Newspace parameters
| Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 666.g (of order \(3\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31803677462\) |
| Analytic rank: | \(0\) |
| Dimension: | \(38\) |
| Relative dimension: | \(19\) over \(\Q(\zeta_{3})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 211.1 | −0.500000 | + | 0.866025i | −1.72479 | + | 0.158402i | −0.500000 | − | 0.866025i | 0.510385 | + | 0.884013i | 0.725216 | − | 1.57292i | −0.502308 | 1.00000 | 2.94982 | − | 0.546423i | −1.02077 | ||||||
| 211.2 | −0.500000 | + | 0.866025i | −1.63697 | − | 0.565983i | −0.500000 | − | 0.866025i | −0.109888 | − | 0.190332i | 1.30864 | − | 1.13466i | −3.00448 | 1.00000 | 2.35933 | + | 1.85299i | 0.219776 | ||||||
| 211.3 | −0.500000 | + | 0.866025i | −1.59096 | − | 0.684719i | −0.500000 | − | 0.866025i | −1.40644 | − | 2.43602i | 1.38847 | − | 1.03545i | 3.45000 | 1.00000 | 2.06232 | + | 2.17872i | 2.81288 | ||||||
| 211.4 | −0.500000 | + | 0.866025i | −1.34892 | + | 1.08648i | −0.500000 | − | 0.866025i | −1.23368 | − | 2.13679i | −0.266458 | − | 1.71143i | 0.405665 | 1.00000 | 0.639143 | − | 2.93113i | 2.46736 | ||||||
| 211.5 | −0.500000 | + | 0.866025i | −1.28211 | + | 1.16456i | −0.500000 | − | 0.866025i | 1.21602 | + | 2.10621i | −0.367479 | − | 1.69262i | 0.147597 | 1.00000 | 0.287621 | − | 2.98618i | −2.43204 | ||||||
| 211.6 | −0.500000 | + | 0.866025i | −0.888793 | − | 1.48662i | −0.500000 | − | 0.866025i | 0.853967 | + | 1.47911i | 1.73185 | − | 0.0264065i | 4.58135 | 1.00000 | −1.42009 | + | 2.64260i | −1.70793 | ||||||
| 211.7 | −0.500000 | + | 0.866025i | −0.808995 | − | 1.53151i | −0.500000 | − | 0.866025i | −0.102154 | − | 0.176936i | 1.73083 | + | 0.0651450i | −2.61295 | 1.00000 | −1.69105 | + | 2.47797i | 0.204308 | ||||||
| 211.8 | −0.500000 | + | 0.866025i | −0.615827 | + | 1.61888i | −0.500000 | − | 0.866025i | 1.11000 | + | 1.92257i | −1.09407 | − | 1.34276i | 1.91803 | 1.00000 | −2.24151 | − | 1.99389i | −2.22000 | ||||||
| 211.9 | −0.500000 | + | 0.866025i | −0.580424 | + | 1.63190i | −0.500000 | − | 0.866025i | −0.228535 | − | 0.395835i | −1.12306 | − | 1.31861i | −4.49762 | 1.00000 | −2.32622 | − | 1.89439i | 0.457071 | ||||||
| 211.10 | −0.500000 | + | 0.866025i | 0.265927 | + | 1.71151i | −0.500000 | − | 0.866025i | −1.26016 | − | 2.18266i | −1.61518 | − | 0.625457i | 2.91970 | 1.00000 | −2.85857 | + | 0.910277i | 2.52032 | ||||||
| 211.11 | −0.500000 | + | 0.866025i | 0.275869 | − | 1.70994i | −0.500000 | − | 0.866025i | 1.27695 | + | 2.21175i | 1.34292 | + | 1.09388i | −3.40076 | 1.00000 | −2.84779 | − | 0.943440i | −2.55391 | ||||||
| 211.12 | −0.500000 | + | 0.866025i | 0.559930 | − | 1.63905i | −0.500000 | − | 0.866025i | −1.36055 | − | 2.35654i | 1.13949 | + | 1.30444i | 0.191490 | 1.00000 | −2.37296 | − | 1.83550i | 2.72110 | ||||||
| 211.13 | −0.500000 | + | 0.866025i | 1.00733 | + | 1.40900i | −0.500000 | − | 0.866025i | 1.85115 | + | 3.20629i | −1.72390 | + | 0.167877i | 0.661698 | 1.00000 | −0.970558 | + | 2.83866i | −3.70230 | ||||||
| 211.14 | −0.500000 | + | 0.866025i | 1.10699 | − | 1.33213i | −0.500000 | − | 0.866025i | 1.14740 | + | 1.98736i | 0.600169 | + | 1.62475i | 3.77231 | 1.00000 | −0.549162 | − | 2.94931i | −2.29481 | ||||||
| 211.15 | −0.500000 | + | 0.866025i | 1.17804 | + | 1.26973i | −0.500000 | − | 0.866025i | −1.98458 | − | 3.43739i | −1.68864 | + | 0.385344i | −2.10047 | 1.00000 | −0.224452 | + | 2.99159i | 3.96916 | ||||||
| 211.16 | −0.500000 | + | 0.866025i | 1.55821 | − | 0.756299i | −0.500000 | − | 0.866025i | −0.671627 | − | 1.16329i | −0.124130 | + | 1.72760i | 0.0163017 | 1.00000 | 1.85602 | − | 2.35694i | 1.34325 | ||||||
| 211.17 | −0.500000 | + | 0.866025i | 1.61543 | + | 0.624814i | −0.500000 | − | 0.866025i | 0.247703 | + | 0.429034i | −1.34882 | + | 1.08659i | 4.06073 | 1.00000 | 2.21921 | + | 2.01868i | −0.495406 | ||||||
| 211.18 | −0.500000 | + | 0.866025i | 1.69597 | − | 0.351704i | −0.500000 | − | 0.866025i | 1.75655 | + | 3.04244i | −0.543399 | + | 1.64460i | −4.41629 | 1.00000 | 2.75261 | − | 1.19296i | −3.51311 | ||||||
| 211.19 | −0.500000 | + | 0.866025i | 1.71410 | + | 0.248712i | −0.500000 | − | 0.866025i | −0.612527 | − | 1.06093i | −1.07244 | + | 1.36010i | −2.59000 | 1.00000 | 2.87628 | + | 0.852635i | 1.22505 | ||||||
| 565.1 | −0.500000 | − | 0.866025i | −1.72479 | − | 0.158402i | −0.500000 | + | 0.866025i | 0.510385 | − | 0.884013i | 0.725216 | + | 1.57292i | −0.502308 | 1.00000 | 2.94982 | + | 0.546423i | −1.02077 | ||||||
| See all 38 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 333.g | even | 3 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 666.2.g.c | ✓ | 38 |
| 3.b | odd | 2 | 1 | 1998.2.g.c | 38 | ||
| 9.c | even | 3 | 1 | 666.2.h.c | yes | 38 | |
| 9.d | odd | 6 | 1 | 1998.2.h.c | 38 | ||
| 37.c | even | 3 | 1 | 666.2.h.c | yes | 38 | |
| 111.i | odd | 6 | 1 | 1998.2.h.c | 38 | ||
| 333.g | even | 3 | 1 | inner | 666.2.g.c | ✓ | 38 |
| 333.u | odd | 6 | 1 | 1998.2.g.c | 38 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 666.2.g.c | ✓ | 38 | 1.a | even | 1 | 1 | trivial |
| 666.2.g.c | ✓ | 38 | 333.g | even | 3 | 1 | inner |
| 666.2.h.c | yes | 38 | 9.c | even | 3 | 1 | |
| 666.2.h.c | yes | 38 | 37.c | even | 3 | 1 | |
| 1998.2.g.c | 38 | 3.b | odd | 2 | 1 | ||
| 1998.2.g.c | 38 | 333.u | odd | 6 | 1 | ||
| 1998.2.h.c | 38 | 9.d | odd | 6 | 1 | ||
| 1998.2.h.c | 38 | 111.i | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{38} - 2 T_{5}^{37} + 52 T_{5}^{36} - 92 T_{5}^{35} + 1564 T_{5}^{34} - 2555 T_{5}^{33} + \cdots + 5143824 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).