Properties

Label 6664.2.a.bc.1.6
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 14 x^{10} + 64 x^{9} + 59 x^{8} - 348 x^{7} - 74 x^{6} + 760 x^{5} + 27 x^{4} + \cdots - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.291629\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.291629 q^{3} +0.918965 q^{5} -2.91495 q^{9} +4.23575 q^{11} -2.07576 q^{13} -0.267996 q^{15} +1.00000 q^{17} +6.92165 q^{19} +1.49967 q^{23} -4.15550 q^{25} +1.72497 q^{27} +10.0305 q^{29} +1.01989 q^{31} -1.23527 q^{33} -6.04815 q^{37} +0.605350 q^{39} -3.68863 q^{41} +0.609194 q^{43} -2.67874 q^{45} -5.20448 q^{47} -0.291629 q^{51} -1.85227 q^{53} +3.89251 q^{55} -2.01855 q^{57} +7.29351 q^{59} +7.07698 q^{61} -1.90755 q^{65} +0.512702 q^{67} -0.437347 q^{69} -6.48743 q^{71} +2.87363 q^{73} +1.21186 q^{75} -3.32001 q^{79} +8.24181 q^{81} -8.42303 q^{83} +0.918965 q^{85} -2.92519 q^{87} -8.79728 q^{89} -0.297430 q^{93} +6.36075 q^{95} +3.73505 q^{97} -12.3470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 8 q^{5} + 8 q^{9} - 4 q^{11} + 12 q^{13} - 8 q^{15} + 12 q^{17} + 8 q^{25} - 16 q^{27} + 8 q^{29} + 4 q^{31} + 16 q^{33} + 12 q^{37} - 16 q^{39} + 24 q^{41} - 4 q^{43} + 28 q^{45} + 28 q^{47}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.291629 −0.168372 −0.0841860 0.996450i \(-0.526829\pi\)
−0.0841860 + 0.996450i \(0.526829\pi\)
\(4\) 0 0
\(5\) 0.918965 0.410973 0.205487 0.978660i \(-0.434122\pi\)
0.205487 + 0.978660i \(0.434122\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.91495 −0.971651
\(10\) 0 0
\(11\) 4.23575 1.27713 0.638564 0.769569i \(-0.279529\pi\)
0.638564 + 0.769569i \(0.279529\pi\)
\(12\) 0 0
\(13\) −2.07576 −0.575711 −0.287856 0.957674i \(-0.592942\pi\)
−0.287856 + 0.957674i \(0.592942\pi\)
\(14\) 0 0
\(15\) −0.267996 −0.0691964
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 6.92165 1.58793 0.793967 0.607960i \(-0.208012\pi\)
0.793967 + 0.607960i \(0.208012\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.49967 0.312703 0.156351 0.987701i \(-0.450027\pi\)
0.156351 + 0.987701i \(0.450027\pi\)
\(24\) 0 0
\(25\) −4.15550 −0.831101
\(26\) 0 0
\(27\) 1.72497 0.331971
\(28\) 0 0
\(29\) 10.0305 1.86262 0.931310 0.364226i \(-0.118667\pi\)
0.931310 + 0.364226i \(0.118667\pi\)
\(30\) 0 0
\(31\) 1.01989 0.183178 0.0915891 0.995797i \(-0.470805\pi\)
0.0915891 + 0.995797i \(0.470805\pi\)
\(32\) 0 0
\(33\) −1.23527 −0.215032
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.04815 −0.994309 −0.497155 0.867662i \(-0.665622\pi\)
−0.497155 + 0.867662i \(0.665622\pi\)
\(38\) 0 0
\(39\) 0.605350 0.0969336
\(40\) 0 0
\(41\) −3.68863 −0.576067 −0.288034 0.957620i \(-0.593001\pi\)
−0.288034 + 0.957620i \(0.593001\pi\)
\(42\) 0 0
\(43\) 0.609194 0.0929012 0.0464506 0.998921i \(-0.485209\pi\)
0.0464506 + 0.998921i \(0.485209\pi\)
\(44\) 0 0
\(45\) −2.67874 −0.399323
\(46\) 0 0
\(47\) −5.20448 −0.759151 −0.379575 0.925161i \(-0.623930\pi\)
−0.379575 + 0.925161i \(0.623930\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.291629 −0.0408362
\(52\) 0 0
\(53\) −1.85227 −0.254429 −0.127214 0.991875i \(-0.540604\pi\)
−0.127214 + 0.991875i \(0.540604\pi\)
\(54\) 0 0
\(55\) 3.89251 0.524866
\(56\) 0 0
\(57\) −2.01855 −0.267364
\(58\) 0 0
\(59\) 7.29351 0.949534 0.474767 0.880111i \(-0.342532\pi\)
0.474767 + 0.880111i \(0.342532\pi\)
\(60\) 0 0
\(61\) 7.07698 0.906114 0.453057 0.891481i \(-0.350333\pi\)
0.453057 + 0.891481i \(0.350333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.90755 −0.236602
\(66\) 0 0
\(67\) 0.512702 0.0626365 0.0313183 0.999509i \(-0.490029\pi\)
0.0313183 + 0.999509i \(0.490029\pi\)
\(68\) 0 0
\(69\) −0.437347 −0.0526504
\(70\) 0 0
\(71\) −6.48743 −0.769917 −0.384958 0.922934i \(-0.625784\pi\)
−0.384958 + 0.922934i \(0.625784\pi\)
\(72\) 0 0
\(73\) 2.87363 0.336333 0.168167 0.985759i \(-0.446215\pi\)
0.168167 + 0.985759i \(0.446215\pi\)
\(74\) 0 0
\(75\) 1.21186 0.139934
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.32001 −0.373530 −0.186765 0.982405i \(-0.559800\pi\)
−0.186765 + 0.982405i \(0.559800\pi\)
\(80\) 0 0
\(81\) 8.24181 0.915756
\(82\) 0 0
\(83\) −8.42303 −0.924547 −0.462274 0.886737i \(-0.652966\pi\)
−0.462274 + 0.886737i \(0.652966\pi\)
\(84\) 0 0
\(85\) 0.918965 0.0996757
\(86\) 0 0
\(87\) −2.92519 −0.313613
\(88\) 0 0
\(89\) −8.79728 −0.932509 −0.466255 0.884651i \(-0.654397\pi\)
−0.466255 + 0.884651i \(0.654397\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.297430 −0.0308421
\(94\) 0 0
\(95\) 6.36075 0.652599
\(96\) 0 0
\(97\) 3.73505 0.379237 0.189619 0.981858i \(-0.439275\pi\)
0.189619 + 0.981858i \(0.439275\pi\)
\(98\) 0 0
\(99\) −12.3470 −1.24092
\(100\) 0 0
\(101\) 11.6767 1.16188 0.580938 0.813948i \(-0.302686\pi\)
0.580938 + 0.813948i \(0.302686\pi\)
\(102\) 0 0
\(103\) 9.83627 0.969196 0.484598 0.874737i \(-0.338966\pi\)
0.484598 + 0.874737i \(0.338966\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.2043 −1.17983 −0.589916 0.807465i \(-0.700839\pi\)
−0.589916 + 0.807465i \(0.700839\pi\)
\(108\) 0 0
\(109\) 9.47222 0.907274 0.453637 0.891187i \(-0.350126\pi\)
0.453637 + 0.891187i \(0.350126\pi\)
\(110\) 0 0
\(111\) 1.76381 0.167414
\(112\) 0 0
\(113\) −15.2706 −1.43653 −0.718267 0.695768i \(-0.755064\pi\)
−0.718267 + 0.695768i \(0.755064\pi\)
\(114\) 0 0
\(115\) 1.37814 0.128513
\(116\) 0 0
\(117\) 6.05073 0.559390
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.94160 0.631055
\(122\) 0 0
\(123\) 1.07571 0.0969935
\(124\) 0 0
\(125\) −8.41358 −0.752534
\(126\) 0 0
\(127\) −5.97703 −0.530375 −0.265188 0.964197i \(-0.585434\pi\)
−0.265188 + 0.964197i \(0.585434\pi\)
\(128\) 0 0
\(129\) −0.177658 −0.0156419
\(130\) 0 0
\(131\) 18.4392 1.61104 0.805520 0.592568i \(-0.201886\pi\)
0.805520 + 0.592568i \(0.201886\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.58519 0.136431
\(136\) 0 0
\(137\) 11.7293 1.00210 0.501050 0.865418i \(-0.332947\pi\)
0.501050 + 0.865418i \(0.332947\pi\)
\(138\) 0 0
\(139\) 19.1369 1.62317 0.811585 0.584234i \(-0.198605\pi\)
0.811585 + 0.584234i \(0.198605\pi\)
\(140\) 0 0
\(141\) 1.51777 0.127820
\(142\) 0 0
\(143\) −8.79239 −0.735257
\(144\) 0 0
\(145\) 9.21769 0.765488
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.0090 1.72113 0.860563 0.509344i \(-0.170112\pi\)
0.860563 + 0.509344i \(0.170112\pi\)
\(150\) 0 0
\(151\) 17.7684 1.44597 0.722986 0.690863i \(-0.242769\pi\)
0.722986 + 0.690863i \(0.242769\pi\)
\(152\) 0 0
\(153\) −2.91495 −0.235660
\(154\) 0 0
\(155\) 0.937245 0.0752813
\(156\) 0 0
\(157\) 20.6530 1.64828 0.824142 0.566383i \(-0.191658\pi\)
0.824142 + 0.566383i \(0.191658\pi\)
\(158\) 0 0
\(159\) 0.540175 0.0428386
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.7615 1.23454 0.617268 0.786753i \(-0.288239\pi\)
0.617268 + 0.786753i \(0.288239\pi\)
\(164\) 0 0
\(165\) −1.13517 −0.0883726
\(166\) 0 0
\(167\) −23.0442 −1.78322 −0.891608 0.452808i \(-0.850422\pi\)
−0.891608 + 0.452808i \(0.850422\pi\)
\(168\) 0 0
\(169\) −8.69123 −0.668556
\(170\) 0 0
\(171\) −20.1763 −1.54292
\(172\) 0 0
\(173\) 8.79468 0.668647 0.334324 0.942458i \(-0.391492\pi\)
0.334324 + 0.942458i \(0.391492\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.12700 −0.159875
\(178\) 0 0
\(179\) 3.80147 0.284135 0.142068 0.989857i \(-0.454625\pi\)
0.142068 + 0.989857i \(0.454625\pi\)
\(180\) 0 0
\(181\) 9.41070 0.699491 0.349746 0.936845i \(-0.386268\pi\)
0.349746 + 0.936845i \(0.386268\pi\)
\(182\) 0 0
\(183\) −2.06385 −0.152564
\(184\) 0 0
\(185\) −5.55803 −0.408635
\(186\) 0 0
\(187\) 4.23575 0.309749
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.59522 −0.549571 −0.274786 0.961506i \(-0.588607\pi\)
−0.274786 + 0.961506i \(0.588607\pi\)
\(192\) 0 0
\(193\) −4.09707 −0.294913 −0.147457 0.989069i \(-0.547109\pi\)
−0.147457 + 0.989069i \(0.547109\pi\)
\(194\) 0 0
\(195\) 0.556296 0.0398371
\(196\) 0 0
\(197\) 15.4115 1.09802 0.549011 0.835815i \(-0.315004\pi\)
0.549011 + 0.835815i \(0.315004\pi\)
\(198\) 0 0
\(199\) 5.35308 0.379470 0.189735 0.981835i \(-0.439237\pi\)
0.189735 + 0.981835i \(0.439237\pi\)
\(200\) 0 0
\(201\) −0.149519 −0.0105462
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.38972 −0.236748
\(206\) 0 0
\(207\) −4.37147 −0.303838
\(208\) 0 0
\(209\) 29.3184 2.02800
\(210\) 0 0
\(211\) −18.6090 −1.28110 −0.640548 0.767918i \(-0.721293\pi\)
−0.640548 + 0.767918i \(0.721293\pi\)
\(212\) 0 0
\(213\) 1.89192 0.129632
\(214\) 0 0
\(215\) 0.559827 0.0381799
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −0.838034 −0.0566291
\(220\) 0 0
\(221\) −2.07576 −0.139631
\(222\) 0 0
\(223\) −2.71170 −0.181589 −0.0907943 0.995870i \(-0.528941\pi\)
−0.0907943 + 0.995870i \(0.528941\pi\)
\(224\) 0 0
\(225\) 12.1131 0.807540
\(226\) 0 0
\(227\) 15.0620 0.999700 0.499850 0.866112i \(-0.333388\pi\)
0.499850 + 0.866112i \(0.333388\pi\)
\(228\) 0 0
\(229\) 9.88748 0.653383 0.326691 0.945131i \(-0.394066\pi\)
0.326691 + 0.945131i \(0.394066\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.8318 −0.840638 −0.420319 0.907376i \(-0.638082\pi\)
−0.420319 + 0.907376i \(0.638082\pi\)
\(234\) 0 0
\(235\) −4.78273 −0.311991
\(236\) 0 0
\(237\) 0.968210 0.0628920
\(238\) 0 0
\(239\) −19.3490 −1.25158 −0.625790 0.779992i \(-0.715223\pi\)
−0.625790 + 0.779992i \(0.715223\pi\)
\(240\) 0 0
\(241\) 14.8004 0.953376 0.476688 0.879073i \(-0.341837\pi\)
0.476688 + 0.879073i \(0.341837\pi\)
\(242\) 0 0
\(243\) −7.57846 −0.486158
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −14.3677 −0.914192
\(248\) 0 0
\(249\) 2.45640 0.155668
\(250\) 0 0
\(251\) −5.28983 −0.333891 −0.166945 0.985966i \(-0.553390\pi\)
−0.166945 + 0.985966i \(0.553390\pi\)
\(252\) 0 0
\(253\) 6.35223 0.399361
\(254\) 0 0
\(255\) −0.267996 −0.0167826
\(256\) 0 0
\(257\) 21.6667 1.35153 0.675765 0.737117i \(-0.263813\pi\)
0.675765 + 0.737117i \(0.263813\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −29.2385 −1.80982
\(262\) 0 0
\(263\) 12.6189 0.778117 0.389059 0.921213i \(-0.372800\pi\)
0.389059 + 0.921213i \(0.372800\pi\)
\(264\) 0 0
\(265\) −1.70217 −0.104563
\(266\) 0 0
\(267\) 2.56554 0.157008
\(268\) 0 0
\(269\) 13.3202 0.812148 0.406074 0.913840i \(-0.366898\pi\)
0.406074 + 0.913840i \(0.366898\pi\)
\(270\) 0 0
\(271\) −5.54207 −0.336657 −0.168328 0.985731i \(-0.553837\pi\)
−0.168328 + 0.985731i \(0.553837\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −17.6017 −1.06142
\(276\) 0 0
\(277\) −12.2442 −0.735681 −0.367841 0.929889i \(-0.619903\pi\)
−0.367841 + 0.929889i \(0.619903\pi\)
\(278\) 0 0
\(279\) −2.97294 −0.177985
\(280\) 0 0
\(281\) 9.03606 0.539046 0.269523 0.962994i \(-0.413134\pi\)
0.269523 + 0.962994i \(0.413134\pi\)
\(282\) 0 0
\(283\) −30.4360 −1.80923 −0.904615 0.426229i \(-0.859842\pi\)
−0.904615 + 0.426229i \(0.859842\pi\)
\(284\) 0 0
\(285\) −1.85498 −0.109879
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −1.08925 −0.0638529
\(292\) 0 0
\(293\) 27.8001 1.62410 0.812050 0.583588i \(-0.198352\pi\)
0.812050 + 0.583588i \(0.198352\pi\)
\(294\) 0 0
\(295\) 6.70248 0.390233
\(296\) 0 0
\(297\) 7.30655 0.423969
\(298\) 0 0
\(299\) −3.11295 −0.180027
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.40526 −0.195627
\(304\) 0 0
\(305\) 6.50349 0.372389
\(306\) 0 0
\(307\) −1.22668 −0.0700106 −0.0350053 0.999387i \(-0.511145\pi\)
−0.0350053 + 0.999387i \(0.511145\pi\)
\(308\) 0 0
\(309\) −2.86854 −0.163185
\(310\) 0 0
\(311\) 25.1287 1.42492 0.712459 0.701713i \(-0.247581\pi\)
0.712459 + 0.701713i \(0.247581\pi\)
\(312\) 0 0
\(313\) 0.349772 0.0197703 0.00988513 0.999951i \(-0.496853\pi\)
0.00988513 + 0.999951i \(0.496853\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.4311 −1.87768 −0.938839 0.344355i \(-0.888097\pi\)
−0.938839 + 0.344355i \(0.888097\pi\)
\(318\) 0 0
\(319\) 42.4868 2.37880
\(320\) 0 0
\(321\) 3.55912 0.198651
\(322\) 0 0
\(323\) 6.92165 0.385131
\(324\) 0 0
\(325\) 8.62582 0.478474
\(326\) 0 0
\(327\) −2.76237 −0.152759
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 31.3869 1.72518 0.862589 0.505905i \(-0.168841\pi\)
0.862589 + 0.505905i \(0.168841\pi\)
\(332\) 0 0
\(333\) 17.6301 0.966122
\(334\) 0 0
\(335\) 0.471155 0.0257419
\(336\) 0 0
\(337\) −18.5350 −1.00967 −0.504833 0.863217i \(-0.668446\pi\)
−0.504833 + 0.863217i \(0.668446\pi\)
\(338\) 0 0
\(339\) 4.45334 0.241872
\(340\) 0 0
\(341\) 4.32001 0.233942
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.401906 −0.0216379
\(346\) 0 0
\(347\) −8.01743 −0.430398 −0.215199 0.976570i \(-0.569040\pi\)
−0.215199 + 0.976570i \(0.569040\pi\)
\(348\) 0 0
\(349\) 13.6450 0.730402 0.365201 0.930929i \(-0.381000\pi\)
0.365201 + 0.930929i \(0.381000\pi\)
\(350\) 0 0
\(351\) −3.58062 −0.191119
\(352\) 0 0
\(353\) 32.0572 1.70623 0.853115 0.521723i \(-0.174710\pi\)
0.853115 + 0.521723i \(0.174710\pi\)
\(354\) 0 0
\(355\) −5.96172 −0.316415
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.9406 −1.52743 −0.763714 0.645554i \(-0.776626\pi\)
−0.763714 + 0.645554i \(0.776626\pi\)
\(360\) 0 0
\(361\) 28.9092 1.52154
\(362\) 0 0
\(363\) −2.02437 −0.106252
\(364\) 0 0
\(365\) 2.64077 0.138224
\(366\) 0 0
\(367\) 16.4541 0.858895 0.429447 0.903092i \(-0.358708\pi\)
0.429447 + 0.903092i \(0.358708\pi\)
\(368\) 0 0
\(369\) 10.7522 0.559736
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.59119 −0.237723 −0.118861 0.992911i \(-0.537924\pi\)
−0.118861 + 0.992911i \(0.537924\pi\)
\(374\) 0 0
\(375\) 2.45364 0.126706
\(376\) 0 0
\(377\) −20.8209 −1.07233
\(378\) 0 0
\(379\) −15.4301 −0.792590 −0.396295 0.918123i \(-0.629704\pi\)
−0.396295 + 0.918123i \(0.629704\pi\)
\(380\) 0 0
\(381\) 1.74307 0.0893003
\(382\) 0 0
\(383\) −0.307511 −0.0157131 −0.00785655 0.999969i \(-0.502501\pi\)
−0.00785655 + 0.999969i \(0.502501\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.77577 −0.0902675
\(388\) 0 0
\(389\) −4.43047 −0.224634 −0.112317 0.993672i \(-0.535827\pi\)
−0.112317 + 0.993672i \(0.535827\pi\)
\(390\) 0 0
\(391\) 1.49967 0.0758416
\(392\) 0 0
\(393\) −5.37740 −0.271254
\(394\) 0 0
\(395\) −3.05097 −0.153511
\(396\) 0 0
\(397\) 18.4721 0.927089 0.463545 0.886074i \(-0.346577\pi\)
0.463545 + 0.886074i \(0.346577\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.76660 −0.487721 −0.243860 0.969810i \(-0.578414\pi\)
−0.243860 + 0.969810i \(0.578414\pi\)
\(402\) 0 0
\(403\) −2.11705 −0.105458
\(404\) 0 0
\(405\) 7.57393 0.376352
\(406\) 0 0
\(407\) −25.6185 −1.26986
\(408\) 0 0
\(409\) −31.1755 −1.54153 −0.770763 0.637121i \(-0.780125\pi\)
−0.770763 + 0.637121i \(0.780125\pi\)
\(410\) 0 0
\(411\) −3.42060 −0.168726
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.74046 −0.379964
\(416\) 0 0
\(417\) −5.58087 −0.273296
\(418\) 0 0
\(419\) 5.20108 0.254090 0.127045 0.991897i \(-0.459451\pi\)
0.127045 + 0.991897i \(0.459451\pi\)
\(420\) 0 0
\(421\) −18.8562 −0.918994 −0.459497 0.888179i \(-0.651970\pi\)
−0.459497 + 0.888179i \(0.651970\pi\)
\(422\) 0 0
\(423\) 15.1708 0.737630
\(424\) 0 0
\(425\) −4.15550 −0.201572
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.56411 0.123797
\(430\) 0 0
\(431\) 11.0183 0.530732 0.265366 0.964148i \(-0.414507\pi\)
0.265366 + 0.964148i \(0.414507\pi\)
\(432\) 0 0
\(433\) −4.52386 −0.217403 −0.108701 0.994074i \(-0.534669\pi\)
−0.108701 + 0.994074i \(0.534669\pi\)
\(434\) 0 0
\(435\) −2.68814 −0.128887
\(436\) 0 0
\(437\) 10.3802 0.496552
\(438\) 0 0
\(439\) −1.62534 −0.0775732 −0.0387866 0.999248i \(-0.512349\pi\)
−0.0387866 + 0.999248i \(0.512349\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 32.1103 1.52561 0.762804 0.646630i \(-0.223822\pi\)
0.762804 + 0.646630i \(0.223822\pi\)
\(444\) 0 0
\(445\) −8.08439 −0.383237
\(446\) 0 0
\(447\) −6.12683 −0.289789
\(448\) 0 0
\(449\) 33.4297 1.57765 0.788824 0.614620i \(-0.210690\pi\)
0.788824 + 0.614620i \(0.210690\pi\)
\(450\) 0 0
\(451\) −15.6241 −0.735711
\(452\) 0 0
\(453\) −5.18177 −0.243461
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.5266 −0.773084 −0.386542 0.922272i \(-0.626331\pi\)
−0.386542 + 0.922272i \(0.626331\pi\)
\(458\) 0 0
\(459\) 1.72497 0.0805147
\(460\) 0 0
\(461\) 6.73410 0.313638 0.156819 0.987627i \(-0.449876\pi\)
0.156819 + 0.987627i \(0.449876\pi\)
\(462\) 0 0
\(463\) 18.7842 0.872975 0.436487 0.899710i \(-0.356222\pi\)
0.436487 + 0.899710i \(0.356222\pi\)
\(464\) 0 0
\(465\) −0.273328 −0.0126753
\(466\) 0 0
\(467\) 4.78208 0.221288 0.110644 0.993860i \(-0.464709\pi\)
0.110644 + 0.993860i \(0.464709\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.02299 −0.277525
\(472\) 0 0
\(473\) 2.58039 0.118647
\(474\) 0 0
\(475\) −28.7629 −1.31973
\(476\) 0 0
\(477\) 5.39927 0.247216
\(478\) 0 0
\(479\) −18.9861 −0.867496 −0.433748 0.901034i \(-0.642809\pi\)
−0.433748 + 0.901034i \(0.642809\pi\)
\(480\) 0 0
\(481\) 12.5545 0.572435
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.43238 0.155856
\(486\) 0 0
\(487\) 27.7269 1.25643 0.628213 0.778042i \(-0.283787\pi\)
0.628213 + 0.778042i \(0.283787\pi\)
\(488\) 0 0
\(489\) −4.59651 −0.207861
\(490\) 0 0
\(491\) 7.45169 0.336290 0.168145 0.985762i \(-0.446222\pi\)
0.168145 + 0.985762i \(0.446222\pi\)
\(492\) 0 0
\(493\) 10.0305 0.451752
\(494\) 0 0
\(495\) −11.3465 −0.509986
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 24.4689 1.09538 0.547689 0.836682i \(-0.315508\pi\)
0.547689 + 0.836682i \(0.315508\pi\)
\(500\) 0 0
\(501\) 6.72036 0.300244
\(502\) 0 0
\(503\) 5.66361 0.252528 0.126264 0.991997i \(-0.459701\pi\)
0.126264 + 0.991997i \(0.459701\pi\)
\(504\) 0 0
\(505\) 10.7305 0.477500
\(506\) 0 0
\(507\) 2.53461 0.112566
\(508\) 0 0
\(509\) 20.3716 0.902953 0.451477 0.892283i \(-0.350897\pi\)
0.451477 + 0.892283i \(0.350897\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 11.9396 0.527148
\(514\) 0 0
\(515\) 9.03918 0.398314
\(516\) 0 0
\(517\) −22.0449 −0.969533
\(518\) 0 0
\(519\) −2.56478 −0.112581
\(520\) 0 0
\(521\) −14.6419 −0.641474 −0.320737 0.947168i \(-0.603931\pi\)
−0.320737 + 0.947168i \(0.603931\pi\)
\(522\) 0 0
\(523\) −24.1198 −1.05469 −0.527343 0.849652i \(-0.676812\pi\)
−0.527343 + 0.849652i \(0.676812\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.01989 0.0444272
\(528\) 0 0
\(529\) −20.7510 −0.902217
\(530\) 0 0
\(531\) −21.2602 −0.922616
\(532\) 0 0
\(533\) 7.65670 0.331648
\(534\) 0 0
\(535\) −11.2153 −0.484880
\(536\) 0 0
\(537\) −1.10862 −0.0478404
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 13.8789 0.596702 0.298351 0.954456i \(-0.403563\pi\)
0.298351 + 0.954456i \(0.403563\pi\)
\(542\) 0 0
\(543\) −2.74443 −0.117775
\(544\) 0 0
\(545\) 8.70463 0.372865
\(546\) 0 0
\(547\) −9.36991 −0.400628 −0.200314 0.979732i \(-0.564196\pi\)
−0.200314 + 0.979732i \(0.564196\pi\)
\(548\) 0 0
\(549\) −20.6291 −0.880427
\(550\) 0 0
\(551\) 69.4277 2.95772
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.62088 0.0688026
\(556\) 0 0
\(557\) −3.66251 −0.155186 −0.0775929 0.996985i \(-0.524723\pi\)
−0.0775929 + 0.996985i \(0.524723\pi\)
\(558\) 0 0
\(559\) −1.26454 −0.0534843
\(560\) 0 0
\(561\) −1.23527 −0.0521530
\(562\) 0 0
\(563\) −26.3625 −1.11105 −0.555523 0.831501i \(-0.687482\pi\)
−0.555523 + 0.831501i \(0.687482\pi\)
\(564\) 0 0
\(565\) −14.0331 −0.590377
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.9091 −0.457333 −0.228666 0.973505i \(-0.573436\pi\)
−0.228666 + 0.973505i \(0.573436\pi\)
\(570\) 0 0
\(571\) 22.4156 0.938064 0.469032 0.883181i \(-0.344603\pi\)
0.469032 + 0.883181i \(0.344603\pi\)
\(572\) 0 0
\(573\) 2.21499 0.0925323
\(574\) 0 0
\(575\) −6.23189 −0.259888
\(576\) 0 0
\(577\) 25.7241 1.07091 0.535453 0.844565i \(-0.320141\pi\)
0.535453 + 0.844565i \(0.320141\pi\)
\(578\) 0 0
\(579\) 1.19482 0.0496551
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.84575 −0.324938
\(584\) 0 0
\(585\) 5.56041 0.229895
\(586\) 0 0
\(587\) 46.0724 1.90161 0.950805 0.309790i \(-0.100259\pi\)
0.950805 + 0.309790i \(0.100259\pi\)
\(588\) 0 0
\(589\) 7.05934 0.290875
\(590\) 0 0
\(591\) −4.49443 −0.184876
\(592\) 0 0
\(593\) −16.7710 −0.688703 −0.344351 0.938841i \(-0.611901\pi\)
−0.344351 + 0.938841i \(0.611901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.56111 −0.0638921
\(598\) 0 0
\(599\) 11.0366 0.450942 0.225471 0.974250i \(-0.427608\pi\)
0.225471 + 0.974250i \(0.427608\pi\)
\(600\) 0 0
\(601\) 13.1473 0.536290 0.268145 0.963379i \(-0.413589\pi\)
0.268145 + 0.963379i \(0.413589\pi\)
\(602\) 0 0
\(603\) −1.49450 −0.0608608
\(604\) 0 0
\(605\) 6.37909 0.259347
\(606\) 0 0
\(607\) 5.44007 0.220806 0.110403 0.993887i \(-0.464786\pi\)
0.110403 + 0.993887i \(0.464786\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.8032 0.437052
\(612\) 0 0
\(613\) 25.6865 1.03747 0.518734 0.854936i \(-0.326403\pi\)
0.518734 + 0.854936i \(0.326403\pi\)
\(614\) 0 0
\(615\) 0.988540 0.0398618
\(616\) 0 0
\(617\) 30.6828 1.23524 0.617622 0.786475i \(-0.288096\pi\)
0.617622 + 0.786475i \(0.288096\pi\)
\(618\) 0 0
\(619\) −8.62156 −0.346530 −0.173265 0.984875i \(-0.555432\pi\)
−0.173265 + 0.984875i \(0.555432\pi\)
\(620\) 0 0
\(621\) 2.58689 0.103808
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 13.0457 0.521829
\(626\) 0 0
\(627\) −8.55009 −0.341458
\(628\) 0 0
\(629\) −6.04815 −0.241155
\(630\) 0 0
\(631\) −49.1275 −1.95573 −0.977867 0.209228i \(-0.932905\pi\)
−0.977867 + 0.209228i \(0.932905\pi\)
\(632\) 0 0
\(633\) 5.42692 0.215701
\(634\) 0 0
\(635\) −5.49268 −0.217970
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 18.9106 0.748090
\(640\) 0 0
\(641\) −14.7169 −0.581282 −0.290641 0.956832i \(-0.593868\pi\)
−0.290641 + 0.956832i \(0.593868\pi\)
\(642\) 0 0
\(643\) −40.6089 −1.60146 −0.800730 0.599026i \(-0.795555\pi\)
−0.800730 + 0.599026i \(0.795555\pi\)
\(644\) 0 0
\(645\) −0.163262 −0.00642843
\(646\) 0 0
\(647\) 15.4655 0.608012 0.304006 0.952670i \(-0.401676\pi\)
0.304006 + 0.952670i \(0.401676\pi\)
\(648\) 0 0
\(649\) 30.8935 1.21268
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.6585 −0.925829 −0.462914 0.886403i \(-0.653196\pi\)
−0.462914 + 0.886403i \(0.653196\pi\)
\(654\) 0 0
\(655\) 16.9450 0.662095
\(656\) 0 0
\(657\) −8.37651 −0.326799
\(658\) 0 0
\(659\) −20.0742 −0.781981 −0.390990 0.920395i \(-0.627867\pi\)
−0.390990 + 0.920395i \(0.627867\pi\)
\(660\) 0 0
\(661\) 35.8354 1.39384 0.696918 0.717151i \(-0.254554\pi\)
0.696918 + 0.717151i \(0.254554\pi\)
\(662\) 0 0
\(663\) 0.605350 0.0235099
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.0425 0.582447
\(668\) 0 0
\(669\) 0.790808 0.0305744
\(670\) 0 0
\(671\) 29.9763 1.15722
\(672\) 0 0
\(673\) 6.74520 0.260008 0.130004 0.991513i \(-0.458501\pi\)
0.130004 + 0.991513i \(0.458501\pi\)
\(674\) 0 0
\(675\) −7.16812 −0.275901
\(676\) 0 0
\(677\) −20.9493 −0.805146 −0.402573 0.915388i \(-0.631884\pi\)
−0.402573 + 0.915388i \(0.631884\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4.39251 −0.168321
\(682\) 0 0
\(683\) −6.25012 −0.239154 −0.119577 0.992825i \(-0.538154\pi\)
−0.119577 + 0.992825i \(0.538154\pi\)
\(684\) 0 0
\(685\) 10.7788 0.411837
\(686\) 0 0
\(687\) −2.88347 −0.110011
\(688\) 0 0
\(689\) 3.84486 0.146477
\(690\) 0 0
\(691\) 12.4155 0.472306 0.236153 0.971716i \(-0.424113\pi\)
0.236153 + 0.971716i \(0.424113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.5861 0.667080
\(696\) 0 0
\(697\) −3.68863 −0.139717
\(698\) 0 0
\(699\) 3.74212 0.141540
\(700\) 0 0
\(701\) 20.1448 0.760860 0.380430 0.924810i \(-0.375776\pi\)
0.380430 + 0.924810i \(0.375776\pi\)
\(702\) 0 0
\(703\) −41.8632 −1.57890
\(704\) 0 0
\(705\) 1.39478 0.0525305
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.3308 −0.575759 −0.287880 0.957667i \(-0.592950\pi\)
−0.287880 + 0.957667i \(0.592950\pi\)
\(710\) 0 0
\(711\) 9.67767 0.362941
\(712\) 0 0
\(713\) 1.52950 0.0572803
\(714\) 0 0
\(715\) −8.07990 −0.302171
\(716\) 0 0
\(717\) 5.64271 0.210731
\(718\) 0 0
\(719\) 6.31496 0.235508 0.117754 0.993043i \(-0.462431\pi\)
0.117754 + 0.993043i \(0.462431\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.31622 −0.160522
\(724\) 0 0
\(725\) −41.6819 −1.54803
\(726\) 0 0
\(727\) 5.24320 0.194459 0.0972297 0.995262i \(-0.469002\pi\)
0.0972297 + 0.995262i \(0.469002\pi\)
\(728\) 0 0
\(729\) −22.5153 −0.833901
\(730\) 0 0
\(731\) 0.609194 0.0225318
\(732\) 0 0
\(733\) −34.8235 −1.28623 −0.643117 0.765768i \(-0.722359\pi\)
−0.643117 + 0.765768i \(0.722359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.17168 0.0799948
\(738\) 0 0
\(739\) 14.3046 0.526203 0.263102 0.964768i \(-0.415255\pi\)
0.263102 + 0.964768i \(0.415255\pi\)
\(740\) 0 0
\(741\) 4.19002 0.153924
\(742\) 0 0
\(743\) −42.1623 −1.54679 −0.773393 0.633927i \(-0.781442\pi\)
−0.773393 + 0.633927i \(0.781442\pi\)
\(744\) 0 0
\(745\) 19.3065 0.707337
\(746\) 0 0
\(747\) 24.5527 0.898337
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 36.7831 1.34223 0.671116 0.741352i \(-0.265815\pi\)
0.671116 + 0.741352i \(0.265815\pi\)
\(752\) 0 0
\(753\) 1.54267 0.0562178
\(754\) 0 0
\(755\) 16.3285 0.594256
\(756\) 0 0
\(757\) −35.7753 −1.30028 −0.650138 0.759816i \(-0.725289\pi\)
−0.650138 + 0.759816i \(0.725289\pi\)
\(758\) 0 0
\(759\) −1.85249 −0.0672413
\(760\) 0 0
\(761\) 7.42261 0.269069 0.134535 0.990909i \(-0.457046\pi\)
0.134535 + 0.990909i \(0.457046\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.67874 −0.0968500
\(766\) 0 0
\(767\) −15.1396 −0.546658
\(768\) 0 0
\(769\) 21.6273 0.779899 0.389950 0.920836i \(-0.372492\pi\)
0.389950 + 0.920836i \(0.372492\pi\)
\(770\) 0 0
\(771\) −6.31863 −0.227560
\(772\) 0 0
\(773\) −38.9887 −1.40233 −0.701164 0.713001i \(-0.747336\pi\)
−0.701164 + 0.713001i \(0.747336\pi\)
\(774\) 0 0
\(775\) −4.23817 −0.152239
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −25.5314 −0.914757
\(780\) 0 0
\(781\) −27.4792 −0.983282
\(782\) 0 0
\(783\) 17.3023 0.618336
\(784\) 0 0
\(785\) 18.9793 0.677401
\(786\) 0 0
\(787\) 1.10721 0.0394677 0.0197339 0.999805i \(-0.493718\pi\)
0.0197339 + 0.999805i \(0.493718\pi\)
\(788\) 0 0
\(789\) −3.68005 −0.131013
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −14.6901 −0.521660
\(794\) 0 0
\(795\) 0.496401 0.0176055
\(796\) 0 0
\(797\) 28.9926 1.02697 0.513485 0.858099i \(-0.328354\pi\)
0.513485 + 0.858099i \(0.328354\pi\)
\(798\) 0 0
\(799\) −5.20448 −0.184121
\(800\) 0 0
\(801\) 25.6436 0.906074
\(802\) 0 0
\(803\) 12.1720 0.429541
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.88456 −0.136743
\(808\) 0 0
\(809\) 0.390358 0.0137242 0.00686212 0.999976i \(-0.497816\pi\)
0.00686212 + 0.999976i \(0.497816\pi\)
\(810\) 0 0
\(811\) −33.3616 −1.17148 −0.585742 0.810498i \(-0.699197\pi\)
−0.585742 + 0.810498i \(0.699197\pi\)
\(812\) 0 0
\(813\) 1.61623 0.0566835
\(814\) 0 0
\(815\) 14.4843 0.507362
\(816\) 0 0
\(817\) 4.21662 0.147521
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.55974 0.263837 0.131918 0.991261i \(-0.457886\pi\)
0.131918 + 0.991261i \(0.457886\pi\)
\(822\) 0 0
\(823\) −42.0005 −1.46405 −0.732023 0.681280i \(-0.761424\pi\)
−0.732023 + 0.681280i \(0.761424\pi\)
\(824\) 0 0
\(825\) 5.13316 0.178714
\(826\) 0 0
\(827\) 44.5625 1.54959 0.774795 0.632212i \(-0.217853\pi\)
0.774795 + 0.632212i \(0.217853\pi\)
\(828\) 0 0
\(829\) 0.417296 0.0144933 0.00724664 0.999974i \(-0.497693\pi\)
0.00724664 + 0.999974i \(0.497693\pi\)
\(830\) 0 0
\(831\) 3.57075 0.123868
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −21.1768 −0.732855
\(836\) 0 0
\(837\) 1.75928 0.0608098
\(838\) 0 0
\(839\) −28.9911 −1.00088 −0.500441 0.865771i \(-0.666829\pi\)
−0.500441 + 0.865771i \(0.666829\pi\)
\(840\) 0 0
\(841\) 71.6113 2.46936
\(842\) 0 0
\(843\) −2.63517 −0.0907602
\(844\) 0 0
\(845\) −7.98694 −0.274759
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 8.87600 0.304624
\(850\) 0 0
\(851\) −9.07023 −0.310923
\(852\) 0 0
\(853\) −40.1812 −1.37578 −0.687889 0.725816i \(-0.741462\pi\)
−0.687889 + 0.725816i \(0.741462\pi\)
\(854\) 0 0
\(855\) −18.5413 −0.634099
\(856\) 0 0
\(857\) −14.6607 −0.500800 −0.250400 0.968142i \(-0.580562\pi\)
−0.250400 + 0.968142i \(0.580562\pi\)
\(858\) 0 0
\(859\) −57.4224 −1.95923 −0.979614 0.200890i \(-0.935617\pi\)
−0.979614 + 0.200890i \(0.935617\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.72184 −0.296895 −0.148448 0.988920i \(-0.547428\pi\)
−0.148448 + 0.988920i \(0.547428\pi\)
\(864\) 0 0
\(865\) 8.08200 0.274796
\(866\) 0 0
\(867\) −0.291629 −0.00990423
\(868\) 0 0
\(869\) −14.0627 −0.477046
\(870\) 0 0
\(871\) −1.06424 −0.0360605
\(872\) 0 0
\(873\) −10.8875 −0.368486
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.1000 0.847565 0.423783 0.905764i \(-0.360702\pi\)
0.423783 + 0.905764i \(0.360702\pi\)
\(878\) 0 0
\(879\) −8.10731 −0.273453
\(880\) 0 0
\(881\) 3.85588 0.129908 0.0649539 0.997888i \(-0.479310\pi\)
0.0649539 + 0.997888i \(0.479310\pi\)
\(882\) 0 0
\(883\) 44.5288 1.49851 0.749257 0.662279i \(-0.230411\pi\)
0.749257 + 0.662279i \(0.230411\pi\)
\(884\) 0 0
\(885\) −1.95464 −0.0657044
\(886\) 0 0
\(887\) 28.1866 0.946414 0.473207 0.880951i \(-0.343096\pi\)
0.473207 + 0.880951i \(0.343096\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 34.9103 1.16954
\(892\) 0 0
\(893\) −36.0236 −1.20548
\(894\) 0 0
\(895\) 3.49342 0.116772
\(896\) 0 0
\(897\) 0.907826 0.0303114
\(898\) 0 0
\(899\) 10.2301 0.341191
\(900\) 0 0
\(901\) −1.85227 −0.0617080
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.64810 0.287472
\(906\) 0 0
\(907\) −23.5411 −0.781668 −0.390834 0.920461i \(-0.627813\pi\)
−0.390834 + 0.920461i \(0.627813\pi\)
\(908\) 0 0
\(909\) −34.0371 −1.12894
\(910\) 0 0
\(911\) 0.648280 0.0214785 0.0107392 0.999942i \(-0.496582\pi\)
0.0107392 + 0.999942i \(0.496582\pi\)
\(912\) 0 0
\(913\) −35.6779 −1.18076
\(914\) 0 0
\(915\) −1.89661 −0.0626998
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −20.9924 −0.692476 −0.346238 0.938147i \(-0.612541\pi\)
−0.346238 + 0.938147i \(0.612541\pi\)
\(920\) 0 0
\(921\) 0.357737 0.0117878
\(922\) 0 0
\(923\) 13.4663 0.443250
\(924\) 0 0
\(925\) 25.1331 0.826371
\(926\) 0 0
\(927\) −28.6723 −0.941720
\(928\) 0 0
\(929\) −19.2232 −0.630693 −0.315347 0.948977i \(-0.602121\pi\)
−0.315347 + 0.948977i \(0.602121\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −7.32826 −0.239916
\(934\) 0 0
\(935\) 3.89251 0.127299
\(936\) 0 0
\(937\) 55.9691 1.82843 0.914215 0.405229i \(-0.132808\pi\)
0.914215 + 0.405229i \(0.132808\pi\)
\(938\) 0 0
\(939\) −0.102003 −0.00332876
\(940\) 0 0
\(941\) 4.68016 0.152569 0.0762845 0.997086i \(-0.475694\pi\)
0.0762845 + 0.997086i \(0.475694\pi\)
\(942\) 0 0
\(943\) −5.53173 −0.180138
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.6864 0.509738 0.254869 0.966976i \(-0.417968\pi\)
0.254869 + 0.966976i \(0.417968\pi\)
\(948\) 0 0
\(949\) −5.96497 −0.193631
\(950\) 0 0
\(951\) 9.74947 0.316148
\(952\) 0 0
\(953\) 46.8719 1.51833 0.759164 0.650899i \(-0.225608\pi\)
0.759164 + 0.650899i \(0.225608\pi\)
\(954\) 0 0
\(955\) −6.97974 −0.225859
\(956\) 0 0
\(957\) −12.3904 −0.400524
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.9598 −0.966446
\(962\) 0 0
\(963\) 35.5749 1.14639
\(964\) 0 0
\(965\) −3.76506 −0.121202
\(966\) 0 0
\(967\) 32.8507 1.05641 0.528204 0.849118i \(-0.322866\pi\)
0.528204 + 0.849118i \(0.322866\pi\)
\(968\) 0 0
\(969\) −2.01855 −0.0648452
\(970\) 0 0
\(971\) −46.8602 −1.50382 −0.751908 0.659268i \(-0.770866\pi\)
−0.751908 + 0.659268i \(0.770866\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.51554 −0.0805616
\(976\) 0 0
\(977\) −33.8208 −1.08202 −0.541012 0.841015i \(-0.681959\pi\)
−0.541012 + 0.841015i \(0.681959\pi\)
\(978\) 0 0
\(979\) −37.2631 −1.19093
\(980\) 0 0
\(981\) −27.6111 −0.881553
\(982\) 0 0
\(983\) 8.84124 0.281992 0.140996 0.990010i \(-0.454970\pi\)
0.140996 + 0.990010i \(0.454970\pi\)
\(984\) 0 0
\(985\) 14.1626 0.451258
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.913590 0.0290505
\(990\) 0 0
\(991\) −6.03473 −0.191700 −0.0958498 0.995396i \(-0.530557\pi\)
−0.0958498 + 0.995396i \(0.530557\pi\)
\(992\) 0 0
\(993\) −9.15331 −0.290472
\(994\) 0 0
\(995\) 4.91929 0.155952
\(996\) 0 0
\(997\) 30.3580 0.961447 0.480723 0.876872i \(-0.340374\pi\)
0.480723 + 0.876872i \(0.340374\pi\)
\(998\) 0 0
\(999\) −10.4329 −0.330082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.bc.1.6 12
7.6 odd 2 6664.2.a.bd.1.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6664.2.a.bc.1.6 12 1.1 even 1 trivial
6664.2.a.bd.1.7 yes 12 7.6 odd 2