Properties

Label 666.2.s.c
Level $666$
Weight $2$
Character orbit 666.s
Analytic conductor $5.318$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(307,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{4} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{5} + 2 \zeta_{12}^{2} q^{7} + \zeta_{12}^{3} q^{8} - 3 q^{10} + (2 \zeta_{12}^{3} - 4 \zeta_{12}) q^{11} + 2 \zeta_{12}^{3} q^{14}+ \cdots + ( - 3 \zeta_{12}^{3} + 3 \zeta_{12}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{7} - 12 q^{10} - 2 q^{16} - 12 q^{19} - 12 q^{22} + 8 q^{25} - 4 q^{28} - 6 q^{34} - 2 q^{37} - 6 q^{40} + 6 q^{49} + 36 q^{55} - 6 q^{58} + 30 q^{61} - 4 q^{64} + 28 q^{67} - 12 q^{70}+ \cdots + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 2.59808 + 1.50000i 0 1.00000 1.73205i 1.00000i 0 −3.00000
307.2 0.866025 0.500000i 0 0.500000 0.866025i −2.59808 1.50000i 0 1.00000 1.73205i 1.00000i 0 −3.00000
397.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 2.59808 1.50000i 0 1.00000 + 1.73205i 1.00000i 0 −3.00000
397.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i −2.59808 + 1.50000i 0 1.00000 + 1.73205i 1.00000i 0 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
37.e even 6 1 inner
111.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.s.c 4
3.b odd 2 1 inner 666.2.s.c 4
37.e even 6 1 inner 666.2.s.c 4
111.h odd 6 1 inner 666.2.s.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
666.2.s.c 4 1.a even 1 1 trivial
666.2.s.c 4 3.b odd 2 1 inner
666.2.s.c 4 37.e even 6 1 inner
666.2.s.c 4 111.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 9T_{5}^{2} + 81 \) acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$19$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + T + 37)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$43$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 192 T^{2} + 36864 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 15 T + 75)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$73$ \( (T + 2)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 18 T + 108)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$89$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$97$ \( (T^{2} + 243)^{2} \) Copy content Toggle raw display
show more
show less