# Properties

 Label 6664.2.a.j Level $6664$ Weight $2$ Character orbit 6664.a Self dual yes Analytic conductor $53.212$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [6664,2,Mod(1,6664)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(6664, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("6664.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$6664 = 2^{3} \cdot 7^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6664.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$53.2123079070$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.229.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - 4x - 1$$ x^3 - 4*x - 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 952) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{3} + (\beta_1 - 1) q^{5} + ( - 2 \beta_{2} + \beta_1) q^{9}+O(q^{10})$$ q + b2 * q^3 + (b1 - 1) * q^5 + (-2*b2 + b1) * q^9 $$q + \beta_{2} q^{3} + (\beta_1 - 1) q^{5} + ( - 2 \beta_{2} + \beta_1) q^{9} + ( - 2 \beta_1 + 2) q^{11} + ( - \beta_{2} + \beta_1 + 1) q^{15} + q^{17} + ( - 2 \beta_{2} - 2) q^{19} + (2 \beta_{2} + 2 \beta_1 + 2) q^{23} + (\beta_{2} - 2 \beta_1 - 1) q^{25} + (\beta_{2} - \beta_1 - 5) q^{27} + (2 \beta_{2} - 2) q^{29} + (\beta_1 - 1) q^{31} + (2 \beta_{2} - 2 \beta_1 - 2) q^{33} + ( - 2 \beta_{2} - 2) q^{37} + (3 \beta_{2} - 6 \beta_1 - 2) q^{41} + (\beta_{2} - 6 \beta_1) q^{43} + (3 \beta_{2} - 3 \beta_1 + 1) q^{45} + ( - 4 \beta_{2} - 4) q^{47} + \beta_{2} q^{51} + (2 \beta_{2} - \beta_1 + 7) q^{53} + ( - 2 \beta_{2} + 4 \beta_1 - 8) q^{55} + (2 \beta_{2} - 2 \beta_1 - 6) q^{57} + (2 \beta_{2} - 6 \beta_1 - 4) q^{59} + ( - 5 \beta_{2} + 4 \beta_1 - 2) q^{61} + ( - 4 \beta_{2} + 7 \beta_1 + 1) q^{67} + ( - 2 \beta_{2} + 4 \beta_1 + 8) q^{69} + (6 \beta_1 + 2) q^{71} + (\beta_{2} - 2 \beta_1 + 2) q^{73} + ( - 3 \beta_{2} - \beta_1 + 1) q^{75} + 8 q^{79} + ( - \beta_{2} - 3 \beta_1 + 2) q^{81} + ( - 2 \beta_{2} + 8 \beta_1 - 2) q^{83} + (\beta_1 - 1) q^{85} + ( - 6 \beta_{2} + 2 \beta_1 + 6) q^{87} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{89} + ( - \beta_{2} + \beta_1 + 1) q^{93} + (2 \beta_{2} - 4 \beta_1) q^{95} + ( - 2 \beta_{2} - \beta_1 - 5) q^{97} + ( - 6 \beta_{2} + 6 \beta_1 - 2) q^{99}+O(q^{100})$$ q + b2 * q^3 + (b1 - 1) * q^5 + (-2*b2 + b1) * q^9 + (-2*b1 + 2) * q^11 + (-b2 + b1 + 1) * q^15 + q^17 + (-2*b2 - 2) * q^19 + (2*b2 + 2*b1 + 2) * q^23 + (b2 - 2*b1 - 1) * q^25 + (b2 - b1 - 5) * q^27 + (2*b2 - 2) * q^29 + (b1 - 1) * q^31 + (2*b2 - 2*b1 - 2) * q^33 + (-2*b2 - 2) * q^37 + (3*b2 - 6*b1 - 2) * q^41 + (b2 - 6*b1) * q^43 + (3*b2 - 3*b1 + 1) * q^45 + (-4*b2 - 4) * q^47 + b2 * q^51 + (2*b2 - b1 + 7) * q^53 + (-2*b2 + 4*b1 - 8) * q^55 + (2*b2 - 2*b1 - 6) * q^57 + (2*b2 - 6*b1 - 4) * q^59 + (-5*b2 + 4*b1 - 2) * q^61 + (-4*b2 + 7*b1 + 1) * q^67 + (-2*b2 + 4*b1 + 8) * q^69 + (6*b1 + 2) * q^71 + (b2 - 2*b1 + 2) * q^73 + (-3*b2 - b1 + 1) * q^75 + 8 * q^79 + (-b2 - 3*b1 + 2) * q^81 + (-2*b2 + 8*b1 - 2) * q^83 + (b1 - 1) * q^85 + (-6*b2 + 2*b1 + 6) * q^87 + (-2*b2 - 2*b1 - 4) * q^89 + (-b2 + b1 + 1) * q^93 + (2*b2 - 4*b1) * q^95 + (-2*b2 - b1 - 5) * q^97 + (-6*b2 + 6*b1 - 2) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{3} - 3 q^{5} + 2 q^{9}+O(q^{10})$$ 3 * q - q^3 - 3 * q^5 + 2 * q^9 $$3 q - q^{3} - 3 q^{5} + 2 q^{9} + 6 q^{11} + 4 q^{15} + 3 q^{17} - 4 q^{19} + 4 q^{23} - 4 q^{25} - 16 q^{27} - 8 q^{29} - 3 q^{31} - 8 q^{33} - 4 q^{37} - 9 q^{41} - q^{43} - 8 q^{47} - q^{51} + 19 q^{53} - 22 q^{55} - 20 q^{57} - 14 q^{59} - q^{61} + 7 q^{67} + 26 q^{69} + 6 q^{71} + 5 q^{73} + 6 q^{75} + 24 q^{79} + 7 q^{81} - 4 q^{83} - 3 q^{85} + 24 q^{87} - 10 q^{89} + 4 q^{93} - 2 q^{95} - 13 q^{97}+O(q^{100})$$ 3 * q - q^3 - 3 * q^5 + 2 * q^9 + 6 * q^11 + 4 * q^15 + 3 * q^17 - 4 * q^19 + 4 * q^23 - 4 * q^25 - 16 * q^27 - 8 * q^29 - 3 * q^31 - 8 * q^33 - 4 * q^37 - 9 * q^41 - q^43 - 8 * q^47 - q^51 + 19 * q^53 - 22 * q^55 - 20 * q^57 - 14 * q^59 - q^61 + 7 * q^67 + 26 * q^69 + 6 * q^71 + 5 * q^73 + 6 * q^75 + 24 * q^79 + 7 * q^81 - 4 * q^83 - 3 * q^85 + 24 * q^87 - 10 * q^89 + 4 * q^93 - 2 * q^95 - 13 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - 4x - 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ v^2 - 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ b2 + 3

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.254102 −1.86081 2.11491
0 −2.93543 0 −1.25410 0 0 0 5.61676 0
1.2 0 0.462598 0 −2.86081 0 0 0 −2.78600 0
1.3 0 1.47283 0 1.11491 0 0 0 −0.830760 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$7$$ $$-1$$
$$17$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6664.2.a.j 3
7.b odd 2 1 952.2.a.f 3
21.c even 2 1 8568.2.a.x 3
28.d even 2 1 1904.2.a.m 3
56.e even 2 1 7616.2.a.be 3
56.h odd 2 1 7616.2.a.bc 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
952.2.a.f 3 7.b odd 2 1
1904.2.a.m 3 28.d even 2 1
6664.2.a.j 3 1.a even 1 1 trivial
7616.2.a.bc 3 56.h odd 2 1
7616.2.a.be 3 56.e even 2 1
8568.2.a.x 3 21.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6664))$$:

 $$T_{3}^{3} + T_{3}^{2} - 5T_{3} + 2$$ T3^3 + T3^2 - 5*T3 + 2 $$T_{5}^{3} + 3T_{5}^{2} - T_{5} - 4$$ T5^3 + 3*T5^2 - T5 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3} + T^{2} - 5T + 2$$
$5$ $$T^{3} + 3T^{2} - T - 4$$
$7$ $$T^{3}$$
$11$ $$T^{3} - 6 T^{2} + \cdots + 32$$
$13$ $$T^{3}$$
$17$ $$(T - 1)^{3}$$
$19$ $$T^{3} + 4 T^{2} + \cdots - 56$$
$23$ $$T^{3} - 4 T^{2} + \cdots - 32$$
$29$ $$T^{3} + 8T^{2} - 8$$
$31$ $$T^{3} + 3T^{2} - T - 4$$
$37$ $$T^{3} + 4 T^{2} + \cdots - 56$$
$41$ $$T^{3} + 9 T^{2} + \cdots - 1006$$
$43$ $$T^{3} + T^{2} + \cdots - 184$$
$47$ $$T^{3} + 8 T^{2} + \cdots - 448$$
$53$ $$T^{3} - 19 T^{2} + \cdots - 106$$
$59$ $$T^{3} + 14 T^{2} + \cdots - 928$$
$61$ $$T^{3} + T^{2} + \cdots - 124$$
$67$ $$T^{3} - 7 T^{2} + \cdots + 1508$$
$71$ $$T^{3} - 6 T^{2} + \cdots + 64$$
$73$ $$T^{3} - 5 T^{2} + \cdots - 2$$
$79$ $$(T - 8)^{3}$$
$83$ $$T^{3} + 4 T^{2} + \cdots + 392$$
$89$ $$T^{3} + 10 T^{2} + \cdots - 32$$
$97$ $$T^{3} + 13 T^{2} + \cdots - 46$$