Properties

Label 666.2.e.d.223.7
Level $666$
Weight $2$
Character 666.223
Analytic conductor $5.318$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(223,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 21x^{12} + 119x^{10} + 272x^{8} + 283x^{6} + 143x^{4} + 34x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 223.7
Root \(1.87343i\) of defining polynomial
Character \(\chi\) \(=\) 666.223
Dual form 666.2.e.d.445.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.72951 + 0.0937946i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.962268 - 1.66670i) q^{5} +(0.945983 - 1.45090i) q^{6} +(1.29333 - 2.24011i) q^{7} -1.00000 q^{8} +(2.98241 + 0.324437i) q^{9} -1.92454 q^{10} +(-0.402694 + 0.697486i) q^{11} +(-0.783526 - 1.54470i) q^{12} +(-1.05799 - 1.83249i) q^{13} +(-1.29333 - 2.24011i) q^{14} +(-1.50792 - 2.97282i) q^{15} +(-0.500000 + 0.866025i) q^{16} -2.29698 q^{17} +(1.77217 - 2.42062i) q^{18} +0.553500 q^{19} +(-0.962268 + 1.66670i) q^{20} +(2.44693 - 3.75298i) q^{21} +(0.402694 + 0.697486i) q^{22} +(1.58699 + 2.74875i) q^{23} +(-1.72951 - 0.0937946i) q^{24} +(0.648079 - 1.12251i) q^{25} -2.11598 q^{26} +(5.12767 + 0.840851i) q^{27} -2.58665 q^{28} +(-0.936182 + 1.62151i) q^{29} +(-3.32850 - 0.180511i) q^{30} +(-1.31576 - 2.27896i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.761883 + 1.16854i) q^{33} +(-1.14849 + 1.98924i) q^{34} -4.97811 q^{35} +(-1.21023 - 2.74506i) q^{36} -1.00000 q^{37} +(0.276750 - 0.479345i) q^{38} +(-1.65793 - 3.26855i) q^{39} +(0.962268 + 1.66670i) q^{40} +(0.279742 + 0.484528i) q^{41} +(-2.02671 - 3.99560i) q^{42} +(2.42736 - 4.20431i) q^{43} +0.805387 q^{44} +(-2.32914 - 5.28296i) q^{45} +3.17399 q^{46} +(-1.08331 + 1.87634i) q^{47} +(-0.945983 + 1.45090i) q^{48} +(0.154608 + 0.267789i) q^{49} +(-0.648079 - 1.12251i) q^{50} +(-3.97264 - 0.215444i) q^{51} +(-1.05799 + 1.83249i) q^{52} +4.37849 q^{53} +(3.29203 - 4.02026i) q^{54} +1.55000 q^{55} +(-1.29333 + 2.24011i) q^{56} +(0.957283 + 0.0519153i) q^{57} +(0.936182 + 1.62151i) q^{58} +(5.87961 + 10.1838i) q^{59} +(-1.82058 + 2.79231i) q^{60} +(2.87631 - 4.98192i) q^{61} -2.63151 q^{62} +(4.58400 - 6.26131i) q^{63} +1.00000 q^{64} +(-2.03614 + 3.52670i) q^{65} +(0.631042 + 1.24408i) q^{66} +(3.97077 + 6.87757i) q^{67} +(1.14849 + 1.98924i) q^{68} +(2.48690 + 4.90285i) q^{69} +(-2.48906 + 4.31117i) q^{70} +3.33204 q^{71} +(-2.98241 - 0.324437i) q^{72} +2.44405 q^{73} +(-0.500000 + 0.866025i) q^{74} +(1.22614 - 1.88060i) q^{75} +(-0.276750 - 0.479345i) q^{76} +(1.04163 + 1.80416i) q^{77} +(-3.65961 - 0.198468i) q^{78} +(4.22347 - 7.31527i) q^{79} +1.92454 q^{80} +(8.78948 + 1.93521i) q^{81} +0.559485 q^{82} +(-6.97791 + 12.0861i) q^{83} +(-4.47364 - 0.242614i) q^{84} +(2.21031 + 3.82837i) q^{85} +(-2.42736 - 4.20431i) q^{86} +(-1.77122 + 2.71662i) q^{87} +(0.402694 - 0.697486i) q^{88} -0.682322 q^{89} +(-5.73975 - 0.624391i) q^{90} -5.47331 q^{91} +(1.58699 - 2.74875i) q^{92} +(-2.06186 - 4.06488i) q^{93} +(1.08331 + 1.87634i) q^{94} +(-0.532615 - 0.922517i) q^{95} +(0.783526 + 1.54470i) q^{96} +(-5.61514 + 9.72570i) q^{97} +0.309216 q^{98} +(-1.42729 + 1.94954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 7 q^{2} - q^{3} - 7 q^{4} - 3 q^{5} - 2 q^{6} + 3 q^{7} - 14 q^{8} - q^{9} - 6 q^{10} - q^{11} - q^{12} + 9 q^{13} - 3 q^{14} - q^{15} - 7 q^{16} + 18 q^{17} + q^{18} - 26 q^{19} - 3 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.72951 + 0.0937946i 0.998533 + 0.0541523i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.962268 1.66670i −0.430339 0.745370i 0.566563 0.824018i \(-0.308273\pi\)
−0.996902 + 0.0786486i \(0.974939\pi\)
\(6\) 0.945983 1.45090i 0.386196 0.592328i
\(7\) 1.29333 2.24011i 0.488832 0.846682i −0.511086 0.859530i \(-0.670756\pi\)
0.999917 + 0.0128482i \(0.00408983\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.98241 + 0.324437i 0.994135 + 0.108146i
\(10\) −1.92454 −0.608592
\(11\) −0.402694 + 0.697486i −0.121417 + 0.210300i −0.920327 0.391151i \(-0.872077\pi\)
0.798910 + 0.601451i \(0.205410\pi\)
\(12\) −0.783526 1.54470i −0.226185 0.445915i
\(13\) −1.05799 1.83249i −0.293434 0.508242i 0.681186 0.732111i \(-0.261465\pi\)
−0.974619 + 0.223869i \(0.928131\pi\)
\(14\) −1.29333 2.24011i −0.345656 0.598694i
\(15\) −1.50792 2.97282i −0.389345 0.767580i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.29698 −0.557099 −0.278549 0.960422i \(-0.589854\pi\)
−0.278549 + 0.960422i \(0.589854\pi\)
\(18\) 1.77217 2.42062i 0.417705 0.570546i
\(19\) 0.553500 0.126982 0.0634908 0.997982i \(-0.479777\pi\)
0.0634908 + 0.997982i \(0.479777\pi\)
\(20\) −0.962268 + 1.66670i −0.215170 + 0.372685i
\(21\) 2.44693 3.75298i 0.533964 0.818968i
\(22\) 0.402694 + 0.697486i 0.0858546 + 0.148704i
\(23\) 1.58699 + 2.74875i 0.330911 + 0.573155i 0.982691 0.185254i \(-0.0593107\pi\)
−0.651780 + 0.758408i \(0.725977\pi\)
\(24\) −1.72951 0.0937946i −0.353035 0.0191457i
\(25\) 0.648079 1.12251i 0.129616 0.224501i
\(26\) −2.11598 −0.414978
\(27\) 5.12767 + 0.840851i 0.986820 + 0.161822i
\(28\) −2.58665 −0.488832
\(29\) −0.936182 + 1.62151i −0.173845 + 0.301108i −0.939761 0.341833i \(-0.888952\pi\)
0.765916 + 0.642940i \(0.222286\pi\)
\(30\) −3.32850 0.180511i −0.607699 0.0329567i
\(31\) −1.31576 2.27896i −0.236317 0.409312i 0.723338 0.690494i \(-0.242607\pi\)
−0.959655 + 0.281182i \(0.909274\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.761883 + 1.16854i −0.132627 + 0.203416i
\(34\) −1.14849 + 1.98924i −0.196964 + 0.341152i
\(35\) −4.97811 −0.841455
\(36\) −1.21023 2.74506i −0.201705 0.457510i
\(37\) −1.00000 −0.164399
\(38\) 0.276750 0.479345i 0.0448948 0.0777600i
\(39\) −1.65793 3.26855i −0.265481 0.523387i
\(40\) 0.962268 + 1.66670i 0.152148 + 0.263528i
\(41\) 0.279742 + 0.484528i 0.0436884 + 0.0756705i 0.887043 0.461687i \(-0.152756\pi\)
−0.843354 + 0.537358i \(0.819422\pi\)
\(42\) −2.02671 3.99560i −0.312728 0.616534i
\(43\) 2.42736 4.20431i 0.370169 0.641152i −0.619422 0.785058i \(-0.712633\pi\)
0.989591 + 0.143906i \(0.0459664\pi\)
\(44\) 0.805387 0.121417
\(45\) −2.32914 5.28296i −0.347207 0.787538i
\(46\) 3.17399 0.467979
\(47\) −1.08331 + 1.87634i −0.158016 + 0.273693i −0.934153 0.356872i \(-0.883843\pi\)
0.776137 + 0.630565i \(0.217177\pi\)
\(48\) −0.945983 + 1.45090i −0.136541 + 0.209420i
\(49\) 0.154608 + 0.267789i 0.0220869 + 0.0382556i
\(50\) −0.648079 1.12251i −0.0916522 0.158746i
\(51\) −3.97264 0.215444i −0.556281 0.0301682i
\(52\) −1.05799 + 1.83249i −0.146717 + 0.254121i
\(53\) 4.37849 0.601432 0.300716 0.953714i \(-0.402774\pi\)
0.300716 + 0.953714i \(0.402774\pi\)
\(54\) 3.29203 4.02026i 0.447989 0.547089i
\(55\) 1.55000 0.209002
\(56\) −1.29333 + 2.24011i −0.172828 + 0.299347i
\(57\) 0.957283 + 0.0519153i 0.126795 + 0.00687635i
\(58\) 0.936182 + 1.62151i 0.122927 + 0.212915i
\(59\) 5.87961 + 10.1838i 0.765460 + 1.32582i 0.940003 + 0.341166i \(0.110822\pi\)
−0.174543 + 0.984650i \(0.555845\pi\)
\(60\) −1.82058 + 2.79231i −0.235036 + 0.360486i
\(61\) 2.87631 4.98192i 0.368274 0.637870i −0.621021 0.783794i \(-0.713282\pi\)
0.989296 + 0.145924i \(0.0466154\pi\)
\(62\) −2.63151 −0.334202
\(63\) 4.58400 6.26131i 0.577530 0.788851i
\(64\) 1.00000 0.125000
\(65\) −2.03614 + 3.52670i −0.252552 + 0.437433i
\(66\) 0.631042 + 1.24408i 0.0776759 + 0.153136i
\(67\) 3.97077 + 6.87757i 0.485106 + 0.840229i 0.999854 0.0171133i \(-0.00544759\pi\)
−0.514747 + 0.857342i \(0.672114\pi\)
\(68\) 1.14849 + 1.98924i 0.139275 + 0.241231i
\(69\) 2.48690 + 4.90285i 0.299388 + 0.590233i
\(70\) −2.48906 + 4.31117i −0.297499 + 0.515284i
\(71\) 3.33204 0.395441 0.197720 0.980258i \(-0.436646\pi\)
0.197720 + 0.980258i \(0.436646\pi\)
\(72\) −2.98241 0.324437i −0.351480 0.0382353i
\(73\) 2.44405 0.286055 0.143027 0.989719i \(-0.454316\pi\)
0.143027 + 0.989719i \(0.454316\pi\)
\(74\) −0.500000 + 0.866025i −0.0581238 + 0.100673i
\(75\) 1.22614 1.88060i 0.141583 0.217153i
\(76\) −0.276750 0.479345i −0.0317454 0.0549846i
\(77\) 1.04163 + 1.80416i 0.118705 + 0.205603i
\(78\) −3.65961 0.198468i −0.414369 0.0224720i
\(79\) 4.22347 7.31527i 0.475178 0.823032i −0.524418 0.851461i \(-0.675717\pi\)
0.999596 + 0.0284289i \(0.00905040\pi\)
\(80\) 1.92454 0.215170
\(81\) 8.78948 + 1.93521i 0.976609 + 0.215023i
\(82\) 0.559485 0.0617847
\(83\) −6.97791 + 12.0861i −0.765925 + 1.32662i 0.173831 + 0.984776i \(0.444385\pi\)
−0.939756 + 0.341846i \(0.888948\pi\)
\(84\) −4.47364 0.242614i −0.488115 0.0264714i
\(85\) 2.21031 + 3.82837i 0.239742 + 0.415245i
\(86\) −2.42736 4.20431i −0.261749 0.453363i
\(87\) −1.77122 + 2.71662i −0.189895 + 0.291252i
\(88\) 0.402694 0.697486i 0.0429273 0.0743522i
\(89\) −0.682322 −0.0723260 −0.0361630 0.999346i \(-0.511514\pi\)
−0.0361630 + 0.999346i \(0.511514\pi\)
\(90\) −5.73975 0.624391i −0.605023 0.0658166i
\(91\) −5.47331 −0.573759
\(92\) 1.58699 2.74875i 0.165456 0.286577i
\(93\) −2.06186 4.06488i −0.213805 0.421509i
\(94\) 1.08331 + 1.87634i 0.111735 + 0.193530i
\(95\) −0.532615 0.922517i −0.0546452 0.0946482i
\(96\) 0.783526 + 1.54470i 0.0799683 + 0.157655i
\(97\) −5.61514 + 9.72570i −0.570131 + 0.987495i 0.426421 + 0.904525i \(0.359774\pi\)
−0.996552 + 0.0829706i \(0.973559\pi\)
\(98\) 0.309216 0.0312355
\(99\) −1.42729 + 1.94954i −0.143448 + 0.195936i
\(100\) −1.29616 −0.129616
\(101\) −1.04540 + 1.81069i −0.104022 + 0.180171i −0.913338 0.407202i \(-0.866504\pi\)
0.809316 + 0.587373i \(0.199838\pi\)
\(102\) −2.17290 + 3.33269i −0.215149 + 0.329985i
\(103\) 2.77854 + 4.81258i 0.273778 + 0.474197i 0.969826 0.243798i \(-0.0783933\pi\)
−0.696048 + 0.717995i \(0.745060\pi\)
\(104\) 1.05799 + 1.83249i 0.103745 + 0.179691i
\(105\) −8.60969 0.466920i −0.840220 0.0455667i
\(106\) 2.18924 3.79188i 0.212638 0.368300i
\(107\) −2.07573 −0.200668 −0.100334 0.994954i \(-0.531991\pi\)
−0.100334 + 0.994954i \(0.531991\pi\)
\(108\) −1.83564 4.86112i −0.176634 0.467761i
\(109\) −8.12962 −0.778676 −0.389338 0.921095i \(-0.627296\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(110\) 0.774999 1.34234i 0.0738932 0.127987i
\(111\) −1.72951 0.0937946i −0.164158 0.00890259i
\(112\) 1.29333 + 2.24011i 0.122208 + 0.211670i
\(113\) −2.79503 4.84113i −0.262934 0.455416i 0.704086 0.710115i \(-0.251357\pi\)
−0.967020 + 0.254699i \(0.918024\pi\)
\(114\) 0.523601 0.803074i 0.0490398 0.0752147i
\(115\) 3.05423 5.29008i 0.284808 0.493302i
\(116\) 1.87236 0.173845
\(117\) −2.56083 5.80849i −0.236749 0.536995i
\(118\) 11.7592 1.08252
\(119\) −2.97074 + 5.14548i −0.272328 + 0.471685i
\(120\) 1.50792 + 2.97282i 0.137654 + 0.271381i
\(121\) 5.17568 + 8.96453i 0.470516 + 0.814958i
\(122\) −2.87631 4.98192i −0.260409 0.451042i
\(123\) 0.438371 + 0.864234i 0.0395266 + 0.0779253i
\(124\) −1.31576 + 2.27896i −0.118158 + 0.204656i
\(125\) −12.1172 −1.08379
\(126\) −3.13045 7.10052i −0.278883 0.632564i
\(127\) 0.0154504 0.00137100 0.000685500 1.00000i \(-0.499782\pi\)
0.000685500 1.00000i \(0.499782\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 4.59249 7.04373i 0.404346 0.620166i
\(130\) 2.03614 + 3.52670i 0.178581 + 0.309312i
\(131\) −0.939116 1.62660i −0.0820509 0.142116i 0.822080 0.569372i \(-0.192814\pi\)
−0.904131 + 0.427256i \(0.859480\pi\)
\(132\) 1.39292 + 0.0755410i 0.121239 + 0.00657500i
\(133\) 0.715856 1.23990i 0.0620726 0.107513i
\(134\) 7.94153 0.686044
\(135\) −3.53275 9.35539i −0.304051 0.805184i
\(136\) 2.29698 0.196964
\(137\) −5.74407 + 9.94901i −0.490749 + 0.850002i −0.999943 0.0106497i \(-0.996610\pi\)
0.509195 + 0.860651i \(0.329943\pi\)
\(138\) 5.48944 + 0.297703i 0.467292 + 0.0253421i
\(139\) 7.05490 + 12.2194i 0.598388 + 1.03644i 0.993059 + 0.117617i \(0.0375254\pi\)
−0.394671 + 0.918823i \(0.629141\pi\)
\(140\) 2.48906 + 4.31117i 0.210364 + 0.364361i
\(141\) −2.04958 + 3.14354i −0.172606 + 0.264734i
\(142\) 1.66602 2.88563i 0.139809 0.242157i
\(143\) 1.70418 0.142511
\(144\) −1.77217 + 2.42062i −0.147681 + 0.201718i
\(145\) 3.60343 0.299249
\(146\) 1.22203 2.11661i 0.101136 0.175172i
\(147\) 0.242279 + 0.477645i 0.0199828 + 0.0393955i
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) −0.0771313 0.133595i −0.00631884 0.0109446i 0.862849 0.505462i \(-0.168678\pi\)
−0.869168 + 0.494518i \(0.835345\pi\)
\(150\) −1.01557 2.00217i −0.0829213 0.163477i
\(151\) 10.0141 17.3449i 0.814936 1.41151i −0.0944387 0.995531i \(-0.530106\pi\)
0.909374 0.415979i \(-0.136561\pi\)
\(152\) −0.553500 −0.0448948
\(153\) −6.85051 0.745225i −0.553831 0.0602478i
\(154\) 2.08326 0.167874
\(155\) −2.53222 + 4.38593i −0.203393 + 0.352287i
\(156\) −2.00168 + 3.07008i −0.160263 + 0.245803i
\(157\) 2.50032 + 4.33069i 0.199548 + 0.345627i 0.948382 0.317131i \(-0.102719\pi\)
−0.748834 + 0.662757i \(0.769386\pi\)
\(158\) −4.22347 7.31527i −0.336001 0.581972i
\(159\) 7.57264 + 0.410679i 0.600549 + 0.0325689i
\(160\) 0.962268 1.66670i 0.0760740 0.131764i
\(161\) 8.21001 0.647039
\(162\) 6.07068 6.64431i 0.476958 0.522026i
\(163\) 8.30211 0.650272 0.325136 0.945667i \(-0.394590\pi\)
0.325136 + 0.945667i \(0.394590\pi\)
\(164\) 0.279742 0.484528i 0.0218442 0.0378353i
\(165\) 2.68074 + 0.145381i 0.208695 + 0.0113179i
\(166\) 6.97791 + 12.0861i 0.541591 + 0.938063i
\(167\) −1.14420 1.98181i −0.0885408 0.153357i 0.818354 0.574715i \(-0.194887\pi\)
−0.906895 + 0.421358i \(0.861554\pi\)
\(168\) −2.44693 + 3.75298i −0.188785 + 0.289549i
\(169\) 4.26131 7.38081i 0.327793 0.567754i
\(170\) 4.42062 0.339046
\(171\) 1.65076 + 0.179576i 0.126237 + 0.0137325i
\(172\) −4.85472 −0.370169
\(173\) −5.06924 + 8.78018i −0.385407 + 0.667544i −0.991826 0.127601i \(-0.959272\pi\)
0.606419 + 0.795146i \(0.292606\pi\)
\(174\) 1.46705 + 2.89223i 0.111216 + 0.219260i
\(175\) −1.67636 2.90354i −0.126721 0.219487i
\(176\) −0.402694 0.697486i −0.0303542 0.0525750i
\(177\) 9.21366 + 18.1644i 0.692541 + 1.36532i
\(178\) −0.341161 + 0.590908i −0.0255711 + 0.0442904i
\(179\) −22.0371 −1.64713 −0.823566 0.567221i \(-0.808019\pi\)
−0.823566 + 0.567221i \(0.808019\pi\)
\(180\) −3.41061 + 4.65857i −0.254212 + 0.347229i
\(181\) 0.000728061 0 5.41164e−5 0 2.70582e−5 1.00000i \(-0.499991\pi\)
2.70582e−5 1.00000i \(0.499991\pi\)
\(182\) −2.73666 + 4.74003i −0.202855 + 0.351354i
\(183\) 5.44189 8.34650i 0.402276 0.616991i
\(184\) −1.58699 2.74875i −0.116995 0.202641i
\(185\) 0.962268 + 1.66670i 0.0707474 + 0.122538i
\(186\) −4.55122 0.246821i −0.333712 0.0180978i
\(187\) 0.924978 1.60211i 0.0676411 0.117158i
\(188\) 2.16661 0.158016
\(189\) 8.51535 10.3990i 0.619401 0.756419i
\(190\) −1.06523 −0.0772799
\(191\) 6.78664 11.7548i 0.491064 0.850548i −0.508883 0.860836i \(-0.669941\pi\)
0.999947 + 0.0102878i \(0.00327475\pi\)
\(192\) 1.72951 + 0.0937946i 0.124817 + 0.00676904i
\(193\) 13.3058 + 23.0464i 0.957776 + 1.65892i 0.727885 + 0.685700i \(0.240504\pi\)
0.229891 + 0.973216i \(0.426163\pi\)
\(194\) 5.61514 + 9.72570i 0.403143 + 0.698265i
\(195\) −3.85231 + 5.90848i −0.275870 + 0.423115i
\(196\) 0.154608 0.267789i 0.0110434 0.0191278i
\(197\) −3.36092 −0.239455 −0.119728 0.992807i \(-0.538202\pi\)
−0.119728 + 0.992807i \(0.538202\pi\)
\(198\) 0.974705 + 2.21083i 0.0692693 + 0.157117i
\(199\) −14.9111 −1.05702 −0.528510 0.848927i \(-0.677249\pi\)
−0.528510 + 0.848927i \(0.677249\pi\)
\(200\) −0.648079 + 1.12251i −0.0458261 + 0.0793732i
\(201\) 6.22240 + 12.2673i 0.438894 + 0.865265i
\(202\) 1.04540 + 1.81069i 0.0735543 + 0.127400i
\(203\) 2.42158 + 4.19430i 0.169962 + 0.294382i
\(204\) 1.79974 + 3.54813i 0.126007 + 0.248419i
\(205\) 0.538374 0.932492i 0.0376017 0.0651280i
\(206\) 5.55709 0.387181
\(207\) 3.84126 + 8.71278i 0.266986 + 0.605580i
\(208\) 2.11598 0.146717
\(209\) −0.222891 + 0.386058i −0.0154177 + 0.0267042i
\(210\) −4.70921 + 7.22275i −0.324966 + 0.498417i
\(211\) −11.1903 19.3821i −0.770371 1.33432i −0.937360 0.348363i \(-0.886738\pi\)
0.166989 0.985959i \(-0.446596\pi\)
\(212\) −2.18924 3.79188i −0.150358 0.260428i
\(213\) 5.76280 + 0.312528i 0.394861 + 0.0214140i
\(214\) −1.03786 + 1.79763i −0.0709470 + 0.122884i
\(215\) −9.34309 −0.637194
\(216\) −5.12767 0.840851i −0.348894 0.0572126i
\(217\) −6.80681 −0.462076
\(218\) −4.06481 + 7.04045i −0.275304 + 0.476840i
\(219\) 4.22701 + 0.229239i 0.285635 + 0.0154905i
\(220\) −0.774999 1.34234i −0.0522504 0.0905004i
\(221\) 2.43018 + 4.20919i 0.163472 + 0.283141i
\(222\) −0.945983 + 1.45090i −0.0634902 + 0.0973781i
\(223\) 5.11873 8.86591i 0.342776 0.593705i −0.642171 0.766561i \(-0.721966\pi\)
0.984947 + 0.172856i \(0.0552995\pi\)
\(224\) 2.58665 0.172828
\(225\) 2.29702 3.13751i 0.153135 0.209167i
\(226\) −5.59006 −0.371845
\(227\) −3.74392 + 6.48467i −0.248493 + 0.430402i −0.963108 0.269116i \(-0.913269\pi\)
0.714615 + 0.699518i \(0.246602\pi\)
\(228\) −0.433682 0.854989i −0.0287213 0.0566230i
\(229\) 11.6632 + 20.2013i 0.770727 + 1.33494i 0.937165 + 0.348887i \(0.113440\pi\)
−0.166437 + 0.986052i \(0.553226\pi\)
\(230\) −3.05423 5.29008i −0.201390 0.348817i
\(231\) 1.63229 + 3.21800i 0.107397 + 0.211729i
\(232\) 0.936182 1.62151i 0.0614634 0.106458i
\(233\) 17.3712 1.13802 0.569012 0.822329i \(-0.307326\pi\)
0.569012 + 0.822329i \(0.307326\pi\)
\(234\) −6.31071 0.686503i −0.412544 0.0448781i
\(235\) 4.16973 0.272003
\(236\) 5.87961 10.1838i 0.382730 0.662908i
\(237\) 7.99067 12.2557i 0.519050 0.796092i
\(238\) 2.97074 + 5.14548i 0.192565 + 0.333532i
\(239\) −4.63463 8.02742i −0.299790 0.519251i 0.676298 0.736628i \(-0.263583\pi\)
−0.976088 + 0.217377i \(0.930250\pi\)
\(240\) 3.32850 + 0.180511i 0.214854 + 0.0116519i
\(241\) 2.74777 4.75929i 0.177000 0.306573i −0.763852 0.645392i \(-0.776694\pi\)
0.940852 + 0.338819i \(0.110027\pi\)
\(242\) 10.3514 0.665410
\(243\) 15.0200 + 4.17136i 0.963532 + 0.267593i
\(244\) −5.75263 −0.368274
\(245\) 0.297549 0.515370i 0.0190097 0.0329258i
\(246\) 0.967634 + 0.0524766i 0.0616941 + 0.00334579i
\(247\) −0.585598 1.01428i −0.0372607 0.0645374i
\(248\) 1.31576 + 2.27896i 0.0835505 + 0.144714i
\(249\) −13.2020 + 20.2485i −0.836641 + 1.28320i
\(250\) −6.05859 + 10.4938i −0.383179 + 0.663686i
\(251\) −25.6223 −1.61727 −0.808633 0.588314i \(-0.799792\pi\)
−0.808633 + 0.588314i \(0.799792\pi\)
\(252\) −7.71445 0.839207i −0.485965 0.0528651i
\(253\) −2.55629 −0.160713
\(254\) 0.00772519 0.0133804i 0.000484722 0.000839563i
\(255\) 3.46367 + 6.82851i 0.216903 + 0.427618i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.3289 17.8902i −0.644301 1.11596i −0.984462 0.175596i \(-0.943815\pi\)
0.340161 0.940367i \(-0.389518\pi\)
\(258\) −3.80380 7.49907i −0.236814 0.466872i
\(259\) −1.29333 + 2.24011i −0.0803635 + 0.139194i
\(260\) 4.07228 0.252552
\(261\) −3.31815 + 4.53228i −0.205389 + 0.280541i
\(262\) −1.87823 −0.116038
\(263\) 13.4798 23.3476i 0.831198 1.43968i −0.0658903 0.997827i \(-0.520989\pi\)
0.897089 0.441851i \(-0.145678\pi\)
\(264\) 0.761883 1.16854i 0.0468906 0.0719185i
\(265\) −4.21328 7.29762i −0.258820 0.448289i
\(266\) −0.715856 1.23990i −0.0438920 0.0760231i
\(267\) −1.18008 0.0639981i −0.0722198 0.00391662i
\(268\) 3.97077 6.87757i 0.242553 0.420114i
\(269\) 26.7977 1.63388 0.816941 0.576721i \(-0.195668\pi\)
0.816941 + 0.576721i \(0.195668\pi\)
\(270\) −9.86838 1.61825i −0.600571 0.0984834i
\(271\) −14.7405 −0.895424 −0.447712 0.894178i \(-0.647761\pi\)
−0.447712 + 0.894178i \(0.647761\pi\)
\(272\) 1.14849 1.98924i 0.0696373 0.120615i
\(273\) −9.46615 0.513367i −0.572917 0.0310704i
\(274\) 5.74407 + 9.94901i 0.347012 + 0.601042i
\(275\) 0.521955 + 0.904052i 0.0314751 + 0.0545164i
\(276\) 3.00254 4.60514i 0.180732 0.277197i
\(277\) −3.64312 + 6.31006i −0.218894 + 0.379135i −0.954470 0.298307i \(-0.903578\pi\)
0.735576 + 0.677442i \(0.236911\pi\)
\(278\) 14.1098 0.846249
\(279\) −3.18474 7.22365i −0.190665 0.432468i
\(280\) 4.97811 0.297499
\(281\) −4.78927 + 8.29526i −0.285704 + 0.494854i −0.972780 0.231732i \(-0.925561\pi\)
0.687076 + 0.726586i \(0.258894\pi\)
\(282\) 1.69760 + 3.34676i 0.101090 + 0.199297i
\(283\) −15.8605 27.4713i −0.942812 1.63300i −0.760074 0.649836i \(-0.774838\pi\)
−0.182737 0.983162i \(-0.558496\pi\)
\(284\) −1.66602 2.88563i −0.0988602 0.171231i
\(285\) −0.834636 1.64546i −0.0494396 0.0974685i
\(286\) 0.852092 1.47587i 0.0503853 0.0872699i
\(287\) 1.44719 0.0854251
\(288\) 1.21023 + 2.74506i 0.0713136 + 0.161754i
\(289\) −11.7239 −0.689641
\(290\) 1.80172 3.12066i 0.105800 0.183252i
\(291\) −10.6236 + 16.2940i −0.622769 + 0.955172i
\(292\) −1.22203 2.11661i −0.0715137 0.123865i
\(293\) 8.13337 + 14.0874i 0.475156 + 0.822995i 0.999595 0.0284531i \(-0.00905812\pi\)
−0.524439 + 0.851448i \(0.675725\pi\)
\(294\) 0.534792 + 0.0290028i 0.0311897 + 0.00169148i
\(295\) 11.3155 19.5991i 0.658815 1.14110i
\(296\) 1.00000 0.0581238
\(297\) −2.65136 + 3.23787i −0.153848 + 0.187880i
\(298\) −0.154263 −0.00893619
\(299\) 3.35805 5.81631i 0.194201 0.336366i
\(300\) −2.24172 0.121573i −0.129426 0.00701900i
\(301\) −6.27875 10.8751i −0.361901 0.626831i
\(302\) −10.0141 17.3449i −0.576246 0.998088i
\(303\) −1.97787 + 3.03355i −0.113626 + 0.174273i
\(304\) −0.276750 + 0.479345i −0.0158727 + 0.0274923i
\(305\) −11.0711 −0.633932
\(306\) −4.07064 + 5.56011i −0.232703 + 0.317850i
\(307\) −9.26465 −0.528762 −0.264381 0.964418i \(-0.585168\pi\)
−0.264381 + 0.964418i \(0.585168\pi\)
\(308\) 1.04163 1.80416i 0.0593524 0.102801i
\(309\) 4.35412 + 8.58401i 0.247697 + 0.488327i
\(310\) 2.53222 + 4.38593i 0.143820 + 0.249104i
\(311\) −16.6966 28.9193i −0.946776 1.63986i −0.752156 0.658986i \(-0.770986\pi\)
−0.194620 0.980879i \(-0.562348\pi\)
\(312\) 1.65793 + 3.26855i 0.0938616 + 0.185045i
\(313\) −12.7130 + 22.0196i −0.718582 + 1.24462i 0.242979 + 0.970031i \(0.421875\pi\)
−0.961562 + 0.274589i \(0.911458\pi\)
\(314\) 5.00065 0.282203
\(315\) −14.8467 1.61508i −0.836519 0.0909997i
\(316\) −8.44695 −0.475178
\(317\) −0.115362 + 0.199812i −0.00647936 + 0.0112226i −0.869247 0.494378i \(-0.835396\pi\)
0.862768 + 0.505601i \(0.168729\pi\)
\(318\) 4.14198 6.35276i 0.232271 0.356245i
\(319\) −0.753989 1.30595i −0.0422153 0.0731190i
\(320\) −0.962268 1.66670i −0.0537924 0.0931712i
\(321\) −3.58999 0.194692i −0.200374 0.0108667i
\(322\) 4.10501 7.11008i 0.228763 0.396229i
\(323\) −1.27138 −0.0707412
\(324\) −2.71880 8.57952i −0.151045 0.476640i
\(325\) −2.74265 −0.152135
\(326\) 4.15106 7.18984i 0.229906 0.398208i
\(327\) −14.0602 0.762514i −0.777533 0.0421671i
\(328\) −0.279742 0.484528i −0.0154462 0.0267536i
\(329\) 2.80214 + 4.85345i 0.154487 + 0.267579i
\(330\) 1.46627 2.24889i 0.0807156 0.123798i
\(331\) 4.98308 8.63095i 0.273895 0.474400i −0.695961 0.718080i \(-0.745021\pi\)
0.969856 + 0.243680i \(0.0783546\pi\)
\(332\) 13.9558 0.765925
\(333\) −2.98241 0.324437i −0.163435 0.0177790i
\(334\) −2.28840 −0.125216
\(335\) 7.64188 13.2361i 0.417521 0.723167i
\(336\) 2.02671 + 3.99560i 0.110566 + 0.217978i
\(337\) −11.3735 19.6996i −0.619557 1.07310i −0.989567 0.144076i \(-0.953979\pi\)
0.370010 0.929028i \(-0.379354\pi\)
\(338\) −4.26131 7.38081i −0.231785 0.401463i
\(339\) −4.37996 8.63494i −0.237887 0.468986i
\(340\) 2.21031 3.82837i 0.119871 0.207622i
\(341\) 2.11939 0.114771
\(342\) 0.980898 1.33981i 0.0530409 0.0724488i
\(343\) 18.9064 1.02085
\(344\) −2.42736 + 4.20431i −0.130875 + 0.226681i
\(345\) 5.77850 8.86277i 0.311104 0.477155i
\(346\) 5.06924 + 8.78018i 0.272524 + 0.472025i
\(347\) −6.94452 12.0283i −0.372801 0.645711i 0.617194 0.786811i \(-0.288269\pi\)
−0.989995 + 0.141100i \(0.954936\pi\)
\(348\) 3.23827 + 0.175618i 0.173590 + 0.00941409i
\(349\) −3.29716 + 5.71086i −0.176493 + 0.305695i −0.940677 0.339303i \(-0.889809\pi\)
0.764184 + 0.644998i \(0.223142\pi\)
\(350\) −3.35271 −0.179210
\(351\) −3.88417 10.2860i −0.207322 0.549028i
\(352\) −0.805387 −0.0429273
\(353\) 13.4857 23.3580i 0.717774 1.24322i −0.244106 0.969749i \(-0.578495\pi\)
0.961880 0.273472i \(-0.0881722\pi\)
\(354\) 20.3377 + 1.10295i 1.08094 + 0.0586212i
\(355\) −3.20632 5.55351i −0.170174 0.294750i
\(356\) 0.341161 + 0.590908i 0.0180815 + 0.0313181i
\(357\) −5.62055 + 8.62051i −0.297471 + 0.456246i
\(358\) −11.0186 + 19.0847i −0.582349 + 1.00866i
\(359\) −30.9863 −1.63540 −0.817698 0.575647i \(-0.804750\pi\)
−0.817698 + 0.575647i \(0.804750\pi\)
\(360\) 2.32914 + 5.28296i 0.122756 + 0.278437i
\(361\) −18.6936 −0.983876
\(362\) 0.000364031 0 0.000630520i 1.91330e−5 0 3.31394e-5i
\(363\) 8.11055 + 15.9897i 0.425694 + 0.839241i
\(364\) 2.73666 + 4.74003i 0.143440 + 0.248445i
\(365\) −2.35183 4.07350i −0.123101 0.213217i
\(366\) −4.50734 8.88607i −0.235602 0.464482i
\(367\) 4.19902 7.27292i 0.219187 0.379643i −0.735373 0.677663i \(-0.762993\pi\)
0.954560 + 0.298020i \(0.0963262\pi\)
\(368\) −3.17399 −0.165456
\(369\) 0.677106 + 1.53582i 0.0352487 + 0.0799515i
\(370\) 1.92454 0.100052
\(371\) 5.66282 9.80829i 0.293999 0.509221i
\(372\) −2.48936 + 3.81806i −0.129068 + 0.197957i
\(373\) −9.72736 16.8483i −0.503664 0.872371i −0.999991 0.00423568i \(-0.998652\pi\)
0.496327 0.868135i \(-0.334682\pi\)
\(374\) −0.924978 1.60211i −0.0478295 0.0828431i
\(375\) −20.9568 1.13653i −1.08220 0.0586900i
\(376\) 1.08331 1.87634i 0.0558673 0.0967649i
\(377\) 3.96189 0.204048
\(378\) −4.74816 12.5740i −0.244219 0.646738i
\(379\) −16.4204 −0.843457 −0.421729 0.906722i \(-0.638576\pi\)
−0.421729 + 0.906722i \(0.638576\pi\)
\(380\) −0.532615 + 0.922517i −0.0273226 + 0.0473241i
\(381\) 0.0267216 + 0.00144916i 0.00136899 + 7.42428e-5i
\(382\) −6.78664 11.7548i −0.347235 0.601428i
\(383\) 13.8398 + 23.9713i 0.707183 + 1.22488i 0.965898 + 0.258923i \(0.0833674\pi\)
−0.258716 + 0.965954i \(0.583299\pi\)
\(384\) 0.945983 1.45090i 0.0482745 0.0740410i
\(385\) 2.00465 3.47216i 0.102167 0.176958i
\(386\) 26.6117 1.35450
\(387\) 8.60341 11.7514i 0.437336 0.597359i
\(388\) 11.2303 0.570131
\(389\) 1.79780 3.11388i 0.0911520 0.157880i −0.816844 0.576858i \(-0.804278\pi\)
0.907996 + 0.418979i \(0.137612\pi\)
\(390\) 3.19074 + 6.29044i 0.161569 + 0.318529i
\(391\) −3.64529 6.31382i −0.184350 0.319304i
\(392\) −0.154608 0.267789i −0.00780889 0.0135254i
\(393\) −1.47164 2.90130i −0.0742346 0.146351i
\(394\) −1.68046 + 2.91064i −0.0846603 + 0.146636i
\(395\) −16.2565 −0.817951
\(396\) 2.40199 + 0.261298i 0.120705 + 0.0131307i
\(397\) −24.3856 −1.22388 −0.611939 0.790905i \(-0.709610\pi\)
−0.611939 + 0.790905i \(0.709610\pi\)
\(398\) −7.45555 + 12.9134i −0.373713 + 0.647289i
\(399\) 1.35438 2.07727i 0.0678036 0.103994i
\(400\) 0.648079 + 1.12251i 0.0324040 + 0.0561253i
\(401\) 12.4644 + 21.5889i 0.622441 + 1.07810i 0.989030 + 0.147716i \(0.0471921\pi\)
−0.366589 + 0.930383i \(0.619475\pi\)
\(402\) 13.7350 + 0.744873i 0.685037 + 0.0371509i
\(403\) −2.78411 + 4.82223i −0.138687 + 0.240212i
\(404\) 2.09081 0.104022
\(405\) −5.23244 16.5116i −0.260002 0.820468i
\(406\) 4.84316 0.240362
\(407\) 0.402694 0.697486i 0.0199608 0.0345731i
\(408\) 3.97264 + 0.215444i 0.196675 + 0.0106661i
\(409\) −2.55547 4.42620i −0.126360 0.218861i 0.795904 0.605423i \(-0.206996\pi\)
−0.922264 + 0.386562i \(0.873663\pi\)
\(410\) −0.538374 0.932492i −0.0265884 0.0460525i
\(411\) −10.8676 + 16.6682i −0.536058 + 0.822179i
\(412\) 2.77854 4.81258i 0.136889 0.237099i
\(413\) 30.4170 1.49672
\(414\) 9.46612 + 1.02976i 0.465234 + 0.0506099i
\(415\) 26.8585 1.31843
\(416\) 1.05799 1.83249i 0.0518723 0.0898454i
\(417\) 11.0554 + 21.7953i 0.541385 + 1.06732i
\(418\) 0.222891 + 0.386058i 0.0109019 + 0.0188827i
\(419\) −15.0666 26.0961i −0.736052 1.27488i −0.954260 0.298978i \(-0.903354\pi\)
0.218208 0.975902i \(-0.429979\pi\)
\(420\) 3.90048 + 7.68967i 0.190324 + 0.375218i
\(421\) −3.57359 + 6.18964i −0.174166 + 0.301664i −0.939872 0.341526i \(-0.889056\pi\)
0.765706 + 0.643190i \(0.222390\pi\)
\(422\) −22.3806 −1.08947
\(423\) −3.83961 + 5.24455i −0.186688 + 0.254999i
\(424\) −4.37849 −0.212638
\(425\) −1.48862 + 2.57837i −0.0722088 + 0.125069i
\(426\) 3.15206 4.83447i 0.152718 0.234231i
\(427\) −7.44003 12.8865i −0.360048 0.623622i
\(428\) 1.03786 + 1.79763i 0.0501671 + 0.0868920i
\(429\) 2.94740 + 0.159843i 0.142302 + 0.00771731i
\(430\) −4.67155 + 8.09136i −0.225282 + 0.390200i
\(431\) 1.93814 0.0933568 0.0466784 0.998910i \(-0.485136\pi\)
0.0466784 + 0.998910i \(0.485136\pi\)
\(432\) −3.29203 + 4.02026i −0.158388 + 0.193425i
\(433\) −4.66668 −0.224266 −0.112133 0.993693i \(-0.535768\pi\)
−0.112133 + 0.993693i \(0.535768\pi\)
\(434\) −3.40341 + 5.89487i −0.163369 + 0.282963i
\(435\) 6.23217 + 0.337982i 0.298810 + 0.0162050i
\(436\) 4.06481 + 7.04045i 0.194669 + 0.337177i
\(437\) 0.878401 + 1.52143i 0.0420196 + 0.0727801i
\(438\) 2.31203 3.54608i 0.110473 0.169438i
\(439\) −2.00860 + 3.47900i −0.0958653 + 0.166044i −0.909969 0.414675i \(-0.863895\pi\)
0.814104 + 0.580719i \(0.197228\pi\)
\(440\) −1.55000 −0.0738932
\(441\) 0.374223 + 0.848816i 0.0178201 + 0.0404198i
\(442\) 4.86036 0.231184
\(443\) 1.35634 2.34925i 0.0644418 0.111616i −0.832004 0.554769i \(-0.812807\pi\)
0.896446 + 0.443153i \(0.146140\pi\)
\(444\) 0.783526 + 1.54470i 0.0371845 + 0.0733080i
\(445\) 0.656577 + 1.13722i 0.0311247 + 0.0539096i
\(446\) −5.11873 8.86591i −0.242379 0.419813i
\(447\) −0.120869 0.238289i −0.00571689 0.0112707i
\(448\) 1.29333 2.24011i 0.0611040 0.105835i
\(449\) −2.45717 −0.115961 −0.0579805 0.998318i \(-0.518466\pi\)
−0.0579805 + 0.998318i \(0.518466\pi\)
\(450\) −1.56865 3.55803i −0.0739470 0.167727i
\(451\) −0.450602 −0.0212180
\(452\) −2.79503 + 4.84113i −0.131467 + 0.227708i
\(453\) 18.9463 29.0589i 0.890176 1.36531i
\(454\) 3.74392 + 6.48467i 0.175711 + 0.304340i
\(455\) 5.26680 + 9.12236i 0.246911 + 0.427663i
\(456\) −0.957283 0.0519153i −0.0448289 0.00243116i
\(457\) −20.8731 + 36.1533i −0.976404 + 1.69118i −0.301182 + 0.953567i \(0.597381\pi\)
−0.675222 + 0.737615i \(0.735952\pi\)
\(458\) 23.3264 1.08997
\(459\) −11.7781 1.93141i −0.549756 0.0901507i
\(460\) −6.10846 −0.284808
\(461\) −12.3417 + 21.3765i −0.574812 + 0.995604i 0.421250 + 0.906945i \(0.361592\pi\)
−0.996062 + 0.0886595i \(0.971742\pi\)
\(462\) 3.60302 + 0.195398i 0.167627 + 0.00909076i
\(463\) 15.0390 + 26.0482i 0.698920 + 1.21056i 0.968841 + 0.247682i \(0.0796688\pi\)
−0.269922 + 0.962882i \(0.586998\pi\)
\(464\) −0.936182 1.62151i −0.0434612 0.0752769i
\(465\) −4.79087 + 7.34800i −0.222171 + 0.340755i
\(466\) 8.68560 15.0439i 0.402352 0.696895i
\(467\) 8.29454 0.383825 0.191913 0.981412i \(-0.438531\pi\)
0.191913 + 0.981412i \(0.438531\pi\)
\(468\) −3.74989 + 5.12199i −0.173339 + 0.236764i
\(469\) 20.5420 0.948542
\(470\) 2.08486 3.61109i 0.0961676 0.166567i
\(471\) 3.91814 + 7.72449i 0.180538 + 0.355926i
\(472\) −5.87961 10.1838i −0.270631 0.468747i
\(473\) 1.95497 + 3.38610i 0.0898895 + 0.155693i
\(474\) −6.61840 13.0480i −0.303993 0.599313i
\(475\) 0.358712 0.621307i 0.0164588 0.0285075i
\(476\) 5.94149 0.272328
\(477\) 13.0584 + 1.42054i 0.597904 + 0.0650423i
\(478\) −9.26927 −0.423966
\(479\) 20.9811 36.3403i 0.958650 1.66043i 0.232866 0.972509i \(-0.425189\pi\)
0.725784 0.687923i \(-0.241477\pi\)
\(480\) 1.82058 2.79231i 0.0830977 0.127451i
\(481\) 1.05799 + 1.83249i 0.0482402 + 0.0835545i
\(482\) −2.74777 4.75929i −0.125158 0.216779i
\(483\) 14.1993 + 0.770054i 0.646090 + 0.0350387i
\(484\) 5.17568 8.96453i 0.235258 0.407479i
\(485\) 21.6131 0.981399
\(486\) 11.1225 10.9220i 0.504527 0.495432i
\(487\) −29.0161 −1.31484 −0.657422 0.753522i \(-0.728353\pi\)
−0.657422 + 0.753522i \(0.728353\pi\)
\(488\) −2.87631 + 4.98192i −0.130205 + 0.225521i
\(489\) 14.3586 + 0.778693i 0.649317 + 0.0352137i
\(490\) −0.297549 0.515370i −0.0134419 0.0232820i
\(491\) 17.3660 + 30.0787i 0.783715 + 1.35743i 0.929764 + 0.368157i \(0.120011\pi\)
−0.146048 + 0.989277i \(0.546656\pi\)
\(492\) 0.529263 0.811757i 0.0238610 0.0365968i
\(493\) 2.15039 3.72458i 0.0968486 0.167747i
\(494\) −1.17120 −0.0526946
\(495\) 4.62272 + 0.502877i 0.207776 + 0.0226026i
\(496\) 2.63151 0.118158
\(497\) 4.30942 7.46414i 0.193304 0.334812i
\(498\) 10.9348 + 21.5575i 0.489998 + 0.966015i
\(499\) 1.97276 + 3.41691i 0.0883127 + 0.152962i 0.906798 0.421565i \(-0.138519\pi\)
−0.818485 + 0.574527i \(0.805186\pi\)
\(500\) 6.05859 + 10.4938i 0.270949 + 0.469297i
\(501\) −1.79302 3.53488i −0.0801063 0.157927i
\(502\) −12.8112 + 22.1896i −0.571790 + 0.990369i
\(503\) −16.1760 −0.721254 −0.360627 0.932710i \(-0.617437\pi\)
−0.360627 + 0.932710i \(0.617437\pi\)
\(504\) −4.58400 + 6.26131i −0.204188 + 0.278901i
\(505\) 4.02383 0.179058
\(506\) −1.27814 + 2.21381i −0.0568205 + 0.0984159i
\(507\) 8.06226 12.3655i 0.358057 0.549171i
\(508\) −0.00772519 0.0133804i −0.000342750 0.000593660i
\(509\) 2.57815 + 4.46549i 0.114274 + 0.197929i 0.917489 0.397760i \(-0.130212\pi\)
−0.803215 + 0.595689i \(0.796879\pi\)
\(510\) 7.64550 + 0.414630i 0.338548 + 0.0183601i
\(511\) 3.16096 5.47494i 0.139833 0.242197i
\(512\) −1.00000 −0.0441942
\(513\) 2.83816 + 0.465411i 0.125308 + 0.0205484i
\(514\) −20.6579 −0.911180
\(515\) 5.34741 9.26198i 0.235635 0.408132i
\(516\) −8.39629 0.455347i −0.369626 0.0200455i
\(517\) −0.872481 1.51118i −0.0383717 0.0664617i
\(518\) 1.29333 + 2.24011i 0.0568255 + 0.0984247i
\(519\) −9.59083 + 14.7099i −0.420991 + 0.645694i
\(520\) 2.03614 3.52670i 0.0892907 0.154656i
\(521\) 11.5583 0.506378 0.253189 0.967417i \(-0.418521\pi\)
0.253189 + 0.967417i \(0.418521\pi\)
\(522\) 2.26599 + 5.13975i 0.0991799 + 0.224961i
\(523\) −14.2256 −0.622041 −0.311021 0.950403i \(-0.600671\pi\)
−0.311021 + 0.950403i \(0.600671\pi\)
\(524\) −0.939116 + 1.62660i −0.0410255 + 0.0710582i
\(525\) −2.62694 5.17893i −0.114649 0.226027i
\(526\) −13.4798 23.3476i −0.587746 1.01801i
\(527\) 3.02226 + 5.23471i 0.131652 + 0.228027i
\(528\) −0.631042 1.24408i −0.0274626 0.0541416i
\(529\) 6.46290 11.1941i 0.280996 0.486699i
\(530\) −8.42656 −0.366027
\(531\) 14.2314 + 32.2797i 0.617589 + 1.40082i
\(532\) −1.43171 −0.0620726
\(533\) 0.591930 1.02525i 0.0256393 0.0444086i
\(534\) −0.645465 + 0.989982i −0.0279320 + 0.0428407i
\(535\) 1.99741 + 3.45961i 0.0863555 + 0.149572i
\(536\) −3.97077 6.87757i −0.171511 0.297066i
\(537\) −38.1134 2.06696i −1.64471 0.0891960i
\(538\) 13.3988 23.2075i 0.577665 1.00054i
\(539\) −0.249039 −0.0107269
\(540\) −6.33564 + 7.73715i −0.272642 + 0.332954i
\(541\) 15.1108 0.649666 0.324833 0.945771i \(-0.394692\pi\)
0.324833 + 0.945771i \(0.394692\pi\)
\(542\) −7.37027 + 12.7657i −0.316580 + 0.548333i
\(543\) 0.00125919 6.82882e-5i 5.40370e−5 2.93053e-6i
\(544\) −1.14849 1.98924i −0.0492410 0.0852880i
\(545\) 7.82287 + 13.5496i 0.335095 + 0.580402i
\(546\) −5.17766 + 7.94124i −0.221584 + 0.339854i
\(547\) 3.88367 6.72671i 0.166054 0.287613i −0.770975 0.636865i \(-0.780231\pi\)
0.937029 + 0.349252i \(0.113564\pi\)
\(548\) 11.4881 0.490749
\(549\) 10.1947 13.9249i 0.435097 0.594302i
\(550\) 1.04391 0.0445125
\(551\) −0.518176 + 0.897508i −0.0220751 + 0.0382351i
\(552\) −2.48690 4.90285i −0.105850 0.208679i
\(553\) −10.9247 18.9221i −0.464564 0.804649i
\(554\) 3.64312 + 6.31006i 0.154781 + 0.268089i
\(555\) 1.50792 + 2.97282i 0.0640078 + 0.126189i
\(556\) 7.05490 12.2194i 0.299194 0.518220i
\(557\) 4.11757 0.174467 0.0872335 0.996188i \(-0.472197\pi\)
0.0872335 + 0.996188i \(0.472197\pi\)
\(558\) −7.84823 0.853760i −0.332242 0.0361425i
\(559\) −10.2725 −0.434481
\(560\) 2.48906 4.31117i 0.105182 0.182180i
\(561\) 1.75003 2.68410i 0.0738862 0.113323i
\(562\) 4.78927 + 8.29526i 0.202023 + 0.349915i
\(563\) 1.25854 + 2.17986i 0.0530412 + 0.0918701i 0.891327 0.453361i \(-0.149775\pi\)
−0.838286 + 0.545231i \(0.816442\pi\)
\(564\) 3.74718 + 0.203217i 0.157785 + 0.00855696i
\(565\) −5.37914 + 9.31694i −0.226302 + 0.391967i
\(566\) −31.7211 −1.33334
\(567\) 15.7028 17.1865i 0.659454 0.721767i
\(568\) −3.33204 −0.139809
\(569\) 19.4892 33.7564i 0.817031 1.41514i −0.0908285 0.995867i \(-0.528952\pi\)
0.907860 0.419273i \(-0.137715\pi\)
\(570\) −1.84233 0.0999129i −0.0771666 0.00418489i
\(571\) −4.34277 7.52190i −0.181739 0.314782i 0.760734 0.649064i \(-0.224839\pi\)
−0.942473 + 0.334283i \(0.891506\pi\)
\(572\) −0.852092 1.47587i −0.0356278 0.0617091i
\(573\) 12.8401 19.6935i 0.536403 0.822708i
\(574\) 0.723597 1.25331i 0.0302023 0.0523120i
\(575\) 4.11399 0.171565
\(576\) 2.98241 + 0.324437i 0.124267 + 0.0135182i
\(577\) −39.8730 −1.65994 −0.829968 0.557811i \(-0.811641\pi\)
−0.829968 + 0.557811i \(0.811641\pi\)
\(578\) −5.86195 + 10.1532i −0.243825 + 0.422317i
\(579\) 20.8510 + 41.1070i 0.866536 + 1.70835i
\(580\) −1.80172 3.12066i −0.0748122 0.129579i
\(581\) 18.0494 + 31.2626i 0.748817 + 1.29699i
\(582\) 8.79921 + 17.3474i 0.364739 + 0.719071i
\(583\) −1.76319 + 3.05393i −0.0730239 + 0.126481i
\(584\) −2.44405 −0.101136
\(585\) −7.21679 + 9.85745i −0.298378 + 0.407555i
\(586\) 16.2667 0.671973
\(587\) −0.972373 + 1.68420i −0.0401341 + 0.0695143i −0.885395 0.464840i \(-0.846112\pi\)
0.845261 + 0.534354i \(0.179445\pi\)
\(588\) 0.292513 0.448642i 0.0120630 0.0185017i
\(589\) −0.728270 1.26140i −0.0300079 0.0519751i
\(590\) −11.3155 19.5991i −0.465853 0.806881i
\(591\) −5.81274 0.315236i −0.239104 0.0129671i
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) −17.1562 −0.704522 −0.352261 0.935902i \(-0.614587\pi\)
−0.352261 + 0.935902i \(0.614587\pi\)
\(594\) 1.47840 + 3.91508i 0.0606594 + 0.160638i
\(595\) 11.4346 0.468773
\(596\) −0.0771313 + 0.133595i −0.00315942 + 0.00547228i
\(597\) −25.7889 1.39858i −1.05547 0.0572401i
\(598\) −3.35805 5.81631i −0.137321 0.237847i
\(599\) 15.6908 + 27.1773i 0.641109 + 1.11043i 0.985185 + 0.171492i \(0.0548588\pi\)
−0.344076 + 0.938942i \(0.611808\pi\)
\(600\) −1.22614 + 1.88060i −0.0500571 + 0.0767751i
\(601\) 4.33174 7.50280i 0.176696 0.306046i −0.764051 0.645156i \(-0.776793\pi\)
0.940747 + 0.339110i \(0.110126\pi\)
\(602\) −12.5575 −0.511805
\(603\) 9.61109 + 21.8000i 0.391394 + 0.887763i
\(604\) −20.0282 −0.814936
\(605\) 9.96078 17.2526i 0.404963 0.701417i
\(606\) 1.63820 + 3.22966i 0.0665474 + 0.131196i
\(607\) 11.4865 + 19.8953i 0.466224 + 0.807523i 0.999256 0.0385717i \(-0.0122808\pi\)
−0.533032 + 0.846095i \(0.678947\pi\)
\(608\) 0.276750 + 0.479345i 0.0112237 + 0.0194400i
\(609\) 3.79474 + 7.48121i 0.153771 + 0.303154i
\(610\) −5.53557 + 9.58789i −0.224129 + 0.388202i
\(611\) 4.58451 0.185470
\(612\) 2.77987 + 6.30533i 0.112370 + 0.254878i
\(613\) −14.6863 −0.593175 −0.296588 0.955006i \(-0.595849\pi\)
−0.296588 + 0.955006i \(0.595849\pi\)
\(614\) −4.63232 + 8.02342i −0.186945 + 0.323799i
\(615\) 1.01859 1.56226i 0.0410734 0.0629963i
\(616\) −1.04163 1.80416i −0.0419685 0.0726915i
\(617\) 11.7505 + 20.3525i 0.473058 + 0.819360i 0.999524 0.0308355i \(-0.00981681\pi\)
−0.526467 + 0.850196i \(0.676483\pi\)
\(618\) 9.61103 + 0.521225i 0.386612 + 0.0209667i
\(619\) 9.37013 16.2295i 0.376617 0.652320i −0.613950 0.789345i \(-0.710420\pi\)
0.990568 + 0.137024i \(0.0437538\pi\)
\(620\) 5.06444 0.203393
\(621\) 5.82628 + 15.4291i 0.233801 + 0.619149i
\(622\) −33.3932 −1.33894
\(623\) −0.882465 + 1.52848i −0.0353552 + 0.0612371i
\(624\) 3.65961 + 0.198468i 0.146502 + 0.00794506i
\(625\) 8.41959 + 14.5832i 0.336784 + 0.583326i
\(626\) 12.7130 + 22.0196i 0.508114 + 0.880080i
\(627\) −0.421702 + 0.646785i −0.0168412 + 0.0258301i
\(628\) 2.50032 4.33069i 0.0997738 0.172813i
\(629\) 2.29698 0.0915864
\(630\) −8.82208 + 12.0501i −0.351480 + 0.480088i
\(631\) 20.0099 0.796583 0.398292 0.917259i \(-0.369603\pi\)
0.398292 + 0.917259i \(0.369603\pi\)
\(632\) −4.22347 + 7.31527i −0.168001 + 0.290986i
\(633\) −17.5358 34.5712i −0.696984 1.37408i
\(634\) 0.115362 + 0.199812i 0.00458160 + 0.00793556i
\(635\) −0.0148674 0.0257511i −0.000589995 0.00102190i
\(636\) −3.43066 6.76344i −0.136035 0.268188i
\(637\) 0.327148 0.566637i 0.0129621 0.0224510i
\(638\) −1.50798 −0.0597014
\(639\) 9.93750 + 1.08104i 0.393122 + 0.0427652i
\(640\) −1.92454 −0.0760740
\(641\) −6.82312 + 11.8180i −0.269497 + 0.466783i −0.968732 0.248109i \(-0.920191\pi\)
0.699235 + 0.714892i \(0.253524\pi\)
\(642\) −1.96361 + 3.01168i −0.0774973 + 0.118862i
\(643\) 10.2230 + 17.7067i 0.403155 + 0.698284i 0.994105 0.108424i \(-0.0345804\pi\)
−0.590950 + 0.806708i \(0.701247\pi\)
\(644\) −4.10501 7.11008i −0.161760 0.280176i
\(645\) −16.1590 0.876332i −0.636259 0.0345055i
\(646\) −0.635688 + 1.10104i −0.0250108 + 0.0433200i
\(647\) −5.59342 −0.219900 −0.109950 0.993937i \(-0.535069\pi\)
−0.109950 + 0.993937i \(0.535069\pi\)
\(648\) −8.78948 1.93521i −0.345283 0.0760221i
\(649\) −9.47073 −0.371759
\(650\) −1.37132 + 2.37520i −0.0537877 + 0.0931631i
\(651\) −11.7724 0.638442i −0.461398 0.0250225i
\(652\) −4.15106 7.18984i −0.162568 0.281576i
\(653\) 18.7924 + 32.5494i 0.735404 + 1.27376i 0.954546 + 0.298064i \(0.0963409\pi\)
−0.219142 + 0.975693i \(0.570326\pi\)
\(654\) −7.69048 + 11.7953i −0.300722 + 0.461232i
\(655\) −1.80736 + 3.13044i −0.0706195 + 0.122317i
\(656\) −0.559485 −0.0218442
\(657\) 7.28915 + 0.792941i 0.284377 + 0.0309356i
\(658\) 5.60428 0.218478
\(659\) 16.7317 28.9801i 0.651774 1.12891i −0.330918 0.943660i \(-0.607358\pi\)
0.982692 0.185247i \(-0.0593084\pi\)
\(660\) −1.21446 2.39428i −0.0472729 0.0931970i
\(661\) −9.41779 16.3121i −0.366310 0.634467i 0.622676 0.782480i \(-0.286046\pi\)
−0.988985 + 0.148013i \(0.952712\pi\)
\(662\) −4.98308 8.63095i −0.193673 0.335451i
\(663\) 3.80822 + 7.50778i 0.147899 + 0.291578i
\(664\) 6.97791 12.0861i 0.270795 0.469031i
\(665\) −2.75538 −0.106849
\(666\) −1.77217 + 2.42062i −0.0686703 + 0.0937971i
\(667\) −5.94286 −0.230108
\(668\) −1.14420 + 1.98181i −0.0442704 + 0.0766786i
\(669\) 9.68447 14.8536i 0.374423 0.574272i
\(670\) −7.64188 13.2361i −0.295232 0.511356i
\(671\) 2.31655 + 4.01238i 0.0894293 + 0.154896i
\(672\) 4.47364 + 0.242614i 0.172575 + 0.00935905i
\(673\) −5.75948 + 9.97571i −0.222012 + 0.384535i −0.955419 0.295254i \(-0.904596\pi\)
0.733407 + 0.679790i \(0.237929\pi\)
\(674\) −22.7471 −0.876185
\(675\) 4.26699 5.21090i 0.164237 0.200568i
\(676\) −8.52262 −0.327793
\(677\) −18.5671 + 32.1591i −0.713591 + 1.23598i 0.249909 + 0.968269i \(0.419599\pi\)
−0.963500 + 0.267707i \(0.913734\pi\)
\(678\) −9.66806 0.524317i −0.371300 0.0201363i
\(679\) 14.5244 + 25.1570i 0.557396 + 0.965438i
\(680\) −2.21031 3.82837i −0.0847614 0.146811i
\(681\) −7.08338 + 10.8641i −0.271436 + 0.416314i
\(682\) 1.05969 1.83544i 0.0405777 0.0702827i
\(683\) 9.54593 0.365265 0.182632 0.983181i \(-0.441538\pi\)
0.182632 + 0.983181i \(0.441538\pi\)
\(684\) −0.669863 1.51939i −0.0256128 0.0580953i
\(685\) 22.1093 0.844754
\(686\) 9.45321 16.3734i 0.360925 0.625141i
\(687\) 18.2769 + 36.0323i 0.697306 + 1.37472i
\(688\) 2.42736 + 4.20431i 0.0925423 + 0.160288i
\(689\) −4.63240 8.02355i −0.176480 0.305673i
\(690\) −4.78613 9.43571i −0.182205 0.359211i
\(691\) −8.99008 + 15.5713i −0.341999 + 0.592359i −0.984804 0.173671i \(-0.944437\pi\)
0.642805 + 0.766030i \(0.277770\pi\)
\(692\) 10.1385 0.385407
\(693\) 2.52123 + 5.71867i 0.0957735 + 0.217234i
\(694\) −13.8890 −0.527221
\(695\) 13.5774 23.5168i 0.515020 0.892041i
\(696\) 1.77122 2.71662i 0.0671381 0.102973i
\(697\) −0.642562 1.11295i −0.0243388 0.0421560i
\(698\) 3.29716 + 5.71086i 0.124800 + 0.216159i
\(699\) 30.0436 + 1.62932i 1.13635 + 0.0616267i
\(700\) −1.67636 + 2.90354i −0.0633604 + 0.109743i
\(701\) −13.9334 −0.526256 −0.263128 0.964761i \(-0.584754\pi\)
−0.263128 + 0.964761i \(0.584754\pi\)
\(702\) −10.8500 1.77922i −0.409509 0.0671525i
\(703\) −0.553500 −0.0208756
\(704\) −0.402694 + 0.697486i −0.0151771 + 0.0262875i
\(705\) 7.21158 + 0.391098i 0.271604 + 0.0147296i
\(706\) −13.4857 23.3580i −0.507543 0.879090i
\(707\) 2.70410 + 4.68363i 0.101698 + 0.176146i
\(708\) 11.1240 17.0615i 0.418066 0.641209i
\(709\) −7.26914 + 12.5905i −0.272998 + 0.472847i −0.969628 0.244584i \(-0.921349\pi\)
0.696630 + 0.717431i \(0.254682\pi\)
\(710\) −6.41264 −0.240662
\(711\) 14.9695 20.4468i 0.561398 0.766817i
\(712\) 0.682322 0.0255711
\(713\) 4.17619 7.23337i 0.156400 0.270892i
\(714\) 4.65531 + 9.17779i 0.174221 + 0.343470i
\(715\) −1.63988 2.84036i −0.0613281 0.106223i
\(716\) 11.0186 + 19.0847i 0.411783 + 0.713229i
\(717\) −7.26271 14.3182i −0.271231 0.534723i
\(718\) −15.4932 + 26.8350i −0.578200 + 1.00147i
\(719\) 2.00668 0.0748367 0.0374183 0.999300i \(-0.488087\pi\)
0.0374183 + 0.999300i \(0.488087\pi\)
\(720\) 5.73975 + 0.624391i 0.213908 + 0.0232697i
\(721\) 14.3743 0.535326
\(722\) −9.34682 + 16.1892i −0.347853 + 0.602498i
\(723\) 5.19870 7.97350i 0.193342 0.296538i
\(724\) −0.000364031 0 0.000630520i −1.35291e−5 0 2.34331e-5i
\(725\) 1.21344 + 2.10174i 0.0450660 + 0.0780567i
\(726\) 17.9028 + 0.970901i 0.664434 + 0.0360335i
\(727\) 6.28143 10.8798i 0.232965 0.403508i −0.725714 0.687996i \(-0.758490\pi\)
0.958679 + 0.284489i \(0.0918238\pi\)
\(728\) 5.47331 0.202855
\(729\) 25.5859 + 8.62320i 0.947627 + 0.319378i
\(730\) −4.70367 −0.174091
\(731\) −5.57559 + 9.65721i −0.206221 + 0.357185i
\(732\) −9.94923 0.539565i −0.367734 0.0199429i
\(733\) 11.4519 + 19.8353i 0.422986 + 0.732634i 0.996230 0.0867513i \(-0.0276486\pi\)
−0.573244 + 0.819385i \(0.694315\pi\)
\(734\) −4.19902 7.27292i −0.154989 0.268448i
\(735\) 0.562952 0.863428i 0.0207648 0.0318480i
\(736\) −1.58699 + 2.74875i −0.0584974 + 0.101320i
\(737\) −6.39601 −0.235600
\(738\) 1.66861 + 0.181518i 0.0614224 + 0.00668176i
\(739\) 42.0492 1.54681 0.773403 0.633915i \(-0.218553\pi\)
0.773403 + 0.633915i \(0.218553\pi\)
\(740\) 0.962268 1.66670i 0.0353737 0.0612690i
\(741\) −0.917662 1.80914i −0.0337112 0.0664605i
\(742\) −5.66282 9.80829i −0.207889 0.360074i
\(743\) −15.2813 26.4679i −0.560615 0.971014i −0.997443 0.0714689i \(-0.977231\pi\)
0.436827 0.899545i \(-0.356102\pi\)
\(744\) 2.06186 + 4.06488i 0.0755914 + 0.149026i
\(745\) −0.148442 + 0.257109i −0.00543849 + 0.00941974i
\(746\) −19.4547 −0.712288
\(747\) −24.7321 + 33.7817i −0.904901 + 1.23601i
\(748\) −1.84996 −0.0676411
\(749\) −2.68460 + 4.64986i −0.0980931 + 0.169902i
\(750\) −11.4627 + 17.5808i −0.418557 + 0.641962i
\(751\) −1.69182 2.93032i −0.0617355 0.106929i 0.833506 0.552511i \(-0.186330\pi\)
−0.895241 + 0.445582i \(0.852997\pi\)
\(752\) −1.08331 1.87634i −0.0395041 0.0684231i
\(753\) −44.3140 2.40323i −1.61489 0.0875787i
\(754\) 1.98094 3.43109i 0.0721417 0.124953i
\(755\) −38.5450 −1.40280
\(756\) −13.2635 2.17499i −0.482389 0.0791036i
\(757\) −17.5912 −0.639361 −0.319681 0.947525i \(-0.603576\pi\)
−0.319681 + 0.947525i \(0.603576\pi\)
\(758\) −8.21018 + 14.2204i −0.298207 + 0.516510i
\(759\) −4.42113 0.239766i −0.160477 0.00870296i
\(760\) 0.532615 + 0.922517i 0.0193200 + 0.0334632i
\(761\) −7.51006 13.0078i −0.272240 0.471533i 0.697195 0.716881i \(-0.254431\pi\)
−0.969435 + 0.245348i \(0.921098\pi\)
\(762\) 0.0146158 0.0224170i 0.000529475 0.000812082i
\(763\) −10.5143 + 18.2112i −0.380642 + 0.659291i
\(764\) −13.5733 −0.491064
\(765\) 5.34997 + 12.1348i 0.193429 + 0.438736i
\(766\) 27.6797 1.00011
\(767\) 12.4411 21.5487i 0.449224 0.778078i
\(768\) −0.783526 1.54470i −0.0282731 0.0557394i
\(769\) 18.2269 + 31.5700i 0.657280 + 1.13844i 0.981317 + 0.192398i \(0.0616265\pi\)
−0.324037 + 0.946044i \(0.605040\pi\)
\(770\) −2.00465 3.47216i −0.0722427 0.125128i
\(771\) −16.1860 31.9101i −0.582924 1.14922i
\(772\) 13.3058 23.0464i 0.478888 0.829458i
\(773\) 6.77555 0.243699 0.121850 0.992549i \(-0.461117\pi\)
0.121850 + 0.992549i \(0.461117\pi\)
\(774\) −5.87534 13.3265i −0.211185 0.479011i
\(775\) −3.41086 −0.122522
\(776\) 5.61514 9.72570i 0.201572 0.349132i
\(777\) −2.44693 + 3.75298i −0.0877832 + 0.134637i
\(778\) −1.79780 3.11388i −0.0644542 0.111638i
\(779\) 0.154837 + 0.268186i 0.00554762 + 0.00960876i
\(780\) 7.04305 + 0.381958i 0.252182 + 0.0136763i
\(781\) −1.34179 + 2.32405i −0.0480131 + 0.0831612i
\(782\) −7.29057 −0.260710
\(783\) −6.16388 + 7.52740i −0.220279 + 0.269007i
\(784\) −0.309216 −0.0110434
\(785\) 4.81197 8.33457i 0.171746 0.297474i
\(786\) −3.24842 0.176168i −0.115867 0.00628370i
\(787\) 12.6297 + 21.8753i 0.450200 + 0.779770i 0.998398 0.0565789i \(-0.0180192\pi\)
−0.548198 + 0.836349i \(0.684686\pi\)
\(788\) 1.68046 + 2.91064i 0.0598639 + 0.103687i
\(789\) 25.5033 39.1156i 0.907941 1.39255i
\(790\) −8.12823 + 14.0785i −0.289189 + 0.500891i
\(791\) −14.4596 −0.514123
\(792\) 1.42729 1.94954i 0.0507164 0.0692738i
\(793\) −12.1725 −0.432257
\(794\) −12.1928 + 21.1185i −0.432706 + 0.749469i
\(795\) −6.60243 13.0165i −0.234164 0.461647i
\(796\) 7.45555 + 12.9134i 0.264255 + 0.457703i
\(797\) −15.8818 27.5081i −0.562562 0.974385i −0.997272 0.0738149i \(-0.976483\pi\)
0.434710 0.900570i \(-0.356851\pi\)
\(798\) −1.12178 2.21156i −0.0397107 0.0782884i
\(799\) 2.48833 4.30991i 0.0880308 0.152474i
\(800\) 1.29616 0.0458261
\(801\) −2.03496 0.221371i −0.0719018 0.00782174i
\(802\) 24.9287 0.880264
\(803\) −0.984204 + 1.70469i −0.0347318 + 0.0601573i
\(804\) 7.51256 11.5224i 0.264947 0.406363i
\(805\) −7.90023 13.6836i −0.278447 0.482284i
\(806\) 2.78411 + 4.82223i 0.0980662 + 0.169856i
\(807\) 46.3468 + 2.51348i 1.63149 + 0.0884785i
\(808\) 1.04540 1.81069i 0.0367772 0.0636999i
\(809\) 16.7917 0.590364 0.295182 0.955441i \(-0.404620\pi\)
0.295182 + 0.955441i \(0.404620\pi\)
\(810\) −16.9157 3.72438i −0.594356 0.130861i
\(811\) 4.99851 0.175522 0.0877608 0.996142i \(-0.472029\pi\)
0.0877608 + 0.996142i \(0.472029\pi\)
\(812\) 2.42158 4.19430i 0.0849808 0.147191i
\(813\) −25.4939 1.38258i −0.894111 0.0484893i
\(814\) −0.402694 0.697486i −0.0141144 0.0244469i
\(815\) −7.98886 13.8371i −0.279838 0.484693i
\(816\) 2.17290 3.33269i 0.0760667 0.116667i
\(817\) 1.34354 2.32709i 0.0470047 0.0814145i
\(818\) −5.11093 −0.178700
\(819\) −16.3236 1.77575i −0.570394 0.0620496i
\(820\) −1.07675 −0.0376017
\(821\) −10.1758 + 17.6250i −0.355138 + 0.615118i −0.987142 0.159848i \(-0.948900\pi\)
0.632003 + 0.774966i \(0.282233\pi\)
\(822\) 9.00125 + 17.7457i 0.313955 + 0.618952i
\(823\) 5.51817 + 9.55775i 0.192351 + 0.333162i 0.946029 0.324082i \(-0.105055\pi\)
−0.753678 + 0.657244i \(0.771722\pi\)
\(824\) −2.77854 4.81258i −0.0967951 0.167654i
\(825\) 0.817931 + 1.61252i 0.0284767 + 0.0561409i
\(826\) 15.2085 26.3419i 0.529172 0.916553i
\(827\) −18.5480 −0.644977 −0.322488 0.946573i \(-0.604519\pi\)
−0.322488 + 0.946573i \(0.604519\pi\)
\(828\) 5.62486 7.68302i 0.195477 0.267003i
\(829\) 35.0272 1.21654 0.608272 0.793729i \(-0.291863\pi\)
0.608272 + 0.793729i \(0.291863\pi\)
\(830\) 13.4292 23.2601i 0.466136 0.807371i
\(831\) −6.89266 + 10.5716i −0.239104 + 0.366725i
\(832\) −1.05799 1.83249i −0.0366792 0.0635303i
\(833\) −0.355131 0.615105i −0.0123046 0.0213121i
\(834\) 24.4030 + 1.32342i 0.845007 + 0.0458264i
\(835\) −2.20205 + 3.81407i −0.0762052 + 0.131991i
\(836\) 0.445782 0.0154177
\(837\) −4.83049 12.7921i −0.166966 0.442159i
\(838\) −30.1332 −1.04094
\(839\) 1.01560 1.75907i 0.0350625 0.0607300i −0.847962 0.530058i \(-0.822170\pi\)
0.883024 + 0.469328i \(0.155504\pi\)
\(840\) 8.60969 + 0.466920i 0.297063 + 0.0161103i
\(841\) 12.7471 + 22.0787i 0.439556 + 0.761334i
\(842\) 3.57359 + 6.18964i 0.123154 + 0.213309i
\(843\) −9.06114 + 13.8975i −0.312082 + 0.478656i
\(844\) −11.1903 + 19.3821i −0.385186 + 0.667161i
\(845\) −16.4021 −0.564249
\(846\) 2.62210 + 5.94748i 0.0901498 + 0.204478i
\(847\) 26.7754 0.920013
\(848\) −2.18924 + 3.79188i −0.0751790 + 0.130214i
\(849\) −24.8543 48.9995i −0.852998 1.68166i
\(850\) 1.48862 + 2.57837i 0.0510593 + 0.0884374i
\(851\) −1.58699 2.74875i −0.0544014 0.0942261i
\(852\) −2.61074 5.14700i −0.0894426 0.176333i
\(853\) −17.7314 + 30.7116i −0.607110 + 1.05155i 0.384604 + 0.923082i \(0.374338\pi\)
−0.991714 + 0.128464i \(0.958995\pi\)
\(854\) −14.8801 −0.509185
\(855\) −1.28918 2.92412i −0.0440889 0.100003i
\(856\) 2.07573 0.0709470
\(857\) 10.4853 18.1611i 0.358171 0.620371i −0.629484 0.777013i \(-0.716734\pi\)
0.987655 + 0.156642i \(0.0500670\pi\)
\(858\) 1.61213 2.47260i 0.0550372 0.0844133i
\(859\) 20.7046 + 35.8614i 0.706432 + 1.22358i 0.966172 + 0.257897i \(0.0830295\pi\)
−0.259741 + 0.965678i \(0.583637\pi\)
\(860\) 4.67155 + 8.09136i 0.159298 + 0.275913i
\(861\) 2.50294 + 0.135739i 0.0852998 + 0.00462597i
\(862\) 0.969069 1.67848i 0.0330066 0.0571691i
\(863\) 1.99139 0.0677875 0.0338938 0.999425i \(-0.489209\pi\)
0.0338938 + 0.999425i \(0.489209\pi\)
\(864\) 1.83564 + 4.86112i 0.0624496 + 0.165379i
\(865\) 19.5119 0.663423
\(866\) −2.33334 + 4.04146i −0.0792900 + 0.137334i
\(867\) −20.2766 1.09964i −0.688629 0.0373457i
\(868\) 3.40341 + 5.89487i 0.115519 + 0.200085i
\(869\) 3.40153 + 5.89163i 0.115389 + 0.199860i
\(870\) 3.40879 5.22823i 0.115569 0.177253i
\(871\) 8.40207 14.5528i 0.284693 0.493103i
\(872\) 8.12962 0.275304
\(873\) −19.9020 + 27.1842i −0.673580 + 0.920046i
\(874\) 1.75680 0.0594247
\(875\) −15.6715 + 27.1438i −0.529793 + 0.917629i
\(876\) −1.91498 3.77532i −0.0647011 0.127556i
\(877\) 16.0229 + 27.7525i 0.541056 + 0.937136i 0.998844 + 0.0480746i \(0.0153085\pi\)
−0.457788 + 0.889061i \(0.651358\pi\)
\(878\) 2.00860 + 3.47900i 0.0677870 + 0.117411i
\(879\) 12.7454 + 25.1272i 0.429892 + 0.847518i
\(880\) −0.774999 + 1.34234i −0.0261252 + 0.0452502i
\(881\) 13.1016 0.441405 0.220702 0.975341i \(-0.429165\pi\)
0.220702 + 0.975341i \(0.429165\pi\)
\(882\) 0.922208 + 0.100321i 0.0310523 + 0.00337799i
\(883\) 6.22984 0.209651 0.104825 0.994491i \(-0.466572\pi\)
0.104825 + 0.994491i \(0.466572\pi\)
\(884\) 2.43018 4.20919i 0.0817358 0.141571i
\(885\) 21.4086 32.8354i 0.719642 1.10375i
\(886\) −1.35634 2.34925i −0.0455672 0.0789247i
\(887\) −14.6180 25.3191i −0.490823 0.850131i 0.509121 0.860695i \(-0.329971\pi\)
−0.999944 + 0.0105641i \(0.996637\pi\)
\(888\) 1.72951 + 0.0937946i 0.0580385 + 0.00314754i
\(889\) 0.0199824 0.0346105i 0.000670188 0.00116080i
\(890\) 1.31315 0.0440170
\(891\) −4.88925 + 5.35124i −0.163796 + 0.179273i
\(892\) −10.2375 −0.342776
\(893\) −0.599610 + 1.03855i −0.0200652 + 0.0347539i
\(894\) −0.266798 0.0144690i −0.00892308 0.000483915i
\(895\) 21.2056 + 36.7292i 0.708826 + 1.22772i
\(896\) −1.29333 2.24011i −0.0432070 0.0748368i
\(897\) 6.35332 9.74440i 0.212131 0.325356i
\(898\) −1.22859 + 2.12797i −0.0409984 + 0.0710114i
\(899\) 4.92715 0.164329
\(900\) −3.86567 0.420522i −0.128856 0.0140174i
\(901\) −10.0573 −0.335057
\(902\) −0.225301 + 0.390233i −0.00750170 + 0.0129933i
\(903\) −9.83913 19.3975i −0.327426 0.645509i
\(904\) 2.79503 + 4.84113i 0.0929613 + 0.161014i
\(905\) −0.000700590 0.00121346i −2.32884e−5 4.03367e-5i
\(906\) −15.6926 30.9375i −0.521352 1.02783i
\(907\) −13.2984 + 23.0335i −0.441566 + 0.764815i −0.997806 0.0662067i \(-0.978910\pi\)
0.556240 + 0.831022i \(0.312244\pi\)
\(908\) 7.48785 0.248493
\(909\) −3.70527 + 5.06105i −0.122896 + 0.167864i
\(910\) 10.5336 0.349185
\(911\) −9.55675 + 16.5528i −0.316629 + 0.548418i −0.979782 0.200066i \(-0.935884\pi\)
0.663153 + 0.748484i \(0.269218\pi\)
\(912\) −0.523601 + 0.803074i −0.0173382 + 0.0265924i
\(913\) −5.61992 9.73399i −0.185992 0.322148i
\(914\) 20.8731 + 36.1533i 0.690422 + 1.19585i
\(915\) −19.1477 1.03841i −0.633002 0.0343289i
\(916\) 11.6632 20.2013i 0.385364 0.667469i
\(917\) −4.85834 −0.160436
\(918\) −7.56172 + 9.23445i −0.249574 + 0.304782i
\(919\) 22.0210 0.726405 0.363202 0.931710i \(-0.381683\pi\)
0.363202 + 0.931710i \(0.381683\pi\)
\(920\) −3.05423 + 5.29008i −0.100695 + 0.174409i
\(921\) −16.0233 0.868974i −0.527986 0.0286337i
\(922\) 12.3417 + 21.3765i 0.406454 + 0.703999i
\(923\) −3.52527 6.10595i −0.116036 0.200980i
\(924\) 1.97073 3.02260i 0.0648322 0.0994364i
\(925\) −0.648079 + 1.12251i −0.0213087 + 0.0369078i
\(926\) 30.0779 0.988422
\(927\) 6.72536 + 15.2545i 0.220890 + 0.501024i
\(928\) −1.87236 −0.0614634
\(929\) 13.7419 23.8017i 0.450857 0.780907i −0.547583 0.836752i \(-0.684452\pi\)
0.998439 + 0.0558447i \(0.0177852\pi\)
\(930\) 3.96812 + 7.82302i 0.130120 + 0.256527i
\(931\) 0.0855755 + 0.148221i 0.00280462 + 0.00485775i
\(932\) −8.68560 15.0439i −0.284506 0.492779i
\(933\) −26.1644 51.5823i −0.856584 1.68873i
\(934\) 4.14727 7.18328i 0.135703 0.235044i
\(935\) −3.56031 −0.116435
\(936\) 2.56083 + 5.80849i 0.0837033 + 0.189856i
\(937\) 31.3831 1.02524 0.512620 0.858615i \(-0.328675\pi\)
0.512620 + 0.858615i \(0.328675\pi\)
\(938\) 10.2710 17.7899i 0.335360 0.580861i
\(939\) −24.0526 + 36.8907i −0.784927 + 1.20388i
\(940\) −2.08486 3.61109i −0.0680007 0.117781i
\(941\) −17.6011 30.4861i −0.573781 0.993817i −0.996173 0.0874043i \(-0.972143\pi\)
0.422392 0.906413i \(-0.361191\pi\)
\(942\) 8.64867 + 0.469034i 0.281789 + 0.0152819i
\(943\) −0.887899 + 1.53789i −0.0289140 + 0.0500804i
\(944\) −11.7592 −0.382730
\(945\) −25.5261 4.18585i −0.830364 0.136166i
\(946\) 3.90993 0.127123
\(947\) 6.69370 11.5938i 0.217516 0.376749i −0.736532 0.676403i \(-0.763538\pi\)
0.954048 + 0.299654i \(0.0968712\pi\)
\(948\) −14.6091 0.792278i −0.474481 0.0257320i
\(949\) −2.58578 4.47871i −0.0839381 0.145385i
\(950\) −0.358712 0.621307i −0.0116381 0.0201579i
\(951\) −0.218261 + 0.334757i −0.00707758 + 0.0108552i
\(952\) 2.97074 5.14548i 0.0962823 0.166766i
\(953\) 19.7162 0.638670 0.319335 0.947642i \(-0.396541\pi\)
0.319335 + 0.947642i \(0.396541\pi\)
\(954\) 7.75944 10.5987i 0.251221 0.343144i
\(955\) −26.1223 −0.845297
\(956\) −4.63463 + 8.02742i −0.149895 + 0.259625i
\(957\) −1.18154 2.32937i −0.0381938 0.0752978i
\(958\) −20.9811 36.3403i −0.677868 1.17410i
\(959\) 14.8579 + 25.7347i 0.479787 + 0.831016i
\(960\) −1.50792 2.97282i −0.0486681 0.0959475i
\(961\) 12.0376 20.8497i 0.388309 0.672571i
\(962\) 2.11598 0.0682220
\(963\) −6.19067 0.673444i −0.199491 0.0217014i
\(964\) −5.49555 −0.177000
\(965\) 25.6076 44.3536i 0.824337 1.42779i
\(966\) 7.76653 11.9119i 0.249884 0.383260i
\(967\) −23.0512 39.9258i −0.741276 1.28393i −0.951914 0.306364i \(-0.900887\pi\)
0.210638 0.977564i \(-0.432446\pi\)
\(968\) −5.17568 8.96453i −0.166353 0.288131i
\(969\) −2.19886 0.119248i −0.0706374 0.00383080i
\(970\) 10.8065 18.7175i 0.346977 0.600982i
\(971\) −40.5515 −1.30136 −0.650680 0.759352i \(-0.725516\pi\)
−0.650680 + 0.759352i \(0.725516\pi\)
\(972\) −3.89748 15.0934i −0.125012 0.484120i
\(973\) 36.4972 1.17005
\(974\) −14.5080 + 25.1287i −0.464868 + 0.805175i
\(975\) −4.74343 0.257245i −0.151911 0.00823845i
\(976\) 2.87631 + 4.98192i 0.0920686 + 0.159467i
\(977\) −10.3797 17.9782i −0.332076 0.575173i 0.650843 0.759213i \(-0.274416\pi\)
−0.982919 + 0.184040i \(0.941082\pi\)
\(978\) 7.85366 12.0455i 0.251132 0.385174i
\(979\) 0.274767 0.475910i 0.00878158 0.0152101i
\(980\) −0.595098 −0.0190097
\(981\) −24.2458 2.63755i −0.774109 0.0842105i
\(982\) 34.7319 1.10834
\(983\) −2.97915 + 5.16003i −0.0950200 + 0.164579i −0.909617 0.415448i \(-0.863625\pi\)
0.814597 + 0.580027i \(0.196958\pi\)
\(984\) −0.438371 0.864234i −0.0139748 0.0275508i
\(985\) 3.23411 + 5.60163i 0.103047 + 0.178483i
\(986\) −2.15039 3.72458i −0.0684823 0.118615i
\(987\) 4.39110 + 8.65691i 0.139770 + 0.275553i
\(988\) −0.585598 + 1.01428i −0.0186303 + 0.0322687i
\(989\) 15.4088 0.489972
\(990\) 2.74686 3.75195i 0.0873011 0.119245i
\(991\) 34.9205 1.10928 0.554642 0.832089i \(-0.312855\pi\)
0.554642 + 0.832089i \(0.312855\pi\)
\(992\) 1.31576 2.27896i 0.0417753 0.0723569i
\(993\) 9.42782 14.4599i 0.299183 0.458872i
\(994\) −4.30942 7.46414i −0.136687 0.236748i
\(995\) 14.3485 + 24.8523i 0.454877 + 0.787870i
\(996\) 24.1367 + 1.30898i 0.764801 + 0.0414766i
\(997\) −10.8969 + 18.8740i −0.345109 + 0.597746i −0.985374 0.170408i \(-0.945491\pi\)
0.640265 + 0.768154i \(0.278825\pi\)
\(998\) 3.94551 0.124893
\(999\) −5.12767 0.840851i −0.162232 0.0266033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 666.2.e.d.223.7 14
3.2 odd 2 1998.2.e.d.667.5 14
9.2 odd 6 5994.2.a.v.1.3 7
9.4 even 3 inner 666.2.e.d.445.7 yes 14
9.5 odd 6 1998.2.e.d.1333.5 14
9.7 even 3 5994.2.a.u.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.e.d.223.7 14 1.1 even 1 trivial
666.2.e.d.445.7 yes 14 9.4 even 3 inner
1998.2.e.d.667.5 14 3.2 odd 2
1998.2.e.d.1333.5 14 9.5 odd 6
5994.2.a.u.1.5 7 9.7 even 3
5994.2.a.v.1.3 7 9.2 odd 6