Newspace parameters
| Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 666.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31803677462\) |
| Analytic rank: | \(0\) |
| Dimension: | \(76\) |
| Relative dimension: | \(38\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 175.1 | − | 1.00000i | −1.70988 | − | 0.276261i | −1.00000 | − | 0.372969i | −0.276261 | + | 1.70988i | 0.0210491 | − | 0.0364581i | 1.00000i | 2.84736 | + | 0.944746i | −0.372969 | ||||||||
| 175.2 | − | 1.00000i | −1.63169 | + | 0.581033i | −1.00000 | − | 4.12550i | 0.581033 | + | 1.63169i | 1.24300 | − | 2.15294i | 1.00000i | 2.32480 | − | 1.89613i | −4.12550 | ||||||||
| 175.3 | − | 1.00000i | −1.52025 | + | 0.829972i | −1.00000 | 1.89632i | 0.829972 | + | 1.52025i | 1.11313 | − | 1.92800i | 1.00000i | 1.62229 | − | 2.52352i | 1.89632 | |||||||||
| 175.4 | − | 1.00000i | −1.46639 | − | 0.921793i | −1.00000 | 1.15671i | −0.921793 | + | 1.46639i | −1.84738 | + | 3.19976i | 1.00000i | 1.30060 | + | 2.70341i | 1.15671 | |||||||||
| 175.5 | − | 1.00000i | −1.36870 | + | 1.06145i | −1.00000 | 2.68401i | 1.06145 | + | 1.36870i | −1.22466 | + | 2.12118i | 1.00000i | 0.746656 | − | 2.90560i | 2.68401 | |||||||||
| 175.6 | − | 1.00000i | −0.831290 | − | 1.51953i | −1.00000 | 0.827506i | −1.51953 | + | 0.831290i | 0.240855 | − | 0.417173i | 1.00000i | −1.61792 | + | 2.52633i | 0.827506 | |||||||||
| 175.7 | − | 1.00000i | −0.617040 | + | 1.61841i | −1.00000 | − | 1.45509i | 1.61841 | + | 0.617040i | 0.0208867 | − | 0.0361769i | 1.00000i | −2.23852 | − | 1.99725i | −1.45509 | ||||||||
| 175.8 | − | 1.00000i | −0.428312 | − | 1.67826i | −1.00000 | 3.91841i | −1.67826 | + | 0.428312i | 1.32775 | − | 2.29973i | 1.00000i | −2.63310 | + | 1.43763i | 3.91841 | |||||||||
| 175.9 | − | 1.00000i | −0.0457663 | − | 1.73145i | −1.00000 | − | 3.78289i | −1.73145 | + | 0.0457663i | −1.89981 | + | 3.29056i | 1.00000i | −2.99581 | + | 0.158484i | −3.78289 | ||||||||
| 175.10 | − | 1.00000i | 0.0965604 | + | 1.72936i | −1.00000 | − | 2.20312i | 1.72936 | − | 0.0965604i | −0.875783 | + | 1.51690i | 1.00000i | −2.98135 | + | 0.333975i | −2.20312 | ||||||||
| 175.11 | − | 1.00000i | 0.168971 | + | 1.72379i | −1.00000 | 0.714822i | 1.72379 | − | 0.168971i | 2.58461 | − | 4.47667i | 1.00000i | −2.94290 | + | 0.582542i | 0.714822 | |||||||||
| 175.12 | − | 1.00000i | 0.346570 | − | 1.69702i | −1.00000 | 1.27879i | −1.69702 | − | 0.346570i | −2.25013 | + | 3.89734i | 1.00000i | −2.75978 | − | 1.17627i | 1.27879 | |||||||||
| 175.13 | − | 1.00000i | 0.973034 | − | 1.43290i | −1.00000 | − | 0.886006i | −1.43290 | − | 0.973034i | 1.19538 | − | 2.07046i | 1.00000i | −1.10641 | − | 2.78852i | −0.886006 | ||||||||
| 175.14 | − | 1.00000i | 1.29891 | + | 1.14579i | −1.00000 | − | 2.07510i | 1.14579 | − | 1.29891i | −1.46218 | + | 2.53257i | 1.00000i | 0.374317 | + | 2.97656i | −2.07510 | ||||||||
| 175.15 | − | 1.00000i | 1.36456 | + | 1.06676i | −1.00000 | 3.20544i | 1.06676 | − | 1.36456i | −1.70419 | + | 2.95174i | 1.00000i | 0.724027 | + | 2.91132i | 3.20544 | |||||||||
| 175.16 | − | 1.00000i | 1.47450 | − | 0.908769i | −1.00000 | 3.44654i | −0.908769 | − | 1.47450i | 0.240097 | − | 0.415860i | 1.00000i | 1.34828 | − | 2.67995i | 3.44654 | |||||||||
| 175.17 | − | 1.00000i | 1.60424 | − | 0.652996i | −1.00000 | − | 1.40631i | −0.652996 | − | 1.60424i | −0.841625 | + | 1.45774i | 1.00000i | 2.14719 | − | 2.09513i | −1.40631 | ||||||||
| 175.18 | − | 1.00000i | 1.61755 | + | 0.619290i | −1.00000 | 1.59205i | 0.619290 | − | 1.61755i | 1.63885 | − | 2.83857i | 1.00000i | 2.23296 | + | 2.00347i | 1.59205 | |||||||||
| 175.19 | − | 1.00000i | 1.67441 | + | 0.443112i | −1.00000 | − | 4.41362i | 0.443112 | − | 1.67441i | 1.98016 | − | 3.42973i | 1.00000i | 2.60730 | + | 1.48390i | −4.41362 | ||||||||
| 175.20 | 1.00000i | −1.72572 | + | 0.147954i | −1.00000 | − | 1.23967i | −0.147954 | − | 1.72572i | −1.37235 | + | 2.37697i | − | 1.00000i | 2.95622 | − | 0.510656i | 1.23967 | ||||||||
| See all 76 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 333.k | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 666.2.k.a | ✓ | 76 |
| 3.b | odd | 2 | 1 | 1998.2.k.a | 76 | ||
| 9.c | even | 3 | 1 | 666.2.t.a | yes | 76 | |
| 9.d | odd | 6 | 1 | 1998.2.t.a | 76 | ||
| 37.e | even | 6 | 1 | 666.2.t.a | yes | 76 | |
| 111.h | odd | 6 | 1 | 1998.2.t.a | 76 | ||
| 333.k | even | 6 | 1 | inner | 666.2.k.a | ✓ | 76 |
| 333.v | odd | 6 | 1 | 1998.2.k.a | 76 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 666.2.k.a | ✓ | 76 | 1.a | even | 1 | 1 | trivial |
| 666.2.k.a | ✓ | 76 | 333.k | even | 6 | 1 | inner |
| 666.2.t.a | yes | 76 | 9.c | even | 3 | 1 | |
| 666.2.t.a | yes | 76 | 37.e | even | 6 | 1 | |
| 1998.2.k.a | 76 | 3.b | odd | 2 | 1 | ||
| 1998.2.k.a | 76 | 333.v | odd | 6 | 1 | ||
| 1998.2.t.a | 76 | 9.d | odd | 6 | 1 | ||
| 1998.2.t.a | 76 | 111.h | odd | 6 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(666, [\chi])\).