Newspace parameters
| Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 666.q (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31803677462\) |
| Analytic rank: | \(0\) |
| Dimension: | \(72\) |
| Relative dimension: | \(36\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 295.1 | −0.866025 | − | 0.500000i | −1.71655 | − | 0.231194i | 0.500000 | + | 0.866025i | −2.11882 | + | 1.22330i | 1.37098 | + | 1.05850i | −0.0163493 | + | 0.0283178i | − | 1.00000i | 2.89310 | + | 0.793714i | 2.44661 | |||
| 295.2 | −0.866025 | − | 0.500000i | −1.66312 | + | 0.483784i | 0.500000 | + | 0.866025i | 0.0135176 | − | 0.00780437i | 1.68219 | + | 0.412588i | 0.114323 | − | 0.198014i | − | 1.00000i | 2.53191 | − | 1.60918i | −0.0156087 | |||
| 295.3 | −0.866025 | − | 0.500000i | −1.61913 | + | 0.615160i | 0.500000 | + | 0.866025i | 3.22658 | − | 1.86286i | 1.70979 | + | 0.276820i | −2.33164 | + | 4.03852i | − | 1.00000i | 2.24316 | − | 1.99205i | −3.72573 | |||
| 295.4 | −0.866025 | − | 0.500000i | −1.52521 | + | 0.820815i | 0.500000 | + | 0.866025i | 1.79041 | − | 1.03369i | 1.73128 | + | 0.0517575i | 2.35442 | − | 4.07797i | − | 1.00000i | 1.65252 | − | 2.50383i | −2.06738 | |||
| 295.5 | −0.866025 | − | 0.500000i | −1.10736 | − | 1.33183i | 0.500000 | + | 0.866025i | 1.06178 | − | 0.613020i | 0.293086 | + | 1.70707i | −0.577625 | + | 1.00048i | − | 1.00000i | −0.547521 | + | 2.94961i | −1.22604 | |||
| 295.6 | −0.866025 | − | 0.500000i | −1.00570 | − | 1.41016i | 0.500000 | + | 0.866025i | −2.61658 | + | 1.51068i | 0.165883 | + | 1.72409i | 1.88563 | − | 3.26601i | − | 1.00000i | −0.977123 | + | 2.83641i | 3.02137 | |||
| 295.7 | −0.866025 | − | 0.500000i | −0.933613 | + | 1.45889i | 0.500000 | + | 0.866025i | −1.73582 | + | 1.00218i | 1.53798 | − | 0.796631i | −1.84656 | + | 3.19833i | − | 1.00000i | −1.25673 | − | 2.72408i | 2.00435 | |||
| 295.8 | −0.866025 | − | 0.500000i | −0.0766549 | − | 1.73035i | 0.500000 | + | 0.866025i | 0.893958 | − | 0.516127i | −0.798792 | + | 1.53686i | −1.34612 | + | 2.33155i | − | 1.00000i | −2.98825 | + | 0.265280i | −1.03225 | |||
| 295.9 | −0.866025 | − | 0.500000i | 0.134727 | − | 1.72680i | 0.500000 | + | 0.866025i | 3.47746 | − | 2.00771i | −0.980078 | + | 1.42809i | 1.62916 | − | 2.82178i | − | 1.00000i | −2.96370 | − | 0.465293i | −4.01543 | |||
| 295.10 | −0.866025 | − | 0.500000i | 0.489499 | + | 1.66144i | 0.500000 | + | 0.866025i | −1.91018 | + | 1.10284i | 0.406802 | − | 1.68360i | 2.33806 | − | 4.04964i | − | 1.00000i | −2.52078 | + | 1.62655i | 2.20569 | |||
| 295.11 | −0.866025 | − | 0.500000i | 0.630864 | − | 1.61308i | 0.500000 | + | 0.866025i | −1.26082 | + | 0.727936i | −1.35288 | + | 1.08153i | −0.555043 | + | 0.961363i | − | 1.00000i | −2.20402 | − | 2.03526i | 1.45587 | |||
| 295.12 | −0.866025 | − | 0.500000i | 0.706817 | + | 1.58127i | 0.500000 | + | 0.866025i | 2.09692 | − | 1.21066i | 0.178512 | − | 1.72283i | −0.633629 | + | 1.09748i | − | 1.00000i | −2.00082 | + | 2.23534i | −2.42132 | |||
| 295.13 | −0.866025 | − | 0.500000i | 0.843072 | + | 1.51302i | 0.500000 | + | 0.866025i | −3.56506 | + | 2.05829i | 0.0263886 | − | 1.73185i | −1.11612 | + | 1.93317i | − | 1.00000i | −1.57846 | + | 2.55117i | 4.11657 | |||
| 295.14 | −0.866025 | − | 0.500000i | 1.44553 | + | 0.954171i | 0.500000 | + | 0.866025i | −0.622305 | + | 0.359288i | −0.774780 | − | 1.54910i | 0.930527 | − | 1.61172i | − | 1.00000i | 1.17911 | + | 2.75857i | 0.718576 | |||
| 295.15 | −0.866025 | − | 0.500000i | 1.46455 | − | 0.924718i | 0.500000 | + | 0.866025i | −3.53299 | + | 2.03977i | −1.73069 | + | 0.0685558i | 0.189560 | − | 0.328327i | − | 1.00000i | 1.28979 | − | 2.70858i | 4.07955 | |||
| 295.16 | −0.866025 | − | 0.500000i | 1.55737 | − | 0.758019i | 0.500000 | + | 0.866025i | 0.313745 | − | 0.181141i | −1.72773 | − | 0.122222i | 1.42679 | − | 2.47128i | − | 1.00000i | 1.85081 | − | 2.36103i | −0.362282 | |||
| 295.17 | −0.866025 | − | 0.500000i | 1.64558 | + | 0.540424i | 0.500000 | + | 0.866025i | 3.09623 | − | 1.78761i | −1.15490 | − | 1.29081i | 0.750004 | − | 1.29904i | − | 1.00000i | 2.41588 | + | 1.77862i | −3.57521 | |||
| 295.18 | −0.866025 | − | 0.500000i | 1.72932 | + | 0.0971749i | 0.500000 | + | 0.866025i | −0.340064 | + | 0.196336i | −1.44905 | − | 0.948817i | −2.19539 | + | 3.80253i | − | 1.00000i | 2.98111 | + | 0.336093i | 0.392672 | |||
| 295.19 | 0.866025 | + | 0.500000i | −1.71655 | − | 0.231194i | 0.500000 | + | 0.866025i | 2.11882 | − | 1.22330i | −1.37098 | − | 1.05850i | −0.0163493 | + | 0.0283178i | 1.00000i | 2.89310 | + | 0.793714i | 2.44661 | ||||
| 295.20 | 0.866025 | + | 0.500000i | −1.66312 | + | 0.483784i | 0.500000 | + | 0.866025i | −0.0135176 | + | 0.00780437i | −1.68219 | − | 0.412588i | 0.114323 | − | 0.198014i | 1.00000i | 2.53191 | − | 1.60918i | −0.0156087 | ||||
| See all 72 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.c | even | 3 | 1 | inner |
| 37.b | even | 2 | 1 | inner |
| 333.q | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 666.2.q.b | ✓ | 72 |
| 3.b | odd | 2 | 1 | 1998.2.q.b | 72 | ||
| 9.c | even | 3 | 1 | inner | 666.2.q.b | ✓ | 72 |
| 9.d | odd | 6 | 1 | 1998.2.q.b | 72 | ||
| 37.b | even | 2 | 1 | inner | 666.2.q.b | ✓ | 72 |
| 111.d | odd | 2 | 1 | 1998.2.q.b | 72 | ||
| 333.n | odd | 6 | 1 | 1998.2.q.b | 72 | ||
| 333.q | even | 6 | 1 | inner | 666.2.q.b | ✓ | 72 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 666.2.q.b | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
| 666.2.q.b | ✓ | 72 | 9.c | even | 3 | 1 | inner |
| 666.2.q.b | ✓ | 72 | 37.b | even | 2 | 1 | inner |
| 666.2.q.b | ✓ | 72 | 333.q | even | 6 | 1 | inner |
| 1998.2.q.b | 72 | 3.b | odd | 2 | 1 | ||
| 1998.2.q.b | 72 | 9.d | odd | 6 | 1 | ||
| 1998.2.q.b | 72 | 111.d | odd | 2 | 1 | ||
| 1998.2.q.b | 72 | 333.n | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} - 116 T_{5}^{70} + 7428 T_{5}^{68} - 328096 T_{5}^{66} + 11036840 T_{5}^{64} + \cdots + 34828517376 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).