Newspace parameters
| Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 666.h (of order \(3\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31803677462\) |
| Analytic rank: | \(0\) |
| Dimension: | \(38\) |
| Relative dimension: | \(19\) over \(\Q(\zeta_{3})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 121.1 | 1.00000 | −1.72390 | + | 0.167877i | 1.00000 | −3.70230 | −1.72390 | + | 0.167877i | −0.330849 | + | 0.573047i | 1.00000 | 2.94363 | − | 0.578805i | −3.70230 | ||||||||||
| 121.2 | 1.00000 | −1.68864 | + | 0.385344i | 1.00000 | 3.96916 | −1.68864 | + | 0.385344i | 1.05023 | − | 1.81906i | 1.00000 | 2.70302 | − | 1.30142i | 3.96916 | ||||||||||
| 121.3 | 1.00000 | −1.61518 | − | 0.625457i | 1.00000 | 2.52032 | −1.61518 | − | 0.625457i | −1.45985 | + | 2.52854i | 1.00000 | 2.21761 | + | 2.02045i | 2.52032 | ||||||||||
| 121.4 | 1.00000 | −1.34882 | + | 1.08659i | 1.00000 | −0.495406 | −1.34882 | + | 1.08659i | −2.03036 | + | 3.51669i | 1.00000 | 0.638625 | − | 2.93124i | −0.495406 | ||||||||||
| 121.5 | 1.00000 | −1.12306 | − | 1.31861i | 1.00000 | 0.457071 | −1.12306 | − | 1.31861i | 2.24881 | − | 3.89506i | 1.00000 | −0.477485 | + | 2.96176i | 0.457071 | ||||||||||
| 121.6 | 1.00000 | −1.09407 | − | 1.34276i | 1.00000 | −2.22000 | −1.09407 | − | 1.34276i | −0.959017 | + | 1.66107i | 1.00000 | −0.606007 | + | 2.93816i | −2.22000 | ||||||||||
| 121.7 | 1.00000 | −1.07244 | + | 1.36010i | 1.00000 | 1.22505 | −1.07244 | + | 1.36010i | 1.29500 | − | 2.24301i | 1.00000 | −0.699738 | − | 2.91725i | 1.22505 | ||||||||||
| 121.8 | 1.00000 | −0.543399 | + | 1.64460i | 1.00000 | −3.51311 | −0.543399 | + | 1.64460i | 2.20815 | − | 3.82462i | 1.00000 | −2.40943 | − | 1.78735i | −3.51311 | ||||||||||
| 121.9 | 1.00000 | −0.367479 | − | 1.69262i | 1.00000 | −2.43204 | −0.367479 | − | 1.69262i | −0.0737984 | + | 0.127823i | 1.00000 | −2.72992 | + | 1.24400i | −2.43204 | ||||||||||
| 121.10 | 1.00000 | −0.266458 | − | 1.71143i | 1.00000 | 2.46736 | −0.266458 | − | 1.71143i | −0.202832 | + | 0.351316i | 1.00000 | −2.85800 | + | 0.912048i | 2.46736 | ||||||||||
| 121.11 | 1.00000 | −0.124130 | + | 1.72760i | 1.00000 | 1.34325 | −0.124130 | + | 1.72760i | −0.00815087 | + | 0.0141177i | 1.00000 | −2.96918 | − | 0.428893i | 1.34325 | ||||||||||
| 121.12 | 1.00000 | 0.600169 | + | 1.62475i | 1.00000 | −2.29481 | 0.600169 | + | 1.62475i | −1.88616 | + | 3.26692i | 1.00000 | −2.27960 | + | 1.95024i | −2.29481 | ||||||||||
| 121.13 | 1.00000 | 0.725216 | − | 1.57292i | 1.00000 | −1.02077 | 0.725216 | − | 1.57292i | 0.251154 | − | 0.435011i | 1.00000 | −1.94812 | − | 2.28141i | −1.02077 | ||||||||||
| 121.14 | 1.00000 | 1.13949 | + | 1.30444i | 1.00000 | 2.72110 | 1.13949 | + | 1.30444i | −0.0957449 | + | 0.165835i | 1.00000 | −0.403115 | + | 2.97279i | 2.72110 | ||||||||||
| 121.15 | 1.00000 | 1.30864 | − | 1.13466i | 1.00000 | 0.219776 | 1.30864 | − | 1.13466i | 1.50224 | − | 2.60196i | 1.00000 | 0.425075 | − | 2.96973i | 0.219776 | ||||||||||
| 121.16 | 1.00000 | 1.34292 | + | 1.09388i | 1.00000 | −2.55391 | 1.34292 | + | 1.09388i | 1.70038 | − | 2.94514i | 1.00000 | 0.606853 | + | 2.93798i | −2.55391 | ||||||||||
| 121.17 | 1.00000 | 1.38847 | − | 1.03545i | 1.00000 | 2.81288 | 1.38847 | − | 1.03545i | −1.72500 | + | 2.98779i | 1.00000 | 0.855671 | − | 2.87538i | 2.81288 | ||||||||||
| 121.18 | 1.00000 | 1.73083 | + | 0.0651450i | 1.00000 | 0.204308 | 1.73083 | + | 0.0651450i | 1.30647 | − | 2.26288i | 1.00000 | 2.99151 | + | 0.225509i | 0.204308 | ||||||||||
| 121.19 | 1.00000 | 1.73185 | − | 0.0264065i | 1.00000 | −1.70793 | 1.73185 | − | 0.0264065i | −2.29068 | + | 3.96757i | 1.00000 | 2.99861 | − | 0.0914641i | −1.70793 | ||||||||||
| 655.1 | 1.00000 | −1.72390 | − | 0.167877i | 1.00000 | −3.70230 | −1.72390 | − | 0.167877i | −0.330849 | − | 0.573047i | 1.00000 | 2.94363 | + | 0.578805i | −3.70230 | ||||||||||
| See all 38 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 333.h | even | 3 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 666.2.h.c | yes | 38 |
| 3.b | odd | 2 | 1 | 1998.2.h.c | 38 | ||
| 9.c | even | 3 | 1 | 666.2.g.c | ✓ | 38 | |
| 9.d | odd | 6 | 1 | 1998.2.g.c | 38 | ||
| 37.c | even | 3 | 1 | 666.2.g.c | ✓ | 38 | |
| 111.i | odd | 6 | 1 | 1998.2.g.c | 38 | ||
| 333.h | even | 3 | 1 | inner | 666.2.h.c | yes | 38 |
| 333.l | odd | 6 | 1 | 1998.2.h.c | 38 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 666.2.g.c | ✓ | 38 | 9.c | even | 3 | 1 | |
| 666.2.g.c | ✓ | 38 | 37.c | even | 3 | 1 | |
| 666.2.h.c | yes | 38 | 1.a | even | 1 | 1 | trivial |
| 666.2.h.c | yes | 38 | 333.h | even | 3 | 1 | inner |
| 1998.2.g.c | 38 | 9.d | odd | 6 | 1 | ||
| 1998.2.g.c | 38 | 111.i | odd | 6 | 1 | ||
| 1998.2.h.c | 38 | 3.b | odd | 2 | 1 | ||
| 1998.2.h.c | 38 | 333.l | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{19} + 2 T_{5}^{18} - 48 T_{5}^{17} - 94 T_{5}^{16} + 928 T_{5}^{15} + 1755 T_{5}^{14} + \cdots + 2268 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).