# Properties

 Label 6660.2.a.a Level $6660$ Weight $2$ Character orbit 6660.a Self dual yes Analytic conductor $53.180$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [6660,2,Mod(1,6660)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(6660, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("6660.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$6660 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 6660.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$53.1803677462$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 740) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + q^{7}+O(q^{10})$$ q - q^5 + q^7 $$q - q^{5} + q^{7} + 3 q^{11} - 6 q^{13} - 2 q^{23} + q^{25} + 6 q^{29} - q^{35} - q^{37} + 9 q^{41} - 10 q^{43} - q^{47} - 6 q^{49} - q^{53} - 3 q^{55} - 12 q^{61} + 6 q^{65} + 5 q^{71} + 3 q^{73} + 3 q^{77} + 16 q^{79} - 11 q^{83} - 6 q^{91} + 8 q^{97}+O(q^{100})$$ q - q^5 + q^7 + 3 * q^11 - 6 * q^13 - 2 * q^23 + q^25 + 6 * q^29 - q^35 - q^37 + 9 * q^41 - 10 * q^43 - q^47 - 6 * q^49 - q^53 - 3 * q^55 - 12 * q^61 + 6 * q^65 + 5 * q^71 + 3 * q^73 + 3 * q^77 + 16 * q^79 - 11 * q^83 - 6 * q^91 + 8 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$+1$$
$$37$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6660.2.a.a 1
3.b odd 2 1 740.2.a.a 1
12.b even 2 1 2960.2.a.h 1
15.d odd 2 1 3700.2.a.d 1
15.e even 4 2 3700.2.d.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
740.2.a.a 1 3.b odd 2 1
2960.2.a.h 1 12.b even 2 1
3700.2.a.d 1 15.d odd 2 1
3700.2.d.c 2 15.e even 4 2
6660.2.a.a 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(6660))$$:

 $$T_{7} - 1$$ T7 - 1 $$T_{11} - 3$$ T11 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T - 3$$
$13$ $$T + 6$$
$17$ $$T$$
$19$ $$T$$
$23$ $$T + 2$$
$29$ $$T - 6$$
$31$ $$T$$
$37$ $$T + 1$$
$41$ $$T - 9$$
$43$ $$T + 10$$
$47$ $$T + 1$$
$53$ $$T + 1$$
$59$ $$T$$
$61$ $$T + 12$$
$67$ $$T$$
$71$ $$T - 5$$
$73$ $$T - 3$$
$79$ $$T - 16$$
$83$ $$T + 11$$
$89$ $$T$$
$97$ $$T - 8$$