Newspace parameters
Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 666.s (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.31803677462\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 74) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).
\(n\) | \(371\) | \(631\) |
\(\chi(n)\) | \(1\) | \(\zeta_{12}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.50000 | − | 0.866025i | 0 | 1.00000 | − | 1.73205i | 1.00000i | 0 | 1.73205 | ||||||||||||||||||||||
307.2 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.50000 | − | 0.866025i | 0 | 1.00000 | − | 1.73205i | − | 1.00000i | 0 | −1.73205 | ||||||||||||||||||||||
397.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.50000 | + | 0.866025i | 0 | 1.00000 | + | 1.73205i | − | 1.00000i | 0 | 1.73205 | ||||||||||||||||||||||
397.2 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.50000 | + | 0.866025i | 0 | 1.00000 | + | 1.73205i | 1.00000i | 0 | −1.73205 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 666.2.s.a | 4 | |
3.b | odd | 2 | 1 | 74.2.e.b | ✓ | 4 | |
12.b | even | 2 | 1 | 592.2.w.e | 4 | ||
37.e | even | 6 | 1 | inner | 666.2.s.a | 4 | |
111.h | odd | 6 | 1 | 74.2.e.b | ✓ | 4 | |
111.m | even | 12 | 1 | 2738.2.a.e | 2 | ||
111.m | even | 12 | 1 | 2738.2.a.i | 2 | ||
444.p | even | 6 | 1 | 592.2.w.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
74.2.e.b | ✓ | 4 | 3.b | odd | 2 | 1 | |
74.2.e.b | ✓ | 4 | 111.h | odd | 6 | 1 | |
592.2.w.e | 4 | 12.b | even | 2 | 1 | ||
592.2.w.e | 4 | 444.p | even | 6 | 1 | ||
666.2.s.a | 4 | 1.a | even | 1 | 1 | trivial | |
666.2.s.a | 4 | 37.e | even | 6 | 1 | inner | |
2738.2.a.e | 2 | 111.m | even | 12 | 1 | ||
2738.2.a.i | 2 | 111.m | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 3T_{5} + 3 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - T^{2} + 1 \)
$3$
\( T^{4} \)
$5$
\( (T^{2} + 3 T + 3)^{2} \)
$7$
\( (T^{2} - 2 T + 4)^{2} \)
$11$
\( (T^{2} - 6 T + 6)^{2} \)
$13$
\( (T^{2} + 6 T + 12)^{2} \)
$17$
\( T^{4} + 6 T^{3} - 21 T^{2} + \cdots + 1089 \)
$19$
\( T^{4} + 6 T^{3} + 6 T^{2} - 36 T + 36 \)
$23$
\( T^{4} + 24T^{2} + 36 \)
$29$
\( (T^{2} + 75)^{2} \)
$31$
\( T^{4} + 24T^{2} + 36 \)
$37$
\( T^{4} + 2 T^{3} - 33 T^{2} + \cdots + 1369 \)
$41$
\( T^{4} - 6 T^{3} + 75 T^{2} + \cdots + 1521 \)
$43$
\( T^{4} + 168T^{2} + 144 \)
$47$
\( (T^{2} + 6 T + 6)^{2} \)
$53$
\( T^{4} - 12 T^{3} + 120 T^{2} + \cdots + 576 \)
$59$
\( T^{4} - 12 T^{3} + 24 T^{2} + \cdots + 576 \)
$61$
\( (T^{2} - 3 T + 3)^{2} \)
$67$
\( T^{4} - 10 T^{3} + 102 T^{2} + 20 T + 4 \)
$71$
\( T^{4} + 12T^{2} + 144 \)
$73$
\( (T - 4)^{4} \)
$79$
\( T^{4} - 6 T^{3} - 210 T^{2} + \cdots + 49284 \)
$83$
\( T^{4} - 6 T^{3} + 102 T^{2} + \cdots + 4356 \)
$89$
\( T^{4} + 18 T^{3} - 9 T^{2} + \cdots + 13689 \)
$97$
\( T^{4} + 78T^{2} + 1089 \)
show more
show less