Properties

Label 666.2.e.f
Level $666$
Weight $2$
Character orbit 666.e
Analytic conductor $5.318$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(223,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22 q + 11 q^{2} - 4 q^{3} - 11 q^{4} + q^{5} - 5 q^{6} - 5 q^{7} - 22 q^{8} - 4 q^{9} + 2 q^{10} - 2 q^{11} - q^{12} + q^{13} + 5 q^{14} + 9 q^{15} - 11 q^{16} - 24 q^{17} - 5 q^{18} + 20 q^{19} + q^{20}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
223.1 0.500000 0.866025i −1.67730 0.432045i −0.500000 0.866025i −1.28024 2.21744i −1.21281 + 1.23656i −1.14205 + 1.97809i −1.00000 2.62668 + 1.44934i −2.56048
223.2 0.500000 0.866025i −1.53708 + 0.798365i −0.500000 0.866025i 1.54068 + 2.66854i −0.0771356 + 1.73033i −1.98771 + 3.44281i −1.00000 1.72523 2.45430i 3.08137
223.3 0.500000 0.866025i −1.37289 1.05602i −0.500000 0.866025i 1.74283 + 3.01866i −1.60098 + 0.660945i 1.12153 1.94254i −1.00000 0.769638 + 2.89960i 3.48565
223.4 0.500000 0.866025i −1.25796 + 1.19060i −0.500000 0.866025i −1.61947 2.80500i 0.402106 + 1.68473i 2.18497 3.78448i −1.00000 0.164952 2.99546i −3.23894
223.5 0.500000 0.866025i −0.924201 1.46487i −0.500000 0.866025i 1.28880 + 2.23226i −1.73072 + 0.0679447i −1.87984 + 3.25598i −1.00000 −1.29171 + 2.70767i 2.57759
223.6 0.500000 0.866025i −0.309813 + 1.70412i −0.500000 0.866025i −0.646008 1.11892i 1.32090 + 1.12036i −0.189687 + 0.328547i −1.00000 −2.80803 1.05592i −1.29202
223.7 0.500000 0.866025i 0.546833 1.64346i −0.500000 0.866025i 0.961530 + 1.66542i −1.14986 1.29530i 2.14544 3.71602i −1.00000 −2.40195 1.79740i 1.92306
223.8 0.500000 0.866025i 0.690057 1.58865i −0.500000 0.866025i 0.294009 + 0.509238i −1.03079 1.39193i −0.187265 + 0.324353i −1.00000 −2.04764 2.19252i 0.588018
223.9 0.500000 0.866025i 0.994972 + 1.41776i −0.500000 0.866025i 0.132922 + 0.230227i 1.72530 0.152794i 1.42395 2.46635i −1.00000 −1.02006 + 2.82125i 0.265844
223.10 0.500000 0.866025i 1.21435 1.23506i −0.500000 0.866025i −1.99108 3.44865i −0.462416 1.66918i −1.37418 + 2.38014i −1.00000 −0.0507255 2.99957i −3.98216
223.11 0.500000 0.866025i 1.63304 + 0.577226i −0.500000 0.866025i 0.0760328 + 0.131693i 1.31641 1.12564i −2.61516 + 4.52959i −1.00000 2.33362 + 1.88526i 0.152066
445.1 0.500000 + 0.866025i −1.67730 + 0.432045i −0.500000 + 0.866025i −1.28024 + 2.21744i −1.21281 1.23656i −1.14205 1.97809i −1.00000 2.62668 1.44934i −2.56048
445.2 0.500000 + 0.866025i −1.53708 0.798365i −0.500000 + 0.866025i 1.54068 2.66854i −0.0771356 1.73033i −1.98771 3.44281i −1.00000 1.72523 + 2.45430i 3.08137
445.3 0.500000 + 0.866025i −1.37289 + 1.05602i −0.500000 + 0.866025i 1.74283 3.01866i −1.60098 0.660945i 1.12153 + 1.94254i −1.00000 0.769638 2.89960i 3.48565
445.4 0.500000 + 0.866025i −1.25796 1.19060i −0.500000 + 0.866025i −1.61947 + 2.80500i 0.402106 1.68473i 2.18497 + 3.78448i −1.00000 0.164952 + 2.99546i −3.23894
445.5 0.500000 + 0.866025i −0.924201 + 1.46487i −0.500000 + 0.866025i 1.28880 2.23226i −1.73072 0.0679447i −1.87984 3.25598i −1.00000 −1.29171 2.70767i 2.57759
445.6 0.500000 + 0.866025i −0.309813 1.70412i −0.500000 + 0.866025i −0.646008 + 1.11892i 1.32090 1.12036i −0.189687 0.328547i −1.00000 −2.80803 + 1.05592i −1.29202
445.7 0.500000 + 0.866025i 0.546833 + 1.64346i −0.500000 + 0.866025i 0.961530 1.66542i −1.14986 + 1.29530i 2.14544 + 3.71602i −1.00000 −2.40195 + 1.79740i 1.92306
445.8 0.500000 + 0.866025i 0.690057 + 1.58865i −0.500000 + 0.866025i 0.294009 0.509238i −1.03079 + 1.39193i −0.187265 0.324353i −1.00000 −2.04764 + 2.19252i 0.588018
445.9 0.500000 + 0.866025i 0.994972 1.41776i −0.500000 + 0.866025i 0.132922 0.230227i 1.72530 + 0.152794i 1.42395 + 2.46635i −1.00000 −1.02006 2.82125i 0.265844
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 223.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.e.f 22
3.b odd 2 1 1998.2.e.f 22
9.c even 3 1 inner 666.2.e.f 22
9.c even 3 1 5994.2.a.bc 11
9.d odd 6 1 1998.2.e.f 22
9.d odd 6 1 5994.2.a.bd 11
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
666.2.e.f 22 1.a even 1 1 trivial
666.2.e.f 22 9.c even 3 1 inner
1998.2.e.f 22 3.b odd 2 1
1998.2.e.f 22 9.d odd 6 1
5994.2.a.bc 11 9.c even 3 1
5994.2.a.bd 11 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{22} - T_{5}^{21} + 34 T_{5}^{20} - 47 T_{5}^{19} + 767 T_{5}^{18} - 1088 T_{5}^{17} + 10146 T_{5}^{16} + \cdots + 2916 \) acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\). Copy content Toggle raw display