Newspace parameters
| Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 666.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.31803677462\) |
| Analytic rank: | \(0\) |
| Dimension: | \(22\) |
| Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 223.1 | 0.500000 | − | 0.866025i | −1.67730 | − | 0.432045i | −0.500000 | − | 0.866025i | −1.28024 | − | 2.21744i | −1.21281 | + | 1.23656i | −1.14205 | + | 1.97809i | −1.00000 | 2.62668 | + | 1.44934i | −2.56048 | ||||
| 223.2 | 0.500000 | − | 0.866025i | −1.53708 | + | 0.798365i | −0.500000 | − | 0.866025i | 1.54068 | + | 2.66854i | −0.0771356 | + | 1.73033i | −1.98771 | + | 3.44281i | −1.00000 | 1.72523 | − | 2.45430i | 3.08137 | ||||
| 223.3 | 0.500000 | − | 0.866025i | −1.37289 | − | 1.05602i | −0.500000 | − | 0.866025i | 1.74283 | + | 3.01866i | −1.60098 | + | 0.660945i | 1.12153 | − | 1.94254i | −1.00000 | 0.769638 | + | 2.89960i | 3.48565 | ||||
| 223.4 | 0.500000 | − | 0.866025i | −1.25796 | + | 1.19060i | −0.500000 | − | 0.866025i | −1.61947 | − | 2.80500i | 0.402106 | + | 1.68473i | 2.18497 | − | 3.78448i | −1.00000 | 0.164952 | − | 2.99546i | −3.23894 | ||||
| 223.5 | 0.500000 | − | 0.866025i | −0.924201 | − | 1.46487i | −0.500000 | − | 0.866025i | 1.28880 | + | 2.23226i | −1.73072 | + | 0.0679447i | −1.87984 | + | 3.25598i | −1.00000 | −1.29171 | + | 2.70767i | 2.57759 | ||||
| 223.6 | 0.500000 | − | 0.866025i | −0.309813 | + | 1.70412i | −0.500000 | − | 0.866025i | −0.646008 | − | 1.11892i | 1.32090 | + | 1.12036i | −0.189687 | + | 0.328547i | −1.00000 | −2.80803 | − | 1.05592i | −1.29202 | ||||
| 223.7 | 0.500000 | − | 0.866025i | 0.546833 | − | 1.64346i | −0.500000 | − | 0.866025i | 0.961530 | + | 1.66542i | −1.14986 | − | 1.29530i | 2.14544 | − | 3.71602i | −1.00000 | −2.40195 | − | 1.79740i | 1.92306 | ||||
| 223.8 | 0.500000 | − | 0.866025i | 0.690057 | − | 1.58865i | −0.500000 | − | 0.866025i | 0.294009 | + | 0.509238i | −1.03079 | − | 1.39193i | −0.187265 | + | 0.324353i | −1.00000 | −2.04764 | − | 2.19252i | 0.588018 | ||||
| 223.9 | 0.500000 | − | 0.866025i | 0.994972 | + | 1.41776i | −0.500000 | − | 0.866025i | 0.132922 | + | 0.230227i | 1.72530 | − | 0.152794i | 1.42395 | − | 2.46635i | −1.00000 | −1.02006 | + | 2.82125i | 0.265844 | ||||
| 223.10 | 0.500000 | − | 0.866025i | 1.21435 | − | 1.23506i | −0.500000 | − | 0.866025i | −1.99108 | − | 3.44865i | −0.462416 | − | 1.66918i | −1.37418 | + | 2.38014i | −1.00000 | −0.0507255 | − | 2.99957i | −3.98216 | ||||
| 223.11 | 0.500000 | − | 0.866025i | 1.63304 | + | 0.577226i | −0.500000 | − | 0.866025i | 0.0760328 | + | 0.131693i | 1.31641 | − | 1.12564i | −2.61516 | + | 4.52959i | −1.00000 | 2.33362 | + | 1.88526i | 0.152066 | ||||
| 445.1 | 0.500000 | + | 0.866025i | −1.67730 | + | 0.432045i | −0.500000 | + | 0.866025i | −1.28024 | + | 2.21744i | −1.21281 | − | 1.23656i | −1.14205 | − | 1.97809i | −1.00000 | 2.62668 | − | 1.44934i | −2.56048 | ||||
| 445.2 | 0.500000 | + | 0.866025i | −1.53708 | − | 0.798365i | −0.500000 | + | 0.866025i | 1.54068 | − | 2.66854i | −0.0771356 | − | 1.73033i | −1.98771 | − | 3.44281i | −1.00000 | 1.72523 | + | 2.45430i | 3.08137 | ||||
| 445.3 | 0.500000 | + | 0.866025i | −1.37289 | + | 1.05602i | −0.500000 | + | 0.866025i | 1.74283 | − | 3.01866i | −1.60098 | − | 0.660945i | 1.12153 | + | 1.94254i | −1.00000 | 0.769638 | − | 2.89960i | 3.48565 | ||||
| 445.4 | 0.500000 | + | 0.866025i | −1.25796 | − | 1.19060i | −0.500000 | + | 0.866025i | −1.61947 | + | 2.80500i | 0.402106 | − | 1.68473i | 2.18497 | + | 3.78448i | −1.00000 | 0.164952 | + | 2.99546i | −3.23894 | ||||
| 445.5 | 0.500000 | + | 0.866025i | −0.924201 | + | 1.46487i | −0.500000 | + | 0.866025i | 1.28880 | − | 2.23226i | −1.73072 | − | 0.0679447i | −1.87984 | − | 3.25598i | −1.00000 | −1.29171 | − | 2.70767i | 2.57759 | ||||
| 445.6 | 0.500000 | + | 0.866025i | −0.309813 | − | 1.70412i | −0.500000 | + | 0.866025i | −0.646008 | + | 1.11892i | 1.32090 | − | 1.12036i | −0.189687 | − | 0.328547i | −1.00000 | −2.80803 | + | 1.05592i | −1.29202 | ||||
| 445.7 | 0.500000 | + | 0.866025i | 0.546833 | + | 1.64346i | −0.500000 | + | 0.866025i | 0.961530 | − | 1.66542i | −1.14986 | + | 1.29530i | 2.14544 | + | 3.71602i | −1.00000 | −2.40195 | + | 1.79740i | 1.92306 | ||||
| 445.8 | 0.500000 | + | 0.866025i | 0.690057 | + | 1.58865i | −0.500000 | + | 0.866025i | 0.294009 | − | 0.509238i | −1.03079 | + | 1.39193i | −0.187265 | − | 0.324353i | −1.00000 | −2.04764 | + | 2.19252i | 0.588018 | ||||
| 445.9 | 0.500000 | + | 0.866025i | 0.994972 | − | 1.41776i | −0.500000 | + | 0.866025i | 0.132922 | − | 0.230227i | 1.72530 | + | 0.152794i | 1.42395 | + | 2.46635i | −1.00000 | −1.02006 | − | 2.82125i | 0.265844 | ||||
| See all 22 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.c | even | 3 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 666.2.e.f | ✓ | 22 |
| 3.b | odd | 2 | 1 | 1998.2.e.f | 22 | ||
| 9.c | even | 3 | 1 | inner | 666.2.e.f | ✓ | 22 |
| 9.c | even | 3 | 1 | 5994.2.a.bc | 11 | ||
| 9.d | odd | 6 | 1 | 1998.2.e.f | 22 | ||
| 9.d | odd | 6 | 1 | 5994.2.a.bd | 11 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 666.2.e.f | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
| 666.2.e.f | ✓ | 22 | 9.c | even | 3 | 1 | inner |
| 1998.2.e.f | 22 | 3.b | odd | 2 | 1 | ||
| 1998.2.e.f | 22 | 9.d | odd | 6 | 1 | ||
| 5994.2.a.bc | 11 | 9.c | even | 3 | 1 | ||
| 5994.2.a.bd | 11 | 9.d | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{22} - T_{5}^{21} + 34 T_{5}^{20} - 47 T_{5}^{19} + 767 T_{5}^{18} - 1088 T_{5}^{17} + 10146 T_{5}^{16} + \cdots + 2916 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).