Properties

Label 6664.2.a.bd.1.9
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 14 x^{10} + 64 x^{9} + 59 x^{8} - 348 x^{7} - 74 x^{6} + 760 x^{5} + 27 x^{4} + \cdots - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.01001\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.01001 q^{3} -1.57380 q^{5} +1.04012 q^{9} -4.02338 q^{11} +5.31968 q^{13} -3.16334 q^{15} -1.00000 q^{17} +2.04717 q^{19} -2.80190 q^{23} -2.52316 q^{25} -3.93936 q^{27} -6.93463 q^{29} +8.06298 q^{31} -8.08701 q^{33} +4.04674 q^{37} +10.6926 q^{39} +4.49040 q^{41} -2.57763 q^{43} -1.63694 q^{45} -1.82856 q^{47} -2.01001 q^{51} +2.98007 q^{53} +6.33198 q^{55} +4.11482 q^{57} -1.54828 q^{59} -11.3423 q^{61} -8.37210 q^{65} -3.28300 q^{67} -5.63183 q^{69} -2.34261 q^{71} -13.4835 q^{73} -5.07157 q^{75} -6.44897 q^{79} -11.0385 q^{81} +8.78103 q^{83} +1.57380 q^{85} -13.9386 q^{87} -17.2060 q^{89} +16.2066 q^{93} -3.22182 q^{95} +0.454764 q^{97} -4.18480 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 8 q^{5} + 8 q^{9} - 4 q^{11} - 12 q^{13} - 8 q^{15} - 12 q^{17} + 8 q^{25} + 16 q^{27} + 8 q^{29} - 4 q^{31} - 16 q^{33} + 12 q^{37} - 16 q^{39} - 24 q^{41} - 4 q^{43} - 28 q^{45} - 28 q^{47}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.01001 1.16048 0.580239 0.814447i \(-0.302959\pi\)
0.580239 + 0.814447i \(0.302959\pi\)
\(4\) 0 0
\(5\) −1.57380 −0.703824 −0.351912 0.936033i \(-0.614468\pi\)
−0.351912 + 0.936033i \(0.614468\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.04012 0.346708
\(10\) 0 0
\(11\) −4.02338 −1.21309 −0.606547 0.795048i \(-0.707446\pi\)
−0.606547 + 0.795048i \(0.707446\pi\)
\(12\) 0 0
\(13\) 5.31968 1.47541 0.737707 0.675121i \(-0.235908\pi\)
0.737707 + 0.675121i \(0.235908\pi\)
\(14\) 0 0
\(15\) −3.16334 −0.816771
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.04717 0.469652 0.234826 0.972037i \(-0.424548\pi\)
0.234826 + 0.972037i \(0.424548\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.80190 −0.584236 −0.292118 0.956382i \(-0.594360\pi\)
−0.292118 + 0.956382i \(0.594360\pi\)
\(24\) 0 0
\(25\) −2.52316 −0.504632
\(26\) 0 0
\(27\) −3.93936 −0.758131
\(28\) 0 0
\(29\) −6.93463 −1.28773 −0.643864 0.765140i \(-0.722670\pi\)
−0.643864 + 0.765140i \(0.722670\pi\)
\(30\) 0 0
\(31\) 8.06298 1.44815 0.724077 0.689720i \(-0.242266\pi\)
0.724077 + 0.689720i \(0.242266\pi\)
\(32\) 0 0
\(33\) −8.08701 −1.40777
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.04674 0.665280 0.332640 0.943054i \(-0.392061\pi\)
0.332640 + 0.943054i \(0.392061\pi\)
\(38\) 0 0
\(39\) 10.6926 1.71219
\(40\) 0 0
\(41\) 4.49040 0.701283 0.350641 0.936510i \(-0.385964\pi\)
0.350641 + 0.936510i \(0.385964\pi\)
\(42\) 0 0
\(43\) −2.57763 −0.393084 −0.196542 0.980495i \(-0.562971\pi\)
−0.196542 + 0.980495i \(0.562971\pi\)
\(44\) 0 0
\(45\) −1.63694 −0.244021
\(46\) 0 0
\(47\) −1.82856 −0.266723 −0.133361 0.991067i \(-0.542577\pi\)
−0.133361 + 0.991067i \(0.542577\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.01001 −0.281457
\(52\) 0 0
\(53\) 2.98007 0.409345 0.204672 0.978831i \(-0.434387\pi\)
0.204672 + 0.978831i \(0.434387\pi\)
\(54\) 0 0
\(55\) 6.33198 0.853804
\(56\) 0 0
\(57\) 4.11482 0.545021
\(58\) 0 0
\(59\) −1.54828 −0.201569 −0.100784 0.994908i \(-0.532135\pi\)
−0.100784 + 0.994908i \(0.532135\pi\)
\(60\) 0 0
\(61\) −11.3423 −1.45224 −0.726119 0.687569i \(-0.758678\pi\)
−0.726119 + 0.687569i \(0.758678\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.37210 −1.03843
\(66\) 0 0
\(67\) −3.28300 −0.401082 −0.200541 0.979685i \(-0.564270\pi\)
−0.200541 + 0.979685i \(0.564270\pi\)
\(68\) 0 0
\(69\) −5.63183 −0.677992
\(70\) 0 0
\(71\) −2.34261 −0.278017 −0.139008 0.990291i \(-0.544392\pi\)
−0.139008 + 0.990291i \(0.544392\pi\)
\(72\) 0 0
\(73\) −13.4835 −1.57813 −0.789063 0.614312i \(-0.789434\pi\)
−0.789063 + 0.614312i \(0.789434\pi\)
\(74\) 0 0
\(75\) −5.07157 −0.585614
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.44897 −0.725566 −0.362783 0.931874i \(-0.618173\pi\)
−0.362783 + 0.931874i \(0.618173\pi\)
\(80\) 0 0
\(81\) −11.0385 −1.22650
\(82\) 0 0
\(83\) 8.78103 0.963843 0.481921 0.876214i \(-0.339939\pi\)
0.481921 + 0.876214i \(0.339939\pi\)
\(84\) 0 0
\(85\) 1.57380 0.170702
\(86\) 0 0
\(87\) −13.9386 −1.49438
\(88\) 0 0
\(89\) −17.2060 −1.82383 −0.911915 0.410379i \(-0.865396\pi\)
−0.911915 + 0.410379i \(0.865396\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16.2066 1.68055
\(94\) 0 0
\(95\) −3.22182 −0.330552
\(96\) 0 0
\(97\) 0.454764 0.0461743 0.0230871 0.999733i \(-0.492650\pi\)
0.0230871 + 0.999733i \(0.492650\pi\)
\(98\) 0 0
\(99\) −4.18480 −0.420589
\(100\) 0 0
\(101\) −14.5959 −1.45234 −0.726172 0.687513i \(-0.758702\pi\)
−0.726172 + 0.687513i \(0.758702\pi\)
\(102\) 0 0
\(103\) −8.06798 −0.794961 −0.397481 0.917611i \(-0.630115\pi\)
−0.397481 + 0.917611i \(0.630115\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.05747 −0.392250 −0.196125 0.980579i \(-0.562836\pi\)
−0.196125 + 0.980579i \(0.562836\pi\)
\(108\) 0 0
\(109\) 8.30447 0.795424 0.397712 0.917510i \(-0.369804\pi\)
0.397712 + 0.917510i \(0.369804\pi\)
\(110\) 0 0
\(111\) 8.13397 0.772043
\(112\) 0 0
\(113\) 13.3953 1.26012 0.630061 0.776546i \(-0.283030\pi\)
0.630061 + 0.776546i \(0.283030\pi\)
\(114\) 0 0
\(115\) 4.40962 0.411199
\(116\) 0 0
\(117\) 5.53312 0.511537
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.18755 0.471596
\(122\) 0 0
\(123\) 9.02573 0.813822
\(124\) 0 0
\(125\) 11.8399 1.05900
\(126\) 0 0
\(127\) −8.35298 −0.741207 −0.370603 0.928791i \(-0.620849\pi\)
−0.370603 + 0.928791i \(0.620849\pi\)
\(128\) 0 0
\(129\) −5.18104 −0.456165
\(130\) 0 0
\(131\) −1.36715 −0.119448 −0.0597241 0.998215i \(-0.519022\pi\)
−0.0597241 + 0.998215i \(0.519022\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.19976 0.533590
\(136\) 0 0
\(137\) −4.64179 −0.396575 −0.198287 0.980144i \(-0.563538\pi\)
−0.198287 + 0.980144i \(0.563538\pi\)
\(138\) 0 0
\(139\) 15.9522 1.35305 0.676523 0.736421i \(-0.263486\pi\)
0.676523 + 0.736421i \(0.263486\pi\)
\(140\) 0 0
\(141\) −3.67542 −0.309526
\(142\) 0 0
\(143\) −21.4031 −1.78982
\(144\) 0 0
\(145\) 10.9137 0.906334
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −22.9439 −1.87964 −0.939818 0.341677i \(-0.889005\pi\)
−0.939818 + 0.341677i \(0.889005\pi\)
\(150\) 0 0
\(151\) 14.6306 1.19062 0.595309 0.803497i \(-0.297030\pi\)
0.595309 + 0.803497i \(0.297030\pi\)
\(152\) 0 0
\(153\) −1.04012 −0.0840889
\(154\) 0 0
\(155\) −12.6895 −1.01924
\(156\) 0 0
\(157\) 1.86434 0.148791 0.0743954 0.997229i \(-0.476297\pi\)
0.0743954 + 0.997229i \(0.476297\pi\)
\(158\) 0 0
\(159\) 5.98996 0.475035
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −15.8505 −1.24151 −0.620753 0.784006i \(-0.713173\pi\)
−0.620753 + 0.784006i \(0.713173\pi\)
\(164\) 0 0
\(165\) 12.7273 0.990820
\(166\) 0 0
\(167\) −15.4747 −1.19746 −0.598732 0.800949i \(-0.704329\pi\)
−0.598732 + 0.800949i \(0.704329\pi\)
\(168\) 0 0
\(169\) 15.2990 1.17685
\(170\) 0 0
\(171\) 2.12930 0.162832
\(172\) 0 0
\(173\) −21.8303 −1.65973 −0.829863 0.557967i \(-0.811582\pi\)
−0.829863 + 0.557967i \(0.811582\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.11205 −0.233916
\(178\) 0 0
\(179\) −18.5978 −1.39007 −0.695033 0.718978i \(-0.744610\pi\)
−0.695033 + 0.718978i \(0.744610\pi\)
\(180\) 0 0
\(181\) 11.9136 0.885532 0.442766 0.896637i \(-0.353997\pi\)
0.442766 + 0.896637i \(0.353997\pi\)
\(182\) 0 0
\(183\) −22.7982 −1.68529
\(184\) 0 0
\(185\) −6.36875 −0.468240
\(186\) 0 0
\(187\) 4.02338 0.294218
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.630146 0.0455958 0.0227979 0.999740i \(-0.492743\pi\)
0.0227979 + 0.999740i \(0.492743\pi\)
\(192\) 0 0
\(193\) 24.7508 1.78160 0.890800 0.454395i \(-0.150145\pi\)
0.890800 + 0.454395i \(0.150145\pi\)
\(194\) 0 0
\(195\) −16.8280 −1.20508
\(196\) 0 0
\(197\) −8.05940 −0.574209 −0.287104 0.957899i \(-0.592693\pi\)
−0.287104 + 0.957899i \(0.592693\pi\)
\(198\) 0 0
\(199\) −9.02266 −0.639599 −0.319800 0.947485i \(-0.603616\pi\)
−0.319800 + 0.947485i \(0.603616\pi\)
\(200\) 0 0
\(201\) −6.59884 −0.465446
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.06698 −0.493579
\(206\) 0 0
\(207\) −2.91432 −0.202559
\(208\) 0 0
\(209\) −8.23652 −0.569732
\(210\) 0 0
\(211\) 13.6053 0.936628 0.468314 0.883562i \(-0.344862\pi\)
0.468314 + 0.883562i \(0.344862\pi\)
\(212\) 0 0
\(213\) −4.70866 −0.322632
\(214\) 0 0
\(215\) 4.05666 0.276662
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −27.1019 −1.83138
\(220\) 0 0
\(221\) −5.31968 −0.357841
\(222\) 0 0
\(223\) −14.5986 −0.977597 −0.488798 0.872397i \(-0.662565\pi\)
−0.488798 + 0.872397i \(0.662565\pi\)
\(224\) 0 0
\(225\) −2.62440 −0.174960
\(226\) 0 0
\(227\) 25.2062 1.67299 0.836497 0.547971i \(-0.184600\pi\)
0.836497 + 0.547971i \(0.184600\pi\)
\(228\) 0 0
\(229\) −0.861355 −0.0569200 −0.0284600 0.999595i \(-0.509060\pi\)
−0.0284600 + 0.999595i \(0.509060\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.70884 −0.439511 −0.219755 0.975555i \(-0.570526\pi\)
−0.219755 + 0.975555i \(0.570526\pi\)
\(234\) 0 0
\(235\) 2.87778 0.187726
\(236\) 0 0
\(237\) −12.9625 −0.842003
\(238\) 0 0
\(239\) −23.0319 −1.48981 −0.744906 0.667169i \(-0.767506\pi\)
−0.744906 + 0.667169i \(0.767506\pi\)
\(240\) 0 0
\(241\) 13.5437 0.872425 0.436212 0.899844i \(-0.356320\pi\)
0.436212 + 0.899844i \(0.356320\pi\)
\(242\) 0 0
\(243\) −10.3694 −0.665196
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.8903 0.692932
\(248\) 0 0
\(249\) 17.6499 1.11852
\(250\) 0 0
\(251\) −21.7560 −1.37322 −0.686612 0.727024i \(-0.740903\pi\)
−0.686612 + 0.727024i \(0.740903\pi\)
\(252\) 0 0
\(253\) 11.2731 0.708733
\(254\) 0 0
\(255\) 3.16334 0.198096
\(256\) 0 0
\(257\) 3.48461 0.217364 0.108682 0.994077i \(-0.465337\pi\)
0.108682 + 0.994077i \(0.465337\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.21287 −0.446465
\(262\) 0 0
\(263\) −7.67545 −0.473288 −0.236644 0.971596i \(-0.576048\pi\)
−0.236644 + 0.971596i \(0.576048\pi\)
\(264\) 0 0
\(265\) −4.69003 −0.288106
\(266\) 0 0
\(267\) −34.5841 −2.11651
\(268\) 0 0
\(269\) 0.387946 0.0236535 0.0118267 0.999930i \(-0.496235\pi\)
0.0118267 + 0.999930i \(0.496235\pi\)
\(270\) 0 0
\(271\) −14.3809 −0.873580 −0.436790 0.899563i \(-0.643885\pi\)
−0.436790 + 0.899563i \(0.643885\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.1516 0.612166
\(276\) 0 0
\(277\) −15.4526 −0.928456 −0.464228 0.885716i \(-0.653668\pi\)
−0.464228 + 0.885716i \(0.653668\pi\)
\(278\) 0 0
\(279\) 8.38648 0.502086
\(280\) 0 0
\(281\) 21.7055 1.29484 0.647422 0.762132i \(-0.275847\pi\)
0.647422 + 0.762132i \(0.275847\pi\)
\(282\) 0 0
\(283\) −24.7913 −1.47369 −0.736844 0.676063i \(-0.763685\pi\)
−0.736844 + 0.676063i \(0.763685\pi\)
\(284\) 0 0
\(285\) −6.47589 −0.383598
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0.914078 0.0535842
\(292\) 0 0
\(293\) 19.9643 1.16633 0.583163 0.812355i \(-0.301815\pi\)
0.583163 + 0.812355i \(0.301815\pi\)
\(294\) 0 0
\(295\) 2.43668 0.141869
\(296\) 0 0
\(297\) 15.8495 0.919684
\(298\) 0 0
\(299\) −14.9052 −0.861990
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −29.3378 −1.68541
\(304\) 0 0
\(305\) 17.8506 1.02212
\(306\) 0 0
\(307\) 11.3409 0.647262 0.323631 0.946183i \(-0.395096\pi\)
0.323631 + 0.946183i \(0.395096\pi\)
\(308\) 0 0
\(309\) −16.2167 −0.922535
\(310\) 0 0
\(311\) −12.3488 −0.700235 −0.350117 0.936706i \(-0.613858\pi\)
−0.350117 + 0.936706i \(0.613858\pi\)
\(312\) 0 0
\(313\) 3.88381 0.219526 0.109763 0.993958i \(-0.464991\pi\)
0.109763 + 0.993958i \(0.464991\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.23443 0.237829 0.118915 0.992904i \(-0.462059\pi\)
0.118915 + 0.992904i \(0.462059\pi\)
\(318\) 0 0
\(319\) 27.9006 1.56214
\(320\) 0 0
\(321\) −8.15553 −0.455198
\(322\) 0 0
\(323\) −2.04717 −0.113907
\(324\) 0 0
\(325\) −13.4224 −0.744542
\(326\) 0 0
\(327\) 16.6920 0.923071
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.8740 0.762583 0.381291 0.924455i \(-0.375479\pi\)
0.381291 + 0.924455i \(0.375479\pi\)
\(332\) 0 0
\(333\) 4.20911 0.230658
\(334\) 0 0
\(335\) 5.16677 0.282291
\(336\) 0 0
\(337\) −1.45035 −0.0790054 −0.0395027 0.999219i \(-0.512577\pi\)
−0.0395027 + 0.999219i \(0.512577\pi\)
\(338\) 0 0
\(339\) 26.9246 1.46234
\(340\) 0 0
\(341\) −32.4404 −1.75675
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 8.86335 0.477187
\(346\) 0 0
\(347\) 17.3969 0.933912 0.466956 0.884280i \(-0.345351\pi\)
0.466956 + 0.884280i \(0.345351\pi\)
\(348\) 0 0
\(349\) −15.7602 −0.843625 −0.421812 0.906683i \(-0.638606\pi\)
−0.421812 + 0.906683i \(0.638606\pi\)
\(350\) 0 0
\(351\) −20.9562 −1.11856
\(352\) 0 0
\(353\) 3.18890 0.169728 0.0848640 0.996393i \(-0.472954\pi\)
0.0848640 + 0.996393i \(0.472954\pi\)
\(354\) 0 0
\(355\) 3.68680 0.195675
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.5252 1.18884 0.594418 0.804156i \(-0.297382\pi\)
0.594418 + 0.804156i \(0.297382\pi\)
\(360\) 0 0
\(361\) −14.8091 −0.779427
\(362\) 0 0
\(363\) 10.4270 0.547276
\(364\) 0 0
\(365\) 21.2203 1.11072
\(366\) 0 0
\(367\) 24.5361 1.28078 0.640388 0.768052i \(-0.278774\pi\)
0.640388 + 0.768052i \(0.278774\pi\)
\(368\) 0 0
\(369\) 4.67057 0.243140
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.72053 −0.244420 −0.122210 0.992504i \(-0.538998\pi\)
−0.122210 + 0.992504i \(0.538998\pi\)
\(374\) 0 0
\(375\) 23.7983 1.22894
\(376\) 0 0
\(377\) −36.8900 −1.89993
\(378\) 0 0
\(379\) −26.7909 −1.37616 −0.688078 0.725637i \(-0.741545\pi\)
−0.688078 + 0.725637i \(0.741545\pi\)
\(380\) 0 0
\(381\) −16.7895 −0.860154
\(382\) 0 0
\(383\) 9.99284 0.510610 0.255305 0.966861i \(-0.417824\pi\)
0.255305 + 0.966861i \(0.417824\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.68105 −0.136285
\(388\) 0 0
\(389\) −12.4604 −0.631769 −0.315885 0.948798i \(-0.602301\pi\)
−0.315885 + 0.948798i \(0.602301\pi\)
\(390\) 0 0
\(391\) 2.80190 0.141698
\(392\) 0 0
\(393\) −2.74797 −0.138617
\(394\) 0 0
\(395\) 10.1494 0.510671
\(396\) 0 0
\(397\) −8.32627 −0.417883 −0.208942 0.977928i \(-0.567002\pi\)
−0.208942 + 0.977928i \(0.567002\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.46223 0.172895 0.0864476 0.996256i \(-0.472448\pi\)
0.0864476 + 0.996256i \(0.472448\pi\)
\(402\) 0 0
\(403\) 42.8925 2.13663
\(404\) 0 0
\(405\) 17.3724 0.863241
\(406\) 0 0
\(407\) −16.2816 −0.807047
\(408\) 0 0
\(409\) −22.8498 −1.12985 −0.564925 0.825142i \(-0.691095\pi\)
−0.564925 + 0.825142i \(0.691095\pi\)
\(410\) 0 0
\(411\) −9.33002 −0.460216
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.8196 −0.678375
\(416\) 0 0
\(417\) 32.0640 1.57018
\(418\) 0 0
\(419\) 25.2966 1.23582 0.617911 0.786248i \(-0.287979\pi\)
0.617911 + 0.786248i \(0.287979\pi\)
\(420\) 0 0
\(421\) −22.9085 −1.11649 −0.558246 0.829676i \(-0.688525\pi\)
−0.558246 + 0.829676i \(0.688525\pi\)
\(422\) 0 0
\(423\) −1.90193 −0.0924749
\(424\) 0 0
\(425\) 2.52316 0.122391
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −43.0203 −2.07704
\(430\) 0 0
\(431\) 5.95270 0.286731 0.143366 0.989670i \(-0.454207\pi\)
0.143366 + 0.989670i \(0.454207\pi\)
\(432\) 0 0
\(433\) −23.4270 −1.12583 −0.562916 0.826514i \(-0.690320\pi\)
−0.562916 + 0.826514i \(0.690320\pi\)
\(434\) 0 0
\(435\) 21.9366 1.05178
\(436\) 0 0
\(437\) −5.73595 −0.274388
\(438\) 0 0
\(439\) 29.7388 1.41936 0.709678 0.704526i \(-0.248840\pi\)
0.709678 + 0.704526i \(0.248840\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.1002 1.38259 0.691296 0.722571i \(-0.257040\pi\)
0.691296 + 0.722571i \(0.257040\pi\)
\(444\) 0 0
\(445\) 27.0787 1.28365
\(446\) 0 0
\(447\) −46.1173 −2.18127
\(448\) 0 0
\(449\) 28.1998 1.33083 0.665416 0.746473i \(-0.268254\pi\)
0.665416 + 0.746473i \(0.268254\pi\)
\(450\) 0 0
\(451\) −18.0666 −0.850721
\(452\) 0 0
\(453\) 29.4075 1.38168
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.6513 −1.34025 −0.670127 0.742247i \(-0.733760\pi\)
−0.670127 + 0.742247i \(0.733760\pi\)
\(458\) 0 0
\(459\) 3.93936 0.183874
\(460\) 0 0
\(461\) −8.61694 −0.401331 −0.200665 0.979660i \(-0.564310\pi\)
−0.200665 + 0.979660i \(0.564310\pi\)
\(462\) 0 0
\(463\) 5.46431 0.253948 0.126974 0.991906i \(-0.459473\pi\)
0.126974 + 0.991906i \(0.459473\pi\)
\(464\) 0 0
\(465\) −25.5059 −1.18281
\(466\) 0 0
\(467\) −6.65358 −0.307891 −0.153946 0.988079i \(-0.549198\pi\)
−0.153946 + 0.988079i \(0.549198\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.74734 0.172668
\(472\) 0 0
\(473\) 10.3708 0.476848
\(474\) 0 0
\(475\) −5.16533 −0.237002
\(476\) 0 0
\(477\) 3.09964 0.141923
\(478\) 0 0
\(479\) −20.2838 −0.926791 −0.463396 0.886152i \(-0.653369\pi\)
−0.463396 + 0.886152i \(0.653369\pi\)
\(480\) 0 0
\(481\) 21.5274 0.981564
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.715706 −0.0324985
\(486\) 0 0
\(487\) 35.9829 1.63054 0.815270 0.579081i \(-0.196589\pi\)
0.815270 + 0.579081i \(0.196589\pi\)
\(488\) 0 0
\(489\) −31.8596 −1.44074
\(490\) 0 0
\(491\) 33.6659 1.51932 0.759660 0.650321i \(-0.225365\pi\)
0.759660 + 0.650321i \(0.225365\pi\)
\(492\) 0 0
\(493\) 6.93463 0.312320
\(494\) 0 0
\(495\) 6.58603 0.296020
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 37.4777 1.67773 0.838865 0.544339i \(-0.183220\pi\)
0.838865 + 0.544339i \(0.183220\pi\)
\(500\) 0 0
\(501\) −31.1041 −1.38963
\(502\) 0 0
\(503\) −11.0864 −0.494316 −0.247158 0.968975i \(-0.579497\pi\)
−0.247158 + 0.968975i \(0.579497\pi\)
\(504\) 0 0
\(505\) 22.9709 1.02219
\(506\) 0 0
\(507\) 30.7511 1.36571
\(508\) 0 0
\(509\) −31.3059 −1.38761 −0.693806 0.720162i \(-0.744067\pi\)
−0.693806 + 0.720162i \(0.744067\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.06453 −0.356058
\(514\) 0 0
\(515\) 12.6974 0.559512
\(516\) 0 0
\(517\) 7.35699 0.323560
\(518\) 0 0
\(519\) −43.8790 −1.92608
\(520\) 0 0
\(521\) −10.6272 −0.465586 −0.232793 0.972526i \(-0.574786\pi\)
−0.232793 + 0.972526i \(0.574786\pi\)
\(522\) 0 0
\(523\) −22.8111 −0.997461 −0.498731 0.866757i \(-0.666200\pi\)
−0.498731 + 0.866757i \(0.666200\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.06298 −0.351229
\(528\) 0 0
\(529\) −15.1494 −0.658669
\(530\) 0 0
\(531\) −1.61040 −0.0698854
\(532\) 0 0
\(533\) 23.8875 1.03468
\(534\) 0 0
\(535\) 6.38563 0.276075
\(536\) 0 0
\(537\) −37.3817 −1.61314
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.8312 1.58350 0.791749 0.610846i \(-0.209171\pi\)
0.791749 + 0.610846i \(0.209171\pi\)
\(542\) 0 0
\(543\) 23.9464 1.02764
\(544\) 0 0
\(545\) −13.0696 −0.559838
\(546\) 0 0
\(547\) 21.7985 0.932039 0.466019 0.884775i \(-0.345688\pi\)
0.466019 + 0.884775i \(0.345688\pi\)
\(548\) 0 0
\(549\) −11.7974 −0.503502
\(550\) 0 0
\(551\) −14.1963 −0.604785
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −12.8012 −0.543382
\(556\) 0 0
\(557\) −7.46644 −0.316363 −0.158182 0.987410i \(-0.550563\pi\)
−0.158182 + 0.987410i \(0.550563\pi\)
\(558\) 0 0
\(559\) −13.7121 −0.579962
\(560\) 0 0
\(561\) 8.08701 0.341434
\(562\) 0 0
\(563\) 0.0308908 0.00130189 0.000650946 1.00000i \(-0.499793\pi\)
0.000650946 1.00000i \(0.499793\pi\)
\(564\) 0 0
\(565\) −21.0815 −0.886904
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.45536 0.0610121 0.0305060 0.999535i \(-0.490288\pi\)
0.0305060 + 0.999535i \(0.490288\pi\)
\(570\) 0 0
\(571\) 20.1584 0.843602 0.421801 0.906688i \(-0.361398\pi\)
0.421801 + 0.906688i \(0.361398\pi\)
\(572\) 0 0
\(573\) 1.26660 0.0529128
\(574\) 0 0
\(575\) 7.06964 0.294824
\(576\) 0 0
\(577\) −23.4654 −0.976876 −0.488438 0.872599i \(-0.662433\pi\)
−0.488438 + 0.872599i \(0.662433\pi\)
\(578\) 0 0
\(579\) 49.7492 2.06751
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −11.9900 −0.496573
\(584\) 0 0
\(585\) −8.70801 −0.360032
\(586\) 0 0
\(587\) 18.8264 0.777050 0.388525 0.921438i \(-0.372985\pi\)
0.388525 + 0.921438i \(0.372985\pi\)
\(588\) 0 0
\(589\) 16.5063 0.680128
\(590\) 0 0
\(591\) −16.1994 −0.666356
\(592\) 0 0
\(593\) −30.5147 −1.25309 −0.626544 0.779386i \(-0.715531\pi\)
−0.626544 + 0.779386i \(0.715531\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.1356 −0.742240
\(598\) 0 0
\(599\) −22.2047 −0.907260 −0.453630 0.891190i \(-0.649871\pi\)
−0.453630 + 0.891190i \(0.649871\pi\)
\(600\) 0 0
\(601\) 5.59711 0.228311 0.114155 0.993463i \(-0.463584\pi\)
0.114155 + 0.993463i \(0.463584\pi\)
\(602\) 0 0
\(603\) −3.41472 −0.139058
\(604\) 0 0
\(605\) −8.16416 −0.331920
\(606\) 0 0
\(607\) −25.1268 −1.01986 −0.509932 0.860215i \(-0.670330\pi\)
−0.509932 + 0.860215i \(0.670330\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.72736 −0.393527
\(612\) 0 0
\(613\) −26.5310 −1.07158 −0.535788 0.844352i \(-0.679986\pi\)
−0.535788 + 0.844352i \(0.679986\pi\)
\(614\) 0 0
\(615\) −14.2047 −0.572787
\(616\) 0 0
\(617\) 1.40092 0.0563988 0.0281994 0.999602i \(-0.491023\pi\)
0.0281994 + 0.999602i \(0.491023\pi\)
\(618\) 0 0
\(619\) 15.7956 0.634880 0.317440 0.948278i \(-0.397177\pi\)
0.317440 + 0.948278i \(0.397177\pi\)
\(620\) 0 0
\(621\) 11.0377 0.442927
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.01784 −0.240714
\(626\) 0 0
\(627\) −16.5555 −0.661161
\(628\) 0 0
\(629\) −4.04674 −0.161354
\(630\) 0 0
\(631\) 29.5962 1.17820 0.589102 0.808058i \(-0.299481\pi\)
0.589102 + 0.808058i \(0.299481\pi\)
\(632\) 0 0
\(633\) 27.3468 1.08694
\(634\) 0 0
\(635\) 13.1459 0.521679
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.43660 −0.0963906
\(640\) 0 0
\(641\) 28.1644 1.11243 0.556214 0.831039i \(-0.312254\pi\)
0.556214 + 0.831039i \(0.312254\pi\)
\(642\) 0 0
\(643\) 18.8869 0.744825 0.372412 0.928067i \(-0.378531\pi\)
0.372412 + 0.928067i \(0.378531\pi\)
\(644\) 0 0
\(645\) 8.15391 0.321060
\(646\) 0 0
\(647\) 28.9887 1.13966 0.569832 0.821761i \(-0.307008\pi\)
0.569832 + 0.821761i \(0.307008\pi\)
\(648\) 0 0
\(649\) 6.22931 0.244522
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.16970 0.280572 0.140286 0.990111i \(-0.455198\pi\)
0.140286 + 0.990111i \(0.455198\pi\)
\(654\) 0 0
\(655\) 2.15161 0.0840705
\(656\) 0 0
\(657\) −14.0245 −0.547148
\(658\) 0 0
\(659\) 3.12117 0.121583 0.0607917 0.998150i \(-0.480637\pi\)
0.0607917 + 0.998150i \(0.480637\pi\)
\(660\) 0 0
\(661\) 26.1370 1.01661 0.508306 0.861176i \(-0.330272\pi\)
0.508306 + 0.861176i \(0.330272\pi\)
\(662\) 0 0
\(663\) −10.6926 −0.415266
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19.4301 0.752337
\(668\) 0 0
\(669\) −29.3433 −1.13448
\(670\) 0 0
\(671\) 45.6345 1.76170
\(672\) 0 0
\(673\) −43.8277 −1.68943 −0.844716 0.535214i \(-0.820231\pi\)
−0.844716 + 0.535214i \(0.820231\pi\)
\(674\) 0 0
\(675\) 9.93965 0.382577
\(676\) 0 0
\(677\) 51.4149 1.97603 0.988017 0.154344i \(-0.0493263\pi\)
0.988017 + 0.154344i \(0.0493263\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 50.6646 1.94147
\(682\) 0 0
\(683\) 30.4069 1.16349 0.581743 0.813373i \(-0.302371\pi\)
0.581743 + 0.813373i \(0.302371\pi\)
\(684\) 0 0
\(685\) 7.30524 0.279119
\(686\) 0 0
\(687\) −1.73133 −0.0660543
\(688\) 0 0
\(689\) 15.8530 0.603953
\(690\) 0 0
\(691\) 11.7824 0.448224 0.224112 0.974563i \(-0.428052\pi\)
0.224112 + 0.974563i \(0.428052\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.1055 −0.952306
\(696\) 0 0
\(697\) −4.49040 −0.170086
\(698\) 0 0
\(699\) −13.4848 −0.510042
\(700\) 0 0
\(701\) 8.76988 0.331234 0.165617 0.986190i \(-0.447038\pi\)
0.165617 + 0.986190i \(0.447038\pi\)
\(702\) 0 0
\(703\) 8.28435 0.312450
\(704\) 0 0
\(705\) 5.78436 0.217852
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.8056 −0.405812 −0.202906 0.979198i \(-0.565039\pi\)
−0.202906 + 0.979198i \(0.565039\pi\)
\(710\) 0 0
\(711\) −6.70772 −0.251559
\(712\) 0 0
\(713\) −22.5916 −0.846063
\(714\) 0 0
\(715\) 33.6841 1.25971
\(716\) 0 0
\(717\) −46.2943 −1.72889
\(718\) 0 0
\(719\) −24.6662 −0.919894 −0.459947 0.887946i \(-0.652132\pi\)
−0.459947 + 0.887946i \(0.652132\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 27.2229 1.01243
\(724\) 0 0
\(725\) 17.4972 0.649830
\(726\) 0 0
\(727\) 45.8425 1.70020 0.850102 0.526618i \(-0.176540\pi\)
0.850102 + 0.526618i \(0.176540\pi\)
\(728\) 0 0
\(729\) 12.2730 0.454557
\(730\) 0 0
\(731\) 2.57763 0.0953369
\(732\) 0 0
\(733\) −4.65522 −0.171944 −0.0859722 0.996298i \(-0.527400\pi\)
−0.0859722 + 0.996298i \(0.527400\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.2087 0.486550
\(738\) 0 0
\(739\) −30.4547 −1.12030 −0.560148 0.828393i \(-0.689256\pi\)
−0.560148 + 0.828393i \(0.689256\pi\)
\(740\) 0 0
\(741\) 21.8895 0.804131
\(742\) 0 0
\(743\) 23.3330 0.856003 0.428002 0.903778i \(-0.359218\pi\)
0.428002 + 0.903778i \(0.359218\pi\)
\(744\) 0 0
\(745\) 36.1090 1.32293
\(746\) 0 0
\(747\) 9.13335 0.334172
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.4483 0.563716 0.281858 0.959456i \(-0.409049\pi\)
0.281858 + 0.959456i \(0.409049\pi\)
\(752\) 0 0
\(753\) −43.7296 −1.59360
\(754\) 0 0
\(755\) −23.0255 −0.837985
\(756\) 0 0
\(757\) −31.5123 −1.14534 −0.572668 0.819788i \(-0.694091\pi\)
−0.572668 + 0.819788i \(0.694091\pi\)
\(758\) 0 0
\(759\) 22.6590 0.822468
\(760\) 0 0
\(761\) 14.3047 0.518547 0.259273 0.965804i \(-0.416517\pi\)
0.259273 + 0.965804i \(0.416517\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.63694 0.0591838
\(766\) 0 0
\(767\) −8.23635 −0.297397
\(768\) 0 0
\(769\) −26.0463 −0.939253 −0.469626 0.882865i \(-0.655611\pi\)
−0.469626 + 0.882865i \(0.655611\pi\)
\(770\) 0 0
\(771\) 7.00409 0.252246
\(772\) 0 0
\(773\) −12.4029 −0.446102 −0.223051 0.974807i \(-0.571602\pi\)
−0.223051 + 0.974807i \(0.571602\pi\)
\(774\) 0 0
\(775\) −20.3442 −0.730785
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.19259 0.329359
\(780\) 0 0
\(781\) 9.42521 0.337261
\(782\) 0 0
\(783\) 27.3180 0.976267
\(784\) 0 0
\(785\) −2.93410 −0.104722
\(786\) 0 0
\(787\) 2.58090 0.0919991 0.0459996 0.998941i \(-0.485353\pi\)
0.0459996 + 0.998941i \(0.485353\pi\)
\(788\) 0 0
\(789\) −15.4277 −0.549240
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −60.3377 −2.14265
\(794\) 0 0
\(795\) −9.42699 −0.334341
\(796\) 0 0
\(797\) −20.6778 −0.732446 −0.366223 0.930527i \(-0.619349\pi\)
−0.366223 + 0.930527i \(0.619349\pi\)
\(798\) 0 0
\(799\) 1.82856 0.0646898
\(800\) 0 0
\(801\) −17.8963 −0.632336
\(802\) 0 0
\(803\) 54.2493 1.91441
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.779773 0.0274493
\(808\) 0 0
\(809\) 26.1163 0.918199 0.459099 0.888385i \(-0.348172\pi\)
0.459099 + 0.888385i \(0.348172\pi\)
\(810\) 0 0
\(811\) 25.7557 0.904405 0.452203 0.891915i \(-0.350638\pi\)
0.452203 + 0.891915i \(0.350638\pi\)
\(812\) 0 0
\(813\) −28.9058 −1.01377
\(814\) 0 0
\(815\) 24.9455 0.873801
\(816\) 0 0
\(817\) −5.27683 −0.184613
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.9583 −1.01065 −0.505325 0.862929i \(-0.668628\pi\)
−0.505325 + 0.862929i \(0.668628\pi\)
\(822\) 0 0
\(823\) 14.6301 0.509974 0.254987 0.966945i \(-0.417929\pi\)
0.254987 + 0.966945i \(0.417929\pi\)
\(824\) 0 0
\(825\) 20.4048 0.710405
\(826\) 0 0
\(827\) −27.8310 −0.967779 −0.483890 0.875129i \(-0.660776\pi\)
−0.483890 + 0.875129i \(0.660776\pi\)
\(828\) 0 0
\(829\) 29.1377 1.01199 0.505997 0.862535i \(-0.331125\pi\)
0.505997 + 0.862535i \(0.331125\pi\)
\(830\) 0 0
\(831\) −31.0598 −1.07745
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 24.3540 0.842804
\(836\) 0 0
\(837\) −31.7630 −1.09789
\(838\) 0 0
\(839\) −10.4065 −0.359271 −0.179635 0.983733i \(-0.557492\pi\)
−0.179635 + 0.983733i \(0.557492\pi\)
\(840\) 0 0
\(841\) 19.0891 0.658245
\(842\) 0 0
\(843\) 43.6282 1.50264
\(844\) 0 0
\(845\) −24.0776 −0.828293
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −49.8306 −1.71018
\(850\) 0 0
\(851\) −11.3386 −0.388680
\(852\) 0 0
\(853\) −8.18851 −0.280369 −0.140185 0.990125i \(-0.544770\pi\)
−0.140185 + 0.990125i \(0.544770\pi\)
\(854\) 0 0
\(855\) −3.35109 −0.114605
\(856\) 0 0
\(857\) 31.4898 1.07567 0.537835 0.843050i \(-0.319242\pi\)
0.537835 + 0.843050i \(0.319242\pi\)
\(858\) 0 0
\(859\) −26.8260 −0.915291 −0.457645 0.889135i \(-0.651307\pi\)
−0.457645 + 0.889135i \(0.651307\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −53.4600 −1.81980 −0.909900 0.414827i \(-0.863842\pi\)
−0.909900 + 0.414827i \(0.863842\pi\)
\(864\) 0 0
\(865\) 34.3565 1.16815
\(866\) 0 0
\(867\) 2.01001 0.0682634
\(868\) 0 0
\(869\) 25.9466 0.880180
\(870\) 0 0
\(871\) −17.4645 −0.591762
\(872\) 0 0
\(873\) 0.473010 0.0160090
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.8119 0.601464 0.300732 0.953709i \(-0.402769\pi\)
0.300732 + 0.953709i \(0.402769\pi\)
\(878\) 0 0
\(879\) 40.1284 1.35350
\(880\) 0 0
\(881\) −4.98077 −0.167806 −0.0839032 0.996474i \(-0.526739\pi\)
−0.0839032 + 0.996474i \(0.526739\pi\)
\(882\) 0 0
\(883\) −28.6744 −0.964971 −0.482486 0.875904i \(-0.660266\pi\)
−0.482486 + 0.875904i \(0.660266\pi\)
\(884\) 0 0
\(885\) 4.89773 0.164636
\(886\) 0 0
\(887\) −43.3500 −1.45555 −0.727776 0.685815i \(-0.759446\pi\)
−0.727776 + 0.685815i \(0.759446\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 44.4121 1.48786
\(892\) 0 0
\(893\) −3.74337 −0.125267
\(894\) 0 0
\(895\) 29.2692 0.978361
\(896\) 0 0
\(897\) −29.9595 −1.00032
\(898\) 0 0
\(899\) −55.9138 −1.86483
\(900\) 0 0
\(901\) −2.98007 −0.0992806
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.7496 −0.623259
\(906\) 0 0
\(907\) −42.7746 −1.42031 −0.710153 0.704047i \(-0.751374\pi\)
−0.710153 + 0.704047i \(0.751374\pi\)
\(908\) 0 0
\(909\) −15.1815 −0.503538
\(910\) 0 0
\(911\) 1.37603 0.0455898 0.0227949 0.999740i \(-0.492744\pi\)
0.0227949 + 0.999740i \(0.492744\pi\)
\(912\) 0 0
\(913\) −35.3294 −1.16923
\(914\) 0 0
\(915\) 35.8797 1.18615
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 53.5456 1.76631 0.883154 0.469083i \(-0.155416\pi\)
0.883154 + 0.469083i \(0.155416\pi\)
\(920\) 0 0
\(921\) 22.7954 0.751133
\(922\) 0 0
\(923\) −12.4620 −0.410190
\(924\) 0 0
\(925\) −10.2106 −0.335722
\(926\) 0 0
\(927\) −8.39169 −0.275619
\(928\) 0 0
\(929\) 6.52983 0.214237 0.107118 0.994246i \(-0.465838\pi\)
0.107118 + 0.994246i \(0.465838\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.8211 −0.812607
\(934\) 0 0
\(935\) −6.33198 −0.207078
\(936\) 0 0
\(937\) 7.37739 0.241009 0.120504 0.992713i \(-0.461549\pi\)
0.120504 + 0.992713i \(0.461549\pi\)
\(938\) 0 0
\(939\) 7.80647 0.254755
\(940\) 0 0
\(941\) 44.7809 1.45982 0.729908 0.683546i \(-0.239563\pi\)
0.729908 + 0.683546i \(0.239563\pi\)
\(942\) 0 0
\(943\) −12.5816 −0.409714
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.8661 0.580570 0.290285 0.956940i \(-0.406250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(948\) 0 0
\(949\) −71.7280 −2.32839
\(950\) 0 0
\(951\) 8.51122 0.275995
\(952\) 0 0
\(953\) 20.7625 0.672562 0.336281 0.941762i \(-0.390831\pi\)
0.336281 + 0.941762i \(0.390831\pi\)
\(954\) 0 0
\(955\) −0.991722 −0.0320914
\(956\) 0 0
\(957\) 56.0804 1.81282
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 34.0116 1.09715
\(962\) 0 0
\(963\) −4.22027 −0.135996
\(964\) 0 0
\(965\) −38.9527 −1.25393
\(966\) 0 0
\(967\) −27.6601 −0.889488 −0.444744 0.895658i \(-0.646705\pi\)
−0.444744 + 0.895658i \(0.646705\pi\)
\(968\) 0 0
\(969\) −4.11482 −0.132187
\(970\) 0 0
\(971\) 14.3533 0.460619 0.230310 0.973117i \(-0.426026\pi\)
0.230310 + 0.973117i \(0.426026\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −26.9791 −0.864024
\(976\) 0 0
\(977\) −55.5023 −1.77567 −0.887837 0.460157i \(-0.847793\pi\)
−0.887837 + 0.460157i \(0.847793\pi\)
\(978\) 0 0
\(979\) 69.2261 2.21248
\(980\) 0 0
\(981\) 8.63767 0.275779
\(982\) 0 0
\(983\) 6.63867 0.211741 0.105870 0.994380i \(-0.466237\pi\)
0.105870 + 0.994380i \(0.466237\pi\)
\(984\) 0 0
\(985\) 12.6839 0.404141
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.22224 0.229654
\(990\) 0 0
\(991\) 32.4827 1.03185 0.515924 0.856634i \(-0.327449\pi\)
0.515924 + 0.856634i \(0.327449\pi\)
\(992\) 0 0
\(993\) 27.8868 0.884960
\(994\) 0 0
\(995\) 14.1998 0.450165
\(996\) 0 0
\(997\) −47.8690 −1.51603 −0.758014 0.652239i \(-0.773830\pi\)
−0.758014 + 0.652239i \(0.773830\pi\)
\(998\) 0 0
\(999\) −15.9416 −0.504370
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.bd.1.9 yes 12
7.6 odd 2 6664.2.a.bc.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6664.2.a.bc.1.4 12 7.6 odd 2
6664.2.a.bd.1.9 yes 12 1.1 even 1 trivial