349 0.209672
\(154\) 0 0
\(155\) 11.1718 0.897343
\(156\) 0 0
\(157\) 18.8236 1.50229 0.751143 0.660140i \(-0.229503\pi\)
0.751143 + 0.660140i \(0.229503\pi\)
\(158\) 0 0
\(159\) 16.9428 1.34365
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.8182 −1.31730 −0.658652 0.752448i \(-0.728873\pi\)
−0.658652 + 0.752448i \(0.728873\pi\)
\(164\) 0 0
\(165\) −16.9343 −1.31834
\(166\) 0 0
\(167\) 10.9092 0.844182 0.422091 0.906554i \(-0.361296\pi\)
0.422091 + 0.906554i \(0.361296\pi\)
\(168\) 0 0
\(169\) −12.9640 −0.997228
\(170\) 0 0
\(171\) 2.28386 0.174651
\(172\) 0 0
\(173\) 11.3416 0.862289 0.431145 0.902283i \(-0.358110\pi\)
0.431145 + 0.902283i \(0.358110\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.7203 −0.805790
\(178\) 0 0
\(179\) 9.01985 0.674175 0.337088 0.941473i \(-0.390558\pi\)
0.337088 + 0.941473i \(0.390558\pi\)
\(180\) 0 0
\(181\) −3.13099 −0.232725 −0.116363 0.993207i \(-0.537123\pi\)
−0.116363 + 0.993207i \(0.537123\pi\)
\(182\) 0 0
\(183\) 26.7789 1.97955
\(184\) 0 0
\(185\) −20.6967 −1.52165
\(186\) 0 0
\(187\) 3.76870 0.275595
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.1352 −1.45693 −0.728466 0.685082i \(-0.759766\pi\)
−0.728466 + 0.685082i \(0.759766\pi\)
\(192\) 0 0
\(193\) 21.1031 1.51903 0.759517 0.650487i \(-0.225435\pi\)
0.759517 + 0.650487i \(0.225435\pi\)
\(194\) 0 0
\(195\) −0.853060 −0.0610889
\(196\) 0 0
\(197\) 16.8747 1.20227 0.601136 0.799147i \(-0.294715\pi\)
0.601136 + 0.799147i \(0.294715\pi\)
\(198\) 0 0
\(199\) −9.42684 −0.668251 −0.334125 0.942529i \(-0.608441\pi\)
−0.334125 + 0.942529i \(0.608441\pi\)
\(200\) 0 0
\(201\) −20.7253 −1.46185
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.23699 −0.435611
\(206\) 0 0
\(207\) −10.2971 −0.715701
\(208\) 0 0
\(209\) 3.31877 0.229564
\(210\) 0 0
\(211\) −0.0770744 −0.00530602 −0.00265301 0.999996i \(-0.500844\pi\)
−0.00265301 + 0.999996i \(0.500844\pi\)
\(212\) 0 0
\(213\) 15.8976 1.08928
\(214\) 0 0
\(215\) −0.906771 −0.0618413
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.64500 0.111159
\(220\) 0 0
\(221\) 0.189847 0.0127705
\(222\) 0 0
\(223\) −10.0086 −0.670226 −0.335113 0.942178i \(-0.608774\pi\)
−0.335113 + 0.942178i \(0.608774\pi\)
\(224\) 0 0
\(225\) −3.60578 −0.240385
\(226\) 0 0
\(227\) −10.6886 −0.709428 −0.354714 0.934975i \(-0.615422\pi\)
−0.354714 + 0.934975i \(0.615422\pi\)
\(228\) 0 0
\(229\) 15.7536 1.04103 0.520513 0.853854i \(-0.325741\pi\)
0.520513 + 0.853854i \(0.325741\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.5422 1.21474 0.607369 0.794420i \(-0.292225\pi\)
0.607369 + 0.794420i \(0.292225\pi\)
\(234\) 0 0
\(235\) −4.64460 −0.302980
\(236\) 0 0
\(237\) 9.41461 0.611545
\(238\) 0 0
\(239\) −13.8718 −0.897295 −0.448647 0.893709i \(-0.648094\pi\)
−0.448647 + 0.893709i \(0.648094\pi\)
\(240\) 0 0
\(241\) −7.38211 −0.475523 −0.237762 0.971324i \(-0.576414\pi\)
−0.237762 + 0.971324i \(0.576414\pi\)
\(242\) 0 0
\(243\) 20.8947 1.34040
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.167182 0.0106375
\(248\) 0 0
\(249\) −18.3791 −1.16473
\(250\) 0 0
\(251\) 25.1206 1.58560 0.792799 0.609484i \(-0.208623\pi\)
0.792799 + 0.609484i \(0.208623\pi\)
\(252\) 0 0
\(253\) −14.9632 −0.940727
\(254\) 0 0
\(255\) −4.49341 −0.281388
\(256\) 0 0
\(257\) 25.1909 1.57137 0.785684 0.618628i \(-0.212311\pi\)
0.785684 + 0.618628i \(0.212311\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −16.3401 −1.01142
\(262\) 0 0
\(263\) −5.26914 −0.324909 −0.162455 0.986716i \(-0.551941\pi\)
−0.162455 + 0.986716i \(0.551941\pi\)
\(264\) 0 0
\(265\) −13.6106 −0.836092
\(266\) 0 0
\(267\) 0.560534 0.0343041
\(268\) 0 0
\(269\) −13.8188 −0.842545 −0.421272 0.906934i \(-0.638416\pi\)
−0.421272 + 0.906934i \(0.638416\pi\)
\(270\) 0 0
\(271\) −29.7525 −1.80734 −0.903669 0.428231i \(-0.859137\pi\)
−0.903669 + 0.428231i \(0.859137\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.23969 −0.315965
\(276\) 0 0
\(277\) −14.5268 −0.872830 −0.436415 0.899745i \(-0.643752\pi\)
−0.436415 + 0.899745i \(0.643752\pi\)
\(278\) 0 0
\(279\) 15.2502 0.913005
\(280\) 0 0
\(281\) −17.3065 −1.03242 −0.516209 0.856462i \(-0.672657\pi\)
−0.516209 + 0.856462i \(0.672657\pi\)
\(282\) 0 0
\(283\) 23.1015 1.37324 0.686621 0.727016i \(-0.259093\pi\)
0.686621 + 0.727016i \(0.259093\pi\)
\(284\) 0 0
\(285\) −3.95695 −0.234390
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −16.1237 −0.945187
\(292\) 0 0
\(293\) −31.4518 −1.83743 −0.918717 0.394917i \(-0.870773\pi\)
−0.918717 + 0.394917i \(0.870773\pi\)
\(294\) 0 0
\(295\) 8.61195 0.501407
\(296\) 0 0
\(297\) 3.62327 0.210243
\(298\) 0 0
\(299\) −0.753764 −0.0435913
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 40.0909 2.30316
\(304\) 0 0
\(305\) −21.5122 −1.23179
\(306\) 0 0
\(307\) 14.9725 0.854527 0.427263 0.904127i \(-0.359478\pi\)
0.427263 + 0.904127i \(0.359478\pi\)
\(308\) 0 0
\(309\) 5.84228 0.332356
\(310\) 0 0
\(311\) −0.412653 −0.0233994 −0.0116997 0.999932i \(-0.503724\pi\)
−0.0116997 + 0.999932i \(0.503724\pi\)
\(312\) 0 0
\(313\) −4.32928 −0.244705 −0.122353 0.992487i \(-0.539044\pi\)
−0.122353 + 0.992487i \(0.539044\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −29.9791 −1.68380 −0.841898 0.539637i \(-0.818562\pi\)
−0.841898 + 0.539637i \(0.818562\pi\)
\(318\) 0 0
\(319\) −23.7443 −1.32943
\(320\) 0 0
\(321\) 5.88402 0.328414
\(322\) 0 0
\(323\) 0.880612 0.0489986
\(324\) 0 0
\(325\) −0.263947 −0.0146412
\(326\) 0 0
\(327\) −18.4757 −1.02171
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 23.7406 1.30490 0.652450 0.757832i \(-0.273741\pi\)
0.652450 + 0.757832i \(0.273741\pi\)
\(332\) 0 0
\(333\) −28.2522 −1.54821
\(334\) 0 0
\(335\) 16.6492 0.909645
\(336\) 0 0
\(337\) −11.1783 −0.608921 −0.304460 0.952525i \(-0.598476\pi\)
−0.304460 + 0.952525i \(0.598476\pi\)
\(338\) 0 0
\(339\) −16.9293 −0.919475
\(340\) 0 0
\(341\) 22.1606 1.20006
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 17.8405 0.960502
\(346\) 0 0
\(347\) −12.3139 −0.661047 −0.330523 0.943798i \(-0.607225\pi\)
−0.330523 + 0.943798i \(0.607225\pi\)
\(348\) 0 0
\(349\) 20.2052 1.08156 0.540780 0.841164i \(-0.318129\pi\)
0.540780 + 0.841164i \(0.318129\pi\)
\(350\) 0 0
\(351\) 0.182521 0.00974223
\(352\) 0 0
\(353\) −0.256048 −0.0136280 −0.00681402 0.999977i \(-0.502169\pi\)
−0.00681402 + 0.999977i \(0.502169\pi\)
\(354\) 0 0
\(355\) −12.7709 −0.677812
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.3851 −0.811993 −0.405997 0.913875i \(-0.633076\pi\)
−0.405997 + 0.913875i \(0.633076\pi\)
\(360\) 0 0
\(361\) −18.2245 −0.959185
\(362\) 0 0
\(363\) −7.57558 −0.397615
\(364\) 0 0
\(365\) −1.32147 −0.0691691
\(366\) 0 0
\(367\) 2.43345 0.127025 0.0635125 0.997981i \(-0.479770\pi\)
0.0635125 + 0.997981i \(0.479770\pi\)
\(368\) 0 0
\(369\) −8.51385 −0.443213
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.3919 −1.05585 −0.527926 0.849290i \(-0.677030\pi\)
−0.527926 + 0.849290i \(0.677030\pi\)
\(374\) 0 0
\(375\) 28.7143 1.48280
\(376\) 0 0
\(377\) −1.19611 −0.0616029
\(378\) 0 0
\(379\) −27.1309 −1.39362 −0.696810 0.717256i \(-0.745398\pi\)
−0.696810 + 0.717256i \(0.745398\pi\)
\(380\) 0 0
\(381\) −12.6048 −0.645762
\(382\) 0 0
\(383\) 18.6749 0.954244 0.477122 0.878837i \(-0.341680\pi\)
0.477122 + 0.878837i \(0.341680\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.23779 −0.0629206
\(388\) 0 0
\(389\) 3.15646 0.160039 0.0800195 0.996793i \(-0.474502\pi\)
0.0800195 + 0.996793i \(0.474502\pi\)
\(390\) 0 0
\(391\) −3.97038 −0.200791
\(392\) 0 0
\(393\) −14.1145 −0.711980
\(394\) 0 0
\(395\) −7.56302 −0.380537
\(396\) 0 0
\(397\) −28.6610 −1.43845 −0.719226 0.694776i \(-0.755503\pi\)
−0.719226 + 0.694776i \(0.755503\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.3670 −0.617579 −0.308790 0.951130i \(-0.599924\pi\)
−0.308790 + 0.951130i \(0.599924\pi\)
\(402\) 0 0
\(403\) 1.11633 0.0556085
\(404\) 0 0
\(405\) −19.1023 −0.949200
\(406\) 0 0
\(407\) −41.0544 −2.03499
\(408\) 0 0
\(409\) −27.6207 −1.36576 −0.682878 0.730533i \(-0.739272\pi\)
−0.682878 + 0.730533i \(0.739272\pi\)
\(410\) 0 0
\(411\) −40.2494 −1.98536
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 14.7644 0.724758
\(416\) 0 0
\(417\) 20.2837 0.993295
\(418\) 0 0
\(419\) 21.1268 1.03211 0.516055 0.856555i \(-0.327400\pi\)
0.516055 + 0.856555i \(0.327400\pi\)
\(420\) 0 0
\(421\) −4.03124 −0.196471 −0.0982353 0.995163i \(-0.531320\pi\)
−0.0982353 + 0.995163i \(0.531320\pi\)
\(422\) 0 0
\(423\) −6.34015 −0.308268
\(424\) 0 0
\(425\) −1.39032 −0.0674403
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.69214 −0.0816975
\(430\) 0 0
\(431\) 11.1630 0.537700 0.268850 0.963182i \(-0.413356\pi\)
0.268850 + 0.963182i \(0.413356\pi\)
\(432\) 0 0
\(433\) −30.3717 −1.45957 −0.729785 0.683676i \(-0.760380\pi\)
−0.729785 + 0.683676i \(0.760380\pi\)
\(434\) 0 0
\(435\) 28.3103 1.35737
\(436\) 0 0
\(437\) −3.49636 −0.167254
\(438\) 0 0
\(439\) −17.4776 −0.834160 −0.417080 0.908870i \(-0.636946\pi\)
−0.417080 + 0.908870i \(0.636946\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.04197 −0.429597 −0.214798 0.976658i \(-0.568909\pi\)
−0.214798 + 0.976658i \(0.568909\pi\)
\(444\) 0 0
\(445\) −0.450293 −0.0213459
\(446\) 0 0
\(447\) 49.7164 2.35151
\(448\) 0 0
\(449\) −20.6592 −0.974966 −0.487483 0.873132i \(-0.662085\pi\)
−0.487483 + 0.873132i \(0.662085\pi\)
\(450\) 0 0
\(451\) −12.3718 −0.582565
\(452\) 0 0
\(453\) 55.6146 2.61300
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.5009 −1.00577 −0.502885 0.864353i \(-0.667728\pi\)
−0.502885 + 0.864353i \(0.667728\pi\)
\(458\) 0 0
\(459\) 0.961410 0.0448748
\(460\) 0 0
\(461\) −15.7330 −0.732758 −0.366379 0.930466i \(-0.619403\pi\)
−0.366379 + 0.930466i \(0.619403\pi\)
\(462\) 0 0
\(463\) 41.7714 1.94128 0.970640 0.240537i \(-0.0773236\pi\)
0.970640 + 0.240537i \(0.0773236\pi\)
\(464\) 0 0
\(465\) −26.4220 −1.22529
\(466\) 0 0
\(467\) −35.8993 −1.66122 −0.830611 0.556854i \(-0.812008\pi\)
−0.830611 + 0.556854i \(0.812008\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −44.5188 −2.05132
\(472\) 0 0
\(473\) −1.79868 −0.0827036
\(474\) 0 0
\(475\) −1.22433 −0.0561762
\(476\) 0 0
\(477\) −18.5792 −0.850684
\(478\) 0 0
\(479\) −7.27453 −0.332382 −0.166191 0.986094i \(-0.553147\pi\)
−0.166191 + 0.986094i \(0.553147\pi\)
\(480\) 0 0
\(481\) −2.06810 −0.0942971
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.9526 0.588148
\(486\) 0 0
\(487\) −11.7260 −0.531354 −0.265677 0.964062i \(-0.585595\pi\)
−0.265677 + 0.964062i \(0.585595\pi\)
\(488\) 0 0
\(489\) 39.7760 1.79873
\(490\) 0 0
\(491\) 0.539527 0.0243485 0.0121742 0.999926i \(-0.496125\pi\)
0.0121742 + 0.999926i \(0.496125\pi\)
\(492\) 0 0
\(493\) −6.30040 −0.283756
\(494\) 0 0
\(495\) 18.5700 0.834659
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.7194 0.882763 0.441382 0.897319i \(-0.354489\pi\)
0.441382 + 0.897319i \(0.354489\pi\)
\(500\) 0 0
\(501\) −25.8010 −1.15270
\(502\) 0 0
\(503\) −23.4213 −1.04430 −0.522152 0.852852i \(-0.674871\pi\)
−0.522152 + 0.852852i \(0.674871\pi\)
\(504\) 0 0
\(505\) −32.2061 −1.43315
\(506\) 0 0
\(507\) 30.6605 1.36168
\(508\) 0 0
\(509\) 20.5876 0.912531 0.456266 0.889844i \(-0.349187\pi\)
0.456266 + 0.889844i \(0.349187\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.846629 0.0373796
\(514\) 0 0
\(515\) −4.69327 −0.206810
\(516\) 0 0
\(517\) −9.21311 −0.405192
\(518\) 0 0
\(519\) −26.8236 −1.17743
\(520\) 0 0
\(521\) −1.40857 −0.0617107 −0.0308553 0.999524i \(-0.509823\pi\)
−0.0308553 + 0.999524i \(0.509823\pi\)
\(522\) 0 0
\(523\) −25.8772 −1.13153 −0.565766 0.824566i \(-0.691419\pi\)
−0.565766 + 0.824566i \(0.691419\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.88017 0.256144
\(528\) 0 0
\(529\) −7.23612 −0.314614
\(530\) 0 0
\(531\) 11.7558 0.510158
\(532\) 0 0
\(533\) −0.623224 −0.0269948
\(534\) 0 0
\(535\) −4.72680 −0.204357
\(536\) 0 0
\(537\) −21.3325 −0.920564
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 27.0596 1.16338 0.581691 0.813410i \(-0.302391\pi\)
0.581691 + 0.813410i \(0.302391\pi\)
\(542\) 0 0
\(543\) 7.40498 0.317778
\(544\) 0 0
\(545\) 14.8420 0.635763
\(546\) 0 0
\(547\) 0.235008 0.0100482 0.00502410 0.999987i \(-0.498401\pi\)
0.00502410 + 0.999987i \(0.498401\pi\)
\(548\) 0 0
\(549\) −29.3654 −1.25328
\(550\) 0 0
\(551\) −5.54821 −0.236362
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 48.9490 2.07777
\(556\) 0 0
\(557\) 28.3966 1.20320 0.601600 0.798797i \(-0.294530\pi\)
0.601600 + 0.798797i \(0.294530\pi\)
\(558\) 0 0
\(559\) −0.0906080 −0.00383231
\(560\) 0 0
\(561\) −8.91320 −0.376316
\(562\) 0 0
\(563\) −13.3285 −0.561730 −0.280865 0.959747i \(-0.590621\pi\)
−0.280865 + 0.959747i \(0.590621\pi\)
\(564\) 0 0
\(565\) 13.5998 0.572148
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 44.8400 1.87979 0.939896 0.341461i \(-0.110922\pi\)
0.939896 + 0.341461i \(0.110922\pi\)
\(570\) 0 0
\(571\) 17.9036 0.749242 0.374621 0.927178i \(-0.377773\pi\)
0.374621 + 0.927178i \(0.377773\pi\)
\(572\) 0 0
\(573\) 47.6209 1.98939
\(574\) 0 0
\(575\) 5.52008 0.230203
\(576\) 0 0
\(577\) −24.9986 −1.04071 −0.520353 0.853951i \(-0.674200\pi\)
−0.520353 + 0.853951i \(0.674200\pi\)
\(578\) 0 0
\(579\) −49.9100 −2.07419
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −26.9982 −1.11815
\(584\) 0 0
\(585\) 0.935456 0.0386763
\(586\) 0 0
\(587\) −40.3825 −1.66676 −0.833382 0.552697i \(-0.813599\pi\)
−0.833382 + 0.552697i \(0.813599\pi\)
\(588\) 0 0
\(589\) 5.17815 0.213362
\(590\) 0 0
\(591\) −39.9096 −1.64166
\(592\) 0 0
\(593\) 5.22209 0.214446 0.107223 0.994235i \(-0.465804\pi\)
0.107223 + 0.994235i \(0.465804\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 22.2950 0.912474
\(598\) 0 0
\(599\) 1.09789 0.0448588 0.0224294 0.999748i \(-0.492860\pi\)
0.0224294 + 0.999748i \(0.492860\pi\)
\(600\) 0 0
\(601\) −16.3752 −0.667958 −0.333979 0.942581i \(-0.608391\pi\)
−0.333979 + 0.942581i \(0.608391\pi\)
\(602\) 0 0
\(603\) 22.7272 0.925522
\(604\) 0 0
\(605\) 6.08568 0.247418
\(606\) 0 0
\(607\) −42.1987 −1.71279 −0.856396 0.516319i \(-0.827302\pi\)
−0.856396 + 0.516319i \(0.827302\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.464106 −0.0187757
\(612\) 0 0
\(613\) 30.9122 1.24853 0.624265 0.781213i \(-0.285399\pi\)
0.624265 + 0.781213i \(0.285399\pi\)
\(614\) 0 0
\(615\) 14.7508 0.594811
\(616\) 0 0
\(617\) −11.2653 −0.453526 −0.226763 0.973950i \(-0.572814\pi\)
−0.226763 + 0.973950i \(0.572814\pi\)
\(618\) 0 0
\(619\) 31.0025 1.24609 0.623047 0.782184i \(-0.285894\pi\)
0.623047 + 0.782184i \(0.285894\pi\)
\(620\) 0 0
\(621\) −3.81716 −0.153177
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −16.1154 −0.644617
\(626\) 0 0
\(627\) −7.84907 −0.313462
\(628\) 0 0
\(629\) −10.8935 −0.434352
\(630\) 0 0
\(631\) 25.0599 0.997621 0.498810 0.866711i \(-0.333770\pi\)
0.498810 + 0.866711i \(0.333770\pi\)
\(632\) 0 0
\(633\) 0.182285 0.00724520
\(634\) 0 0
\(635\) 10.1258 0.401829
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −17.4331 −0.689642
\(640\) 0 0
\(641\) −33.2570 −1.31357 −0.656787 0.754077i \(-0.728085\pi\)
−0.656787 + 0.754077i \(0.728085\pi\)
\(642\) 0 0
\(643\) −21.0140 −0.828710 −0.414355 0.910115i \(-0.635993\pi\)
−0.414355 + 0.910115i \(0.635993\pi\)
\(644\) 0 0
\(645\) 2.14456 0.0844421
\(646\) 0 0
\(647\) 21.2791 0.836567 0.418284 0.908316i \(-0.362632\pi\)
0.418284 + 0.908316i \(0.362632\pi\)
\(648\) 0 0
\(649\) 17.0828 0.670559
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.61889 0.0633520 0.0316760 0.999498i \(-0.489916\pi\)
0.0316760 + 0.999498i \(0.489916\pi\)
\(654\) 0 0
\(655\) 11.3385 0.443033
\(656\) 0 0
\(657\) −1.80389 −0.0703764
\(658\) 0 0
\(659\) 9.90958 0.386022 0.193011 0.981197i \(-0.438175\pi\)
0.193011 + 0.981197i \(0.438175\pi\)
\(660\) 0 0
\(661\) 12.1768 0.473624 0.236812 0.971555i \(-0.423897\pi\)
0.236812 + 0.971555i \(0.423897\pi\)
\(662\) 0 0
\(663\) −0.448999 −0.0174377
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 25.0150 0.968583
\(668\) 0 0
\(669\) 23.6709 0.915171
\(670\) 0 0
\(671\) −42.6720 −1.64733
\(672\) 0 0
\(673\) 4.19259 0.161612 0.0808062 0.996730i \(-0.474251\pi\)
0.0808062 + 0.996730i \(0.474251\pi\)
\(674\) 0 0
\(675\) −1.33666 −0.0514483
\(676\) 0 0
\(677\) 16.2205 0.623406 0.311703 0.950180i \(-0.399101\pi\)
0.311703 + 0.950180i \(0.399101\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.2792 0.968701
\(682\) 0 0
\(683\) 18.1844 0.695806 0.347903 0.937530i \(-0.386894\pi\)
0.347903 + 0.937530i \(0.386894\pi\)
\(684\) 0 0
\(685\) 32.3335 1.23540
\(686\) 0 0
\(687\) −37.2581 −1.42149
\(688\) 0 0
\(689\) −1.36002 −0.0518127
\(690\) 0 0
\(691\) −34.5376 −1.31387 −0.656936 0.753946i \(-0.728148\pi\)
−0.656936 + 0.753946i \(0.728148\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.2944 −0.618083
\(696\) 0 0
\(697\) −3.28277 −0.124344
\(698\) 0 0
\(699\) −43.8533 −1.65868
\(700\) 0 0
\(701\) −13.4147 −0.506665 −0.253333 0.967379i \(-0.581527\pi\)
−0.253333 + 0.967379i \(0.581527\pi\)
\(702\) 0 0
\(703\) −9.59295 −0.361805
\(704\) 0 0
\(705\) 10.9847 0.413710
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −12.9084 −0.484786 −0.242393 0.970178i \(-0.577932\pi\)
−0.242393 + 0.970178i \(0.577932\pi\)
\(710\) 0 0
\(711\) −10.3240 −0.387179
\(712\) 0 0
\(713\) −23.3465 −0.874333
\(714\) 0 0
\(715\) 1.35935 0.0508367
\(716\) 0 0
\(717\) 32.8077 1.22523
\(718\) 0 0
\(719\) 15.9545 0.595004 0.297502 0.954721i \(-0.403847\pi\)
0.297502 + 0.954721i \(0.403847\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 17.4591 0.649311
\(724\) 0 0
\(725\) 8.75956 0.325322
\(726\) 0 0
\(727\) −11.5506 −0.428389 −0.214195 0.976791i \(-0.568713\pi\)
−0.214195 + 0.976791i \(0.568713\pi\)
\(728\) 0 0
\(729\) −19.2543 −0.713123
\(730\) 0 0
\(731\) −0.477269 −0.0176524
\(732\) 0 0
\(733\) −7.36061 −0.271870 −0.135935 0.990718i \(-0.543404\pi\)
−0.135935 + 0.990718i \(0.543404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.0257 1.21652
\(738\) 0 0
\(739\) 41.9796 1.54424 0.772122 0.635474i \(-0.219195\pi\)
0.772122 + 0.635474i \(0.219195\pi\)
\(740\) 0 0
\(741\) −0.395394 −0.0145252
\(742\) 0 0
\(743\) 33.2804 1.22094 0.610469 0.792040i \(-0.290981\pi\)
0.610469 + 0.792040i \(0.290981\pi\)
\(744\) 0 0
\(745\) −39.9386 −1.46324
\(746\) 0 0
\(747\) 20.1543 0.737407
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.5957 −0.751548 −0.375774 0.926711i \(-0.622623\pi\)
−0.375774 + 0.926711i \(0.622623\pi\)
\(752\) 0 0
\(753\) −59.4116 −2.16508
\(754\) 0 0
\(755\) −44.6768 −1.62595
\(756\) 0 0
\(757\) 38.5859 1.40243 0.701214 0.712950i \(-0.252642\pi\)
0.701214 + 0.712950i \(0.252642\pi\)
\(758\) 0 0
\(759\) 35.3888 1.28453
\(760\) 0 0
\(761\) −8.83878 −0.320406 −0.160203 0.987084i \(-0.551215\pi\)
−0.160203 + 0.987084i \(0.551215\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.92742 0.178151
\(766\) 0 0
\(767\) 0.860539 0.0310723
\(768\) 0 0
\(769\) 7.92516 0.285789 0.142894 0.989738i \(-0.454359\pi\)
0.142894 + 0.989738i \(0.454359\pi\)
\(770\) 0 0
\(771\) −59.5780 −2.14565
\(772\) 0 0
\(773\) 49.7380 1.78895 0.894475 0.447117i \(-0.147549\pi\)
0.894475 + 0.447117i \(0.147549\pi\)
\(774\) 0 0
\(775\) −8.17530 −0.293666
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.89085 −0.103575
\(780\) 0 0
\(781\) −25.3327 −0.906474
\(782\) 0 0
\(783\) −6.05727 −0.216469
\(784\) 0 0
\(785\) 35.7632 1.27644
\(786\) 0 0
\(787\) −12.5655 −0.447913 −0.223956 0.974599i \(-0.571897\pi\)
−0.223956 + 0.974599i \(0.571897\pi\)
\(788\) 0 0
\(789\) 12.4618 0.443653
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.14958 −0.0763339
\(794\) 0 0
\(795\) 32.1898 1.14165
\(796\) 0 0
\(797\) 2.30988 0.0818200 0.0409100 0.999163i \(-0.486974\pi\)
0.0409100 + 0.999163i \(0.486974\pi\)
\(798\) 0 0
\(799\) −2.44464 −0.0864850
\(800\) 0 0
\(801\) −0.614676 −0.0217185
\(802\) 0 0
\(803\) −2.62130 −0.0925036
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 32.6822 1.15047
\(808\) 0 0
\(809\) −49.7710 −1.74986 −0.874928 0.484254i \(-0.839091\pi\)
−0.874928 + 0.484254i \(0.839091\pi\)
\(810\) 0 0
\(811\) −28.5230 −1.00158 −0.500789 0.865569i \(-0.666957\pi\)
−0.500789 + 0.865569i \(0.666957\pi\)
\(812\) 0 0
\(813\) 70.3665 2.46786
\(814\) 0 0
\(815\) −31.9532 −1.11927
\(816\) 0 0
\(817\) −0.420289 −0.0147040
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.1298 −1.26094 −0.630469 0.776215i \(-0.717137\pi\)
−0.630469 + 0.776215i \(0.717137\pi\)
\(822\) 0 0
\(823\) −50.6288 −1.76481 −0.882404 0.470493i \(-0.844076\pi\)
−0.882404 + 0.470493i \(0.844076\pi\)
\(824\) 0 0
\(825\) 12.3922 0.431440
\(826\) 0 0
\(827\) −12.6809 −0.440957 −0.220479 0.975392i \(-0.570762\pi\)
−0.220479 + 0.975392i \(0.570762\pi\)
\(828\) 0 0
\(829\) 23.6020 0.819733 0.409866 0.912146i \(-0.365575\pi\)
0.409866 + 0.912146i \(0.365575\pi\)
\(830\) 0 0
\(831\) 34.3567 1.19182
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.7266 0.717275
\(836\) 0 0
\(837\) 5.65325 0.195405
\(838\) 0 0
\(839\) 40.8581 1.41058 0.705290 0.708919i \(-0.250817\pi\)
0.705290 + 0.708919i \(0.250817\pi\)
\(840\) 0 0
\(841\) 10.6951 0.368795
\(842\) 0 0
\(843\) 40.9308 1.40973
\(844\) 0 0
\(845\) −24.6304 −0.847313
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −54.6363 −1.87511
\(850\) 0 0
\(851\) 43.2513 1.48263
\(852\) 0 0
\(853\) 25.7967 0.883261 0.441630 0.897197i \(-0.354400\pi\)
0.441630 + 0.897197i \(0.354400\pi\)
\(854\) 0 0
\(855\) 4.33915 0.148396
\(856\) 0 0
\(857\) −41.4448 −1.41573 −0.707864 0.706349i \(-0.750341\pi\)
−0.707864 + 0.706349i \(0.750341\pi\)
\(858\) 0 0
\(859\) 46.6359 1.59120 0.795598 0.605825i \(-0.207157\pi\)
0.795598 + 0.605825i \(0.207157\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.02837 −0.171168 −0.0855839 0.996331i \(-0.527276\pi\)
−0.0855839 + 0.996331i \(0.527276\pi\)
\(864\) 0 0
\(865\) 21.5482 0.732660
\(866\) 0 0
\(867\) −2.36506 −0.0803215
\(868\) 0 0
\(869\) −15.0021 −0.508912
\(870\) 0 0
\(871\) 1.66366 0.0563708
\(872\) 0 0
\(873\) 17.6810 0.598413
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.3965 −1.26279 −0.631396 0.775461i \(-0.717518\pi\)
−0.631396 + 0.775461i \(0.717518\pi\)
\(878\) 0 0
\(879\) 74.3853 2.50895
\(880\) 0 0
\(881\) −52.7508 −1.77722 −0.888609 0.458665i \(-0.848328\pi\)
−0.888609 + 0.458665i \(0.848328\pi\)
\(882\) 0 0
\(883\) 45.9674 1.54692 0.773462 0.633842i \(-0.218523\pi\)
0.773462 + 0.633842i \(0.218523\pi\)
\(884\) 0 0
\(885\) −20.3678 −0.684655
\(886\) 0 0
\(887\) −5.46886 −0.183626 −0.0918131 0.995776i \(-0.529266\pi\)
−0.0918131 + 0.995776i \(0.529266\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −37.8916 −1.26942
\(892\) 0 0
\(893\) −2.15278 −0.0720399
\(894\) 0 0
\(895\) 17.1370 0.572826
\(896\) 0 0
\(897\) 1.78269 0.0595224
\(898\) 0 0
\(899\) −37.0474 −1.23560
\(900\) 0 0
\(901\) −7.16378 −0.238660
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.94863 −0.197739
\(906\) 0 0
\(907\) 50.7671 1.68569 0.842846 0.538154i \(-0.180878\pi\)
0.842846 + 0.538154i \(0.180878\pi\)
\(908\) 0 0
\(909\) −43.9632 −1.45817
\(910\) 0 0
\(911\) 15.2983 0.506856 0.253428 0.967354i \(-0.418442\pi\)
0.253428 + 0.967354i \(0.418442\pi\)
\(912\) 0 0
\(913\) 29.2870 0.969258
\(914\) 0 0
\(915\) 50.8776 1.68196
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −32.7857 −1.08150 −0.540750 0.841183i \(-0.681860\pi\)
−0.540750 + 0.841183i \(0.681860\pi\)
\(920\) 0 0
\(921\) −35.4109 −1.16683
\(922\) 0 0
\(923\) −1.27612 −0.0420041
\(924\) 0 0
\(925\) 15.1454 0.497978
\(926\) 0 0
\(927\) −6.40658 −0.210420
\(928\) 0 0
\(929\) 10.3173 0.338499 0.169249 0.985573i \(-0.445866\pi\)
0.169249 + 0.985573i \(0.445866\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.975949 0.0319511
\(934\) 0 0
\(935\) 7.16022 0.234164
\(936\) 0 0
\(937\) 38.7047 1.26443 0.632214 0.774794i \(-0.282146\pi\)
0.632214 + 0.774794i \(0.282146\pi\)
\(938\) 0 0
\(939\) 10.2390 0.334137
\(940\) 0 0
\(941\) 43.3796 1.41413 0.707067 0.707146i \(-0.250018\pi\)
0.707067 + 0.707146i \(0.250018\pi\)
\(942\) 0 0
\(943\) 13.0338 0.424440
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −53.2852 −1.73154 −0.865768 0.500445i \(-0.833170\pi\)
−0.865768 + 0.500445i \(0.833170\pi\)
\(948\) 0 0
\(949\) −0.132047 −0.00428642
\(950\) 0 0
\(951\) 70.9023 2.29917
\(952\) 0 0
\(953\) −54.3851 −1.76170 −0.880852 0.473391i \(-0.843030\pi\)
−0.880852 + 0.473391i \(0.843030\pi\)
\(954\) 0 0
\(955\) −38.2552 −1.23791
\(956\) 0 0
\(957\) 56.1567 1.81529
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.57639 0.115367
\(962\) 0 0
\(963\) −6.45235 −0.207924
\(964\) 0 0
\(965\) 40.0941 1.29068
\(966\) 0 0
\(967\) 38.2418 1.22977 0.614887 0.788615i \(-0.289202\pi\)
0.614887 + 0.788615i \(0.289202\pi\)
\(968\) 0 0
\(969\) −2.08270 −0.0669059
\(970\) 0 0
\(971\) 5.15029 0.165281 0.0826404 0.996579i \(-0.473665\pi\)
0.0826404 + 0.996579i \(0.473665\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.624251 0.0199920
\(976\) 0 0
\(977\) 19.4591 0.622552 0.311276 0.950319i \(-0.399244\pi\)
0.311276 + 0.950319i \(0.399244\pi\)
\(978\) 0 0
\(979\) −0.893208 −0.0285471
\(980\) 0 0
\(981\) 20.2602 0.646859
\(982\) 0 0
\(983\) −18.3002 −0.583684 −0.291842 0.956467i \(-0.594268\pi\)
−0.291842 + 0.956467i \(0.594268\pi\)
\(984\) 0 0
\(985\) 32.0605 1.02153
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.89494 0.0602555
\(990\) 0 0
\(991\) 44.6995 1.41993 0.709963 0.704239i \(-0.248712\pi\)
0.709963 + 0.704239i \(0.248712\pi\)
\(992\) 0 0
\(993\) −56.1478 −1.78180
\(994\) 0 0
\(995\) −17.9102 −0.567792
\(996\) 0 0
\(997\) 14.9063 0.472088 0.236044 0.971742i \(-0.424149\pi\)
0.236044 + 0.971742i \(0.424149\pi\)
\(998\) 0 0
\(999\) −10.4731 −0.331355
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.r.1.1 6
7.3 odd 6 952.2.q.c.681.1 yes 12
7.5 odd 6 952.2.q.c.137.1 12
7.6 odd 2 6664.2.a.s.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.c.137.1 12 7.5 odd 6
952.2.q.c.681.1 yes 12 7.3 odd 6
6664.2.a.r.1.1 6 1.1 even 1 trivial
6664.2.a.s.1.6 6 7.6 odd 2