Properties

Label 666.2.e.b.223.1
Level $666$
Weight $2$
Character 666.223
Analytic conductor $5.318$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(223,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 223.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 666.223
Dual form 666.2.e.b.445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 + 3.46410i) q^{5} +(1.50000 - 0.866025i) q^{6} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +4.00000 q^{10} +(0.500000 - 0.866025i) q^{11} -1.73205i q^{12} +(-3.00000 - 5.19615i) q^{13} +6.92820i q^{15} +(-0.500000 + 0.866025i) q^{16} +3.00000 q^{17} +3.00000 q^{18} -1.00000 q^{19} +(2.00000 - 3.46410i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(3.00000 + 5.19615i) q^{23} +(-1.50000 - 0.866025i) q^{24} +(-5.50000 + 9.52628i) q^{25} -6.00000 q^{26} +5.19615i q^{27} +(6.00000 + 3.46410i) q^{30} +(1.00000 + 1.73205i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 - 0.866025i) q^{33} +(1.50000 - 2.59808i) q^{34} +(1.50000 - 2.59808i) q^{36} +1.00000 q^{37} +(-0.500000 + 0.866025i) q^{38} -10.3923i q^{39} +(-2.00000 - 3.46410i) q^{40} +(-4.50000 - 7.79423i) q^{41} +(2.50000 - 4.33013i) q^{43} -1.00000 q^{44} +(-6.00000 + 10.3923i) q^{45} +6.00000 q^{46} +(2.00000 - 3.46410i) q^{47} +(-1.50000 + 0.866025i) q^{48} +(3.50000 + 6.06218i) q^{49} +(5.50000 + 9.52628i) q^{50} +(4.50000 + 2.59808i) q^{51} +(-3.00000 + 5.19615i) q^{52} -12.0000 q^{53} +(4.50000 + 2.59808i) q^{54} +4.00000 q^{55} +(-1.50000 - 0.866025i) q^{57} +(-5.50000 - 9.52628i) q^{59} +(6.00000 - 3.46410i) q^{60} +(1.00000 - 1.73205i) q^{61} +2.00000 q^{62} +1.00000 q^{64} +(12.0000 - 20.7846i) q^{65} -1.73205i q^{66} +(-7.50000 - 12.9904i) q^{67} +(-1.50000 - 2.59808i) q^{68} +10.3923i q^{69} +12.0000 q^{71} +(-1.50000 - 2.59808i) q^{72} -5.00000 q^{73} +(0.500000 - 0.866025i) q^{74} +(-16.5000 + 9.52628i) q^{75} +(0.500000 + 0.866025i) q^{76} +(-9.00000 - 5.19615i) q^{78} +(3.00000 - 5.19615i) q^{79} -4.00000 q^{80} +(-4.50000 + 7.79423i) q^{81} -9.00000 q^{82} +(2.00000 - 3.46410i) q^{83} +(6.00000 + 10.3923i) q^{85} +(-2.50000 - 4.33013i) q^{86} +(-0.500000 + 0.866025i) q^{88} -10.0000 q^{89} +(6.00000 + 10.3923i) q^{90} +(3.00000 - 5.19615i) q^{92} +3.46410i q^{93} +(-2.00000 - 3.46410i) q^{94} +(-2.00000 - 3.46410i) q^{95} +1.73205i q^{96} +(-1.50000 + 2.59808i) q^{97} +7.00000 q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} + 4 q^{5} + 3 q^{6} - 2 q^{8} + 3 q^{9} + 8 q^{10} + q^{11} - 6 q^{13} - q^{16} + 6 q^{17} + 6 q^{18} - 2 q^{19} + 4 q^{20} - q^{22} + 6 q^{23} - 3 q^{24} - 11 q^{25}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.00000 + 3.46410i 0.894427 + 1.54919i 0.834512 + 0.550990i \(0.185750\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 4.00000 1.26491
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 1.73205i 0.500000i
\(13\) −3.00000 5.19615i −0.832050 1.44115i −0.896410 0.443227i \(-0.853834\pi\)
0.0643593 0.997927i \(-0.479500\pi\)
\(14\) 0 0
\(15\) 6.92820i 1.78885i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 3.00000 0.707107
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 2.00000 3.46410i 0.447214 0.774597i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) −6.00000 −1.17670
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 6.00000 + 3.46410i 1.09545 + 0.632456i
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 1.00000 0.164399
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 10.3923i 1.66410i
\(40\) −2.00000 3.46410i −0.316228 0.547723i
\(41\) −4.50000 7.79423i −0.702782 1.21725i −0.967486 0.252924i \(-0.918608\pi\)
0.264704 0.964330i \(-0.414726\pi\)
\(42\) 0 0
\(43\) 2.50000 4.33013i 0.381246 0.660338i −0.609994 0.792406i \(-0.708828\pi\)
0.991241 + 0.132068i \(0.0421616\pi\)
\(44\) −1.00000 −0.150756
\(45\) −6.00000 + 10.3923i −0.894427 + 1.54919i
\(46\) 6.00000 0.884652
\(47\) 2.00000 3.46410i 0.291730 0.505291i −0.682489 0.730896i \(-0.739102\pi\)
0.974219 + 0.225605i \(0.0724358\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 5.50000 + 9.52628i 0.777817 + 1.34722i
\(51\) 4.50000 + 2.59808i 0.630126 + 0.363803i
\(52\) −3.00000 + 5.19615i −0.416025 + 0.720577i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 4.50000 + 2.59808i 0.612372 + 0.353553i
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −1.50000 0.866025i −0.198680 0.114708i
\(58\) 0 0
\(59\) −5.50000 9.52628i −0.716039 1.24022i −0.962557 0.271078i \(-0.912620\pi\)
0.246518 0.969138i \(-0.420713\pi\)
\(60\) 6.00000 3.46410i 0.774597 0.447214i
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 12.0000 20.7846i 1.48842 2.57801i
\(66\) 1.73205i 0.213201i
\(67\) −7.50000 12.9904i −0.916271 1.58703i −0.805030 0.593234i \(-0.797851\pi\)
−0.111241 0.993793i \(-0.535483\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 10.3923i 1.25109i
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −5.00000 −0.585206 −0.292603 0.956234i \(-0.594521\pi\)
−0.292603 + 0.956234i \(0.594521\pi\)
\(74\) 0.500000 0.866025i 0.0581238 0.100673i
\(75\) −16.5000 + 9.52628i −1.90526 + 1.10000i
\(76\) 0.500000 + 0.866025i 0.0573539 + 0.0993399i
\(77\) 0 0
\(78\) −9.00000 5.19615i −1.01905 0.588348i
\(79\) 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i \(-0.723743\pi\)
0.983967 + 0.178352i \(0.0570765\pi\)
\(80\) −4.00000 −0.447214
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −9.00000 −0.993884
\(83\) 2.00000 3.46410i 0.219529 0.380235i −0.735135 0.677920i \(-0.762881\pi\)
0.954664 + 0.297686i \(0.0962148\pi\)
\(84\) 0 0
\(85\) 6.00000 + 10.3923i 0.650791 + 1.12720i
\(86\) −2.50000 4.33013i −0.269582 0.466930i
\(87\) 0 0
\(88\) −0.500000 + 0.866025i −0.0533002 + 0.0923186i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 6.00000 + 10.3923i 0.632456 + 1.09545i
\(91\) 0 0
\(92\) 3.00000 5.19615i 0.312772 0.541736i
\(93\) 3.46410i 0.359211i
\(94\) −2.00000 3.46410i −0.206284 0.357295i
\(95\) −2.00000 3.46410i −0.205196 0.355409i
\(96\) 1.73205i 0.176777i
\(97\) −1.50000 + 2.59808i −0.152302 + 0.263795i −0.932073 0.362270i \(-0.882002\pi\)
0.779771 + 0.626064i \(0.215335\pi\)
\(98\) 7.00000 0.707107
\(99\) 3.00000 0.301511
\(100\) 11.0000 1.10000
\(101\) 7.00000 12.1244i 0.696526 1.20642i −0.273138 0.961975i \(-0.588061\pi\)
0.969664 0.244443i \(-0.0786053\pi\)
\(102\) 4.50000 2.59808i 0.445566 0.257248i
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 3.00000 + 5.19615i 0.294174 + 0.509525i
\(105\) 0 0
\(106\) −6.00000 + 10.3923i −0.582772 + 1.00939i
\(107\) 17.0000 1.64345 0.821726 0.569883i \(-0.193011\pi\)
0.821726 + 0.569883i \(0.193011\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 2.00000 3.46410i 0.190693 0.330289i
\(111\) 1.50000 + 0.866025i 0.142374 + 0.0821995i
\(112\) 0 0
\(113\) −7.00000 12.1244i −0.658505 1.14056i −0.981003 0.193993i \(-0.937856\pi\)
0.322498 0.946570i \(-0.395477\pi\)
\(114\) −1.50000 + 0.866025i −0.140488 + 0.0811107i
\(115\) −12.0000 + 20.7846i −1.11901 + 1.93817i
\(116\) 0 0
\(117\) 9.00000 15.5885i 0.832050 1.44115i
\(118\) −11.0000 −1.01263
\(119\) 0 0
\(120\) 6.92820i 0.632456i
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) −1.00000 1.73205i −0.0905357 0.156813i
\(123\) 15.5885i 1.40556i
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 7.50000 4.33013i 0.660338 0.381246i
\(130\) −12.0000 20.7846i −1.05247 1.82293i
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) −1.50000 0.866025i −0.130558 0.0753778i
\(133\) 0 0
\(134\) −15.0000 −1.29580
\(135\) −18.0000 + 10.3923i −1.54919 + 0.894427i
\(136\) −3.00000 −0.257248
\(137\) 7.50000 12.9904i 0.640768 1.10984i −0.344493 0.938789i \(-0.611949\pi\)
0.985262 0.171054i \(-0.0547174\pi\)
\(138\) 9.00000 + 5.19615i 0.766131 + 0.442326i
\(139\) 0.500000 + 0.866025i 0.0424094 + 0.0734553i 0.886451 0.462822i \(-0.153163\pi\)
−0.844042 + 0.536278i \(0.819830\pi\)
\(140\) 0 0
\(141\) 6.00000 3.46410i 0.505291 0.291730i
\(142\) 6.00000 10.3923i 0.503509 0.872103i
\(143\) −6.00000 −0.501745
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) −2.50000 + 4.33013i −0.206901 + 0.358364i
\(147\) 12.1244i 1.00000i
\(148\) −0.500000 0.866025i −0.0410997 0.0711868i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 19.0526i 1.55563i
\(151\) −6.00000 + 10.3923i −0.488273 + 0.845714i −0.999909 0.0134886i \(-0.995706\pi\)
0.511636 + 0.859202i \(0.329040\pi\)
\(152\) 1.00000 0.0811107
\(153\) 4.50000 + 7.79423i 0.363803 + 0.630126i
\(154\) 0 0
\(155\) −4.00000 + 6.92820i −0.321288 + 0.556487i
\(156\) −9.00000 + 5.19615i −0.720577 + 0.416025i
\(157\) −5.00000 8.66025i −0.399043 0.691164i 0.594565 0.804048i \(-0.297324\pi\)
−0.993608 + 0.112884i \(0.963991\pi\)
\(158\) −3.00000 5.19615i −0.238667 0.413384i
\(159\) −18.0000 10.3923i −1.42749 0.824163i
\(160\) −2.00000 + 3.46410i −0.158114 + 0.273861i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −4.50000 + 7.79423i −0.351391 + 0.608627i
\(165\) 6.00000 + 3.46410i 0.467099 + 0.269680i
\(166\) −2.00000 3.46410i −0.155230 0.268866i
\(167\) 7.00000 + 12.1244i 0.541676 + 0.938211i 0.998808 + 0.0488118i \(0.0155435\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 12.0000 0.920358
\(171\) −1.50000 2.59808i −0.114708 0.198680i
\(172\) −5.00000 −0.381246
\(173\) −8.00000 + 13.8564i −0.608229 + 1.05348i 0.383304 + 0.923622i \(0.374786\pi\)
−0.991532 + 0.129861i \(0.958547\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 19.0526i 1.43208i
\(178\) −5.00000 + 8.66025i −0.374766 + 0.649113i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 12.0000 0.894427
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 3.00000 1.73205i 0.221766 0.128037i
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 3.00000 + 1.73205i 0.219971 + 0.127000i
\(187\) 1.50000 2.59808i 0.109691 0.189990i
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) −11.0000 + 19.0526i −0.795932 + 1.37859i 0.126314 + 0.991990i \(0.459685\pi\)
−0.922246 + 0.386604i \(0.873648\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) 1.50000 + 2.59808i 0.107694 + 0.186531i
\(195\) 36.0000 20.7846i 2.57801 1.48842i
\(196\) 3.50000 6.06218i 0.250000 0.433013i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 1.50000 2.59808i 0.106600 0.184637i
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 5.50000 9.52628i 0.388909 0.673610i
\(201\) 25.9808i 1.83254i
\(202\) −7.00000 12.1244i −0.492518 0.853067i
\(203\) 0 0
\(204\) 5.19615i 0.363803i
\(205\) 18.0000 31.1769i 1.25717 2.17749i
\(206\) 8.00000 0.557386
\(207\) −9.00000 + 15.5885i −0.625543 + 1.08347i
\(208\) 6.00000 0.416025
\(209\) −0.500000 + 0.866025i −0.0345857 + 0.0599042i
\(210\) 0 0
\(211\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(212\) 6.00000 + 10.3923i 0.412082 + 0.713746i
\(213\) 18.0000 + 10.3923i 1.23334 + 0.712069i
\(214\) 8.50000 14.7224i 0.581048 1.00640i
\(215\) 20.0000 1.36399
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −8.00000 + 13.8564i −0.541828 + 0.938474i
\(219\) −7.50000 4.33013i −0.506803 0.292603i
\(220\) −2.00000 3.46410i −0.134840 0.233550i
\(221\) −9.00000 15.5885i −0.605406 1.04859i
\(222\) 1.50000 0.866025i 0.100673 0.0581238i
\(223\) −7.00000 + 12.1244i −0.468755 + 0.811907i −0.999362 0.0357107i \(-0.988630\pi\)
0.530607 + 0.847618i \(0.321964\pi\)
\(224\) 0 0
\(225\) −33.0000 −2.20000
\(226\) −14.0000 −0.931266
\(227\) 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i \(-0.801590\pi\)
0.911502 + 0.411296i \(0.134924\pi\)
\(228\) 1.73205i 0.114708i
\(229\) 1.00000 + 1.73205i 0.0660819 + 0.114457i 0.897173 0.441679i \(-0.145617\pi\)
−0.831092 + 0.556136i \(0.812283\pi\)
\(230\) 12.0000 + 20.7846i 0.791257 + 1.37050i
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) −9.00000 15.5885i −0.588348 1.01905i
\(235\) 16.0000 1.04372
\(236\) −5.50000 + 9.52628i −0.358020 + 0.620108i
\(237\) 9.00000 5.19615i 0.584613 0.337526i
\(238\) 0 0
\(239\) −8.00000 13.8564i −0.517477 0.896296i −0.999794 0.0202996i \(-0.993538\pi\)
0.482317 0.875997i \(-0.339795\pi\)
\(240\) −6.00000 3.46410i −0.387298 0.223607i
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 10.0000 0.642824
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) −2.00000 −0.128037
\(245\) −14.0000 + 24.2487i −0.894427 + 1.54919i
\(246\) −13.5000 7.79423i −0.860729 0.496942i
\(247\) 3.00000 + 5.19615i 0.190885 + 0.330623i
\(248\) −1.00000 1.73205i −0.0635001 0.109985i
\(249\) 6.00000 3.46410i 0.380235 0.219529i
\(250\) −12.0000 + 20.7846i −0.758947 + 1.31453i
\(251\) 17.0000 1.07303 0.536515 0.843891i \(-0.319740\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) −1.00000 + 1.73205i −0.0627456 + 0.108679i
\(255\) 20.7846i 1.30158i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.50000 11.2583i −0.405459 0.702275i 0.588916 0.808194i \(-0.299555\pi\)
−0.994375 + 0.105919i \(0.966222\pi\)
\(258\) 8.66025i 0.539164i
\(259\) 0 0
\(260\) −24.0000 −1.48842
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) −15.0000 + 25.9808i −0.924940 + 1.60204i −0.133281 + 0.991078i \(0.542551\pi\)
−0.791658 + 0.610964i \(0.790782\pi\)
\(264\) −1.50000 + 0.866025i −0.0923186 + 0.0533002i
\(265\) −24.0000 41.5692i −1.47431 2.55358i
\(266\) 0 0
\(267\) −15.0000 8.66025i −0.917985 0.529999i
\(268\) −7.50000 + 12.9904i −0.458135 + 0.793514i
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 20.7846i 1.26491i
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 0 0
\(274\) −7.50000 12.9904i −0.453092 0.784778i
\(275\) 5.50000 + 9.52628i 0.331662 + 0.574456i
\(276\) 9.00000 5.19615i 0.541736 0.312772i
\(277\) −12.0000 + 20.7846i −0.721010 + 1.24883i 0.239585 + 0.970875i \(0.422989\pi\)
−0.960595 + 0.277951i \(0.910345\pi\)
\(278\) 1.00000 0.0599760
\(279\) −3.00000 + 5.19615i −0.179605 + 0.311086i
\(280\) 0 0
\(281\) −9.00000 + 15.5885i −0.536895 + 0.929929i 0.462174 + 0.886789i \(0.347070\pi\)
−0.999069 + 0.0431402i \(0.986264\pi\)
\(282\) 6.92820i 0.412568i
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 6.92820i 0.410391i
\(286\) −3.00000 + 5.19615i −0.177394 + 0.307255i
\(287\) 0 0
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −4.50000 + 2.59808i −0.263795 + 0.152302i
\(292\) 2.50000 + 4.33013i 0.146301 + 0.253402i
\(293\) 7.00000 + 12.1244i 0.408944 + 0.708312i 0.994772 0.102123i \(-0.0325637\pi\)
−0.585827 + 0.810436i \(0.699230\pi\)
\(294\) 10.5000 + 6.06218i 0.612372 + 0.353553i
\(295\) 22.0000 38.1051i 1.28089 2.21857i
\(296\) −1.00000 −0.0581238
\(297\) 4.50000 + 2.59808i 0.261116 + 0.150756i
\(298\) 6.00000 0.347571
\(299\) 18.0000 31.1769i 1.04097 1.80301i
\(300\) 16.5000 + 9.52628i 0.952628 + 0.550000i
\(301\) 0 0
\(302\) 6.00000 + 10.3923i 0.345261 + 0.598010i
\(303\) 21.0000 12.1244i 1.20642 0.696526i
\(304\) 0.500000 0.866025i 0.0286770 0.0496700i
\(305\) 8.00000 0.458079
\(306\) 9.00000 0.514496
\(307\) 35.0000 1.99756 0.998778 0.0494267i \(-0.0157394\pi\)
0.998778 + 0.0494267i \(0.0157394\pi\)
\(308\) 0 0
\(309\) 13.8564i 0.788263i
\(310\) 4.00000 + 6.92820i 0.227185 + 0.393496i
\(311\) −9.00000 15.5885i −0.510343 0.883940i −0.999928 0.0119847i \(-0.996185\pi\)
0.489585 0.871956i \(-0.337148\pi\)
\(312\) 10.3923i 0.588348i
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 7.00000 12.1244i 0.393159 0.680972i −0.599705 0.800221i \(-0.704715\pi\)
0.992864 + 0.119249i \(0.0380488\pi\)
\(318\) −18.0000 + 10.3923i −1.00939 + 0.582772i
\(319\) 0 0
\(320\) 2.00000 + 3.46410i 0.111803 + 0.193649i
\(321\) 25.5000 + 14.7224i 1.42327 + 0.821726i
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 9.00000 0.500000
\(325\) 66.0000 3.66102
\(326\) 2.00000 3.46410i 0.110770 0.191859i
\(327\) −24.0000 13.8564i −1.32720 0.766261i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) 0 0
\(330\) 6.00000 3.46410i 0.330289 0.190693i
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) −4.00000 −0.219529
\(333\) 1.50000 + 2.59808i 0.0821995 + 0.142374i
\(334\) 14.0000 0.766046
\(335\) 30.0000 51.9615i 1.63908 2.83896i
\(336\) 0 0
\(337\) −13.5000 23.3827i −0.735392 1.27374i −0.954551 0.298047i \(-0.903665\pi\)
0.219159 0.975689i \(-0.429669\pi\)
\(338\) 11.5000 + 19.9186i 0.625518 + 1.08343i
\(339\) 24.2487i 1.31701i
\(340\) 6.00000 10.3923i 0.325396 0.563602i
\(341\) 2.00000 0.108306
\(342\) −3.00000 −0.162221
\(343\) 0 0
\(344\) −2.50000 + 4.33013i −0.134791 + 0.233465i
\(345\) −36.0000 + 20.7846i −1.93817 + 1.11901i
\(346\) 8.00000 + 13.8564i 0.430083 + 0.744925i
\(347\) −4.50000 7.79423i −0.241573 0.418416i 0.719590 0.694399i \(-0.244330\pi\)
−0.961162 + 0.275983i \(0.910997\pi\)
\(348\) 0 0
\(349\) −5.00000 + 8.66025i −0.267644 + 0.463573i −0.968253 0.249973i \(-0.919578\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) 0 0
\(351\) 27.0000 15.5885i 1.44115 0.832050i
\(352\) 1.00000 0.0533002
\(353\) 7.50000 12.9904i 0.399185 0.691408i −0.594441 0.804139i \(-0.702627\pi\)
0.993626 + 0.112731i \(0.0359599\pi\)
\(354\) −16.5000 9.52628i −0.876965 0.506316i
\(355\) 24.0000 + 41.5692i 1.27379 + 2.20627i
\(356\) 5.00000 + 8.66025i 0.264999 + 0.458993i
\(357\) 0 0
\(358\) 6.00000 10.3923i 0.317110 0.549250i
\(359\) 22.0000 1.16112 0.580558 0.814219i \(-0.302835\pi\)
0.580558 + 0.814219i \(0.302835\pi\)
\(360\) 6.00000 10.3923i 0.316228 0.547723i
\(361\) −18.0000 −0.947368
\(362\) 7.00000 12.1244i 0.367912 0.637242i
\(363\) 17.3205i 0.909091i
\(364\) 0 0
\(365\) −10.0000 17.3205i −0.523424 0.906597i
\(366\) 3.46410i 0.181071i
\(367\) −1.00000 + 1.73205i −0.0521996 + 0.0904123i −0.890945 0.454112i \(-0.849957\pi\)
0.838745 + 0.544524i \(0.183290\pi\)
\(368\) −6.00000 −0.312772
\(369\) 13.5000 23.3827i 0.702782 1.21725i
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 3.00000 1.73205i 0.155543 0.0898027i
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) −1.50000 2.59808i −0.0775632 0.134343i
\(375\) −36.0000 20.7846i −1.85903 1.07331i
\(376\) −2.00000 + 3.46410i −0.103142 + 0.178647i
\(377\) 0 0
\(378\) 0 0
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) −2.00000 + 3.46410i −0.102598 + 0.177705i
\(381\) −3.00000 1.73205i −0.153695 0.0887357i
\(382\) 11.0000 + 19.0526i 0.562809 + 0.974814i
\(383\) 14.0000 + 24.2487i 0.715367 + 1.23905i 0.962818 + 0.270151i \(0.0870736\pi\)
−0.247451 + 0.968900i \(0.579593\pi\)
\(384\) 1.50000 0.866025i 0.0765466 0.0441942i
\(385\) 0 0
\(386\) −11.0000 −0.559885
\(387\) 15.0000 0.762493
\(388\) 3.00000 0.152302
\(389\) −16.0000 + 27.7128i −0.811232 + 1.40510i 0.100770 + 0.994910i \(0.467869\pi\)
−0.912002 + 0.410186i \(0.865464\pi\)
\(390\) 41.5692i 2.10494i
\(391\) 9.00000 + 15.5885i 0.455150 + 0.788342i
\(392\) −3.50000 6.06218i −0.176777 0.306186i
\(393\) 6.92820i 0.349482i
\(394\) −6.00000 + 10.3923i −0.302276 + 0.523557i
\(395\) 24.0000 1.20757
\(396\) −1.50000 2.59808i −0.0753778 0.130558i
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) −7.00000 + 12.1244i −0.350878 + 0.607739i
\(399\) 0 0
\(400\) −5.50000 9.52628i −0.275000 0.476314i
\(401\) 16.5000 + 28.5788i 0.823971 + 1.42716i 0.902703 + 0.430263i \(0.141579\pi\)
−0.0787327 + 0.996896i \(0.525087\pi\)
\(402\) −22.5000 12.9904i −1.12220 0.647901i
\(403\) 6.00000 10.3923i 0.298881 0.517678i
\(404\) −14.0000 −0.696526
\(405\) −36.0000 −1.78885
\(406\) 0 0
\(407\) 0.500000 0.866025i 0.0247841 0.0429273i
\(408\) −4.50000 2.59808i −0.222783 0.128624i
\(409\) −1.50000 2.59808i −0.0741702 0.128467i 0.826555 0.562856i \(-0.190297\pi\)
−0.900725 + 0.434389i \(0.856964\pi\)
\(410\) −18.0000 31.1769i −0.888957 1.53972i
\(411\) 22.5000 12.9904i 1.10984 0.640768i
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) 0 0
\(414\) 9.00000 + 15.5885i 0.442326 + 0.766131i
\(415\) 16.0000 0.785409
\(416\) 3.00000 5.19615i 0.147087 0.254762i
\(417\) 1.73205i 0.0848189i
\(418\) 0.500000 + 0.866025i 0.0244558 + 0.0423587i
\(419\) 8.00000 + 13.8564i 0.390826 + 0.676930i 0.992559 0.121768i \(-0.0388562\pi\)
−0.601733 + 0.798697i \(0.705523\pi\)
\(420\) 0 0
\(421\) 2.00000 3.46410i 0.0974740 0.168830i −0.813164 0.582034i \(-0.802257\pi\)
0.910638 + 0.413204i \(0.135590\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 12.0000 0.582772
\(425\) −16.5000 + 28.5788i −0.800368 + 1.38628i
\(426\) 18.0000 10.3923i 0.872103 0.503509i
\(427\) 0 0
\(428\) −8.50000 14.7224i −0.410863 0.711636i
\(429\) −9.00000 5.19615i −0.434524 0.250873i
\(430\) 10.0000 17.3205i 0.482243 0.835269i
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) −15.0000 −0.720854 −0.360427 0.932787i \(-0.617369\pi\)
−0.360427 + 0.932787i \(0.617369\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.00000 + 13.8564i 0.383131 + 0.663602i
\(437\) −3.00000 5.19615i −0.143509 0.248566i
\(438\) −7.50000 + 4.33013i −0.358364 + 0.206901i
\(439\) −2.00000 + 3.46410i −0.0954548 + 0.165333i −0.909798 0.415051i \(-0.863764\pi\)
0.814344 + 0.580383i \(0.197097\pi\)
\(440\) −4.00000 −0.190693
\(441\) −10.5000 + 18.1865i −0.500000 + 0.866025i
\(442\) −18.0000 −0.856173
\(443\) −4.50000 + 7.79423i −0.213801 + 0.370315i −0.952901 0.303281i \(-0.901918\pi\)
0.739100 + 0.673596i \(0.235251\pi\)
\(444\) 1.73205i 0.0821995i
\(445\) −20.0000 34.6410i −0.948091 1.64214i
\(446\) 7.00000 + 12.1244i 0.331460 + 0.574105i
\(447\) 10.3923i 0.491539i
\(448\) 0 0
\(449\) −25.0000 −1.17982 −0.589911 0.807468i \(-0.700837\pi\)
−0.589911 + 0.807468i \(0.700837\pi\)
\(450\) −16.5000 + 28.5788i −0.777817 + 1.34722i
\(451\) −9.00000 −0.423793
\(452\) −7.00000 + 12.1244i −0.329252 + 0.570282i
\(453\) −18.0000 + 10.3923i −0.845714 + 0.488273i
\(454\) −1.50000 2.59808i −0.0703985 0.121934i
\(455\) 0 0
\(456\) 1.50000 + 0.866025i 0.0702439 + 0.0405554i
\(457\) 4.50000 7.79423i 0.210501 0.364599i −0.741370 0.671096i \(-0.765824\pi\)
0.951871 + 0.306497i \(0.0991571\pi\)
\(458\) 2.00000 0.0934539
\(459\) 15.5885i 0.727607i
\(460\) 24.0000 1.11901
\(461\) 8.00000 13.8564i 0.372597 0.645357i −0.617367 0.786675i \(-0.711801\pi\)
0.989964 + 0.141318i \(0.0451340\pi\)
\(462\) 0 0
\(463\) 7.00000 + 12.1244i 0.325318 + 0.563467i 0.981577 0.191069i \(-0.0611955\pi\)
−0.656259 + 0.754536i \(0.727862\pi\)
\(464\) 0 0
\(465\) −12.0000 + 6.92820i −0.556487 + 0.321288i
\(466\) −0.500000 + 0.866025i −0.0231621 + 0.0401179i
\(467\) 9.00000 0.416470 0.208235 0.978079i \(-0.433228\pi\)
0.208235 + 0.978079i \(0.433228\pi\)
\(468\) −18.0000 −0.832050
\(469\) 0 0
\(470\) 8.00000 13.8564i 0.369012 0.639148i
\(471\) 17.3205i 0.798087i
\(472\) 5.50000 + 9.52628i 0.253158 + 0.438483i
\(473\) −2.50000 4.33013i −0.114950 0.199099i
\(474\) 10.3923i 0.477334i
\(475\) 5.50000 9.52628i 0.252357 0.437096i
\(476\) 0 0
\(477\) −18.0000 31.1769i −0.824163 1.42749i
\(478\) −16.0000 −0.731823
\(479\) −16.0000 + 27.7128i −0.731059 + 1.26623i 0.225372 + 0.974273i \(0.427640\pi\)
−0.956431 + 0.291958i \(0.905693\pi\)
\(480\) −6.00000 + 3.46410i −0.273861 + 0.158114i
\(481\) −3.00000 5.19615i −0.136788 0.236924i
\(482\) −0.500000 0.866025i −0.0227744 0.0394464i
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) −12.0000 −0.544892
\(486\) 15.5885i 0.707107i
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) −1.00000 + 1.73205i −0.0452679 + 0.0784063i
\(489\) 6.00000 + 3.46410i 0.271329 + 0.156652i
\(490\) 14.0000 + 24.2487i 0.632456 + 1.09545i
\(491\) −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i \(-0.276576\pi\)
−0.984145 + 0.177365i \(0.943243\pi\)
\(492\) −13.5000 + 7.79423i −0.608627 + 0.351391i
\(493\) 0 0
\(494\) 6.00000 0.269953
\(495\) 6.00000 + 10.3923i 0.269680 + 0.467099i
\(496\) −2.00000 −0.0898027
\(497\) 0 0
\(498\) 6.92820i 0.310460i
\(499\) −19.5000 33.7750i −0.872940 1.51198i −0.858941 0.512074i \(-0.828877\pi\)
−0.0139987 0.999902i \(-0.504456\pi\)
\(500\) 12.0000 + 20.7846i 0.536656 + 0.929516i
\(501\) 24.2487i 1.08335i
\(502\) 8.50000 14.7224i 0.379374 0.657094i
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) 0 0
\(505\) 56.0000 2.49197
\(506\) 3.00000 5.19615i 0.133366 0.230997i
\(507\) −34.5000 + 19.9186i −1.53220 + 0.884615i
\(508\) 1.00000 + 1.73205i 0.0443678 + 0.0768473i
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 18.0000 + 10.3923i 0.797053 + 0.460179i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 5.19615i 0.229416i
\(514\) −13.0000 −0.573405
\(515\) −16.0000 + 27.7128i −0.705044 + 1.22117i
\(516\) −7.50000 4.33013i −0.330169 0.190623i
\(517\) −2.00000 3.46410i −0.0879599 0.152351i
\(518\) 0 0
\(519\) −24.0000 + 13.8564i −1.05348 + 0.608229i
\(520\) −12.0000 + 20.7846i −0.526235 + 0.911465i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 2.00000 3.46410i 0.0873704 0.151330i
\(525\) 0 0
\(526\) 15.0000 + 25.9808i 0.654031 + 1.13282i
\(527\) 3.00000 + 5.19615i 0.130682 + 0.226348i
\(528\) 1.73205i 0.0753778i
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −48.0000 −2.08499
\(531\) 16.5000 28.5788i 0.716039 1.24022i
\(532\) 0 0
\(533\) −27.0000 + 46.7654i −1.16950 + 2.02563i
\(534\) −15.0000 + 8.66025i −0.649113 + 0.374766i
\(535\) 34.0000 + 58.8897i 1.46995 + 2.54602i
\(536\) 7.50000 + 12.9904i 0.323951 + 0.561099i
\(537\) 18.0000 + 10.3923i 0.776757 + 0.448461i
\(538\) 13.0000 22.5167i 0.560470 0.970762i
\(539\) 7.00000 0.301511
\(540\) 18.0000 + 10.3923i 0.774597 + 0.447214i
\(541\) −42.0000 −1.80572 −0.902861 0.429934i \(-0.858537\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) −3.00000 + 5.19615i −0.128861 + 0.223194i
\(543\) 21.0000 + 12.1244i 0.901196 + 0.520306i
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) −32.0000 55.4256i −1.37073 2.37417i
\(546\) 0 0
\(547\) −7.50000 + 12.9904i −0.320677 + 0.555429i −0.980628 0.195880i \(-0.937244\pi\)
0.659951 + 0.751309i \(0.270577\pi\)
\(548\) −15.0000 −0.640768
\(549\) 6.00000 0.256074
\(550\) 11.0000 0.469042
\(551\) 0 0
\(552\) 10.3923i 0.442326i
\(553\) 0 0
\(554\) 12.0000 + 20.7846i 0.509831 + 0.883053i
\(555\) 6.92820i 0.294086i
\(556\) 0.500000 0.866025i 0.0212047 0.0367277i
\(557\) −10.0000 −0.423714 −0.211857 0.977301i \(-0.567951\pi\)
−0.211857 + 0.977301i \(0.567951\pi\)
\(558\) 3.00000 + 5.19615i 0.127000 + 0.219971i
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 4.50000 2.59808i 0.189990 0.109691i
\(562\) 9.00000 + 15.5885i 0.379642 + 0.657559i
\(563\) −12.5000 21.6506i −0.526812 0.912465i −0.999512 0.0312419i \(-0.990054\pi\)
0.472700 0.881224i \(-0.343280\pi\)
\(564\) −6.00000 3.46410i −0.252646 0.145865i
\(565\) 28.0000 48.4974i 1.17797 2.04030i
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 0.500000 0.866025i 0.0209611 0.0363057i −0.855355 0.518043i \(-0.826661\pi\)
0.876316 + 0.481737i \(0.159994\pi\)
\(570\) −6.00000 3.46410i −0.251312 0.145095i
\(571\) −22.5000 38.9711i −0.941596 1.63089i −0.762428 0.647073i \(-0.775993\pi\)
−0.179168 0.983819i \(-0.557340\pi\)
\(572\) 3.00000 + 5.19615i 0.125436 + 0.217262i
\(573\) −33.0000 + 19.0526i −1.37859 + 0.795932i
\(574\) 0 0
\(575\) −66.0000 −2.75239
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) −23.0000 −0.957503 −0.478751 0.877951i \(-0.658910\pi\)
−0.478751 + 0.877951i \(0.658910\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 19.0526i 0.791797i
\(580\) 0 0
\(581\) 0 0
\(582\) 5.19615i 0.215387i
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) 5.00000 0.206901
\(585\) 72.0000 2.97683
\(586\) 14.0000 0.578335
\(587\) 16.5000 28.5788i 0.681028 1.17957i −0.293640 0.955916i \(-0.594867\pi\)
0.974668 0.223659i \(-0.0718001\pi\)
\(588\) 10.5000 6.06218i 0.433013 0.250000i
\(589\) −1.00000 1.73205i −0.0412043 0.0713679i
\(590\) −22.0000 38.1051i −0.905726 1.56876i
\(591\) −18.0000 10.3923i −0.740421 0.427482i
\(592\) −0.500000 + 0.866025i −0.0205499 + 0.0355934i
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 4.50000 2.59808i 0.184637 0.106600i
\(595\) 0 0
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) −21.0000 12.1244i −0.859473 0.496217i
\(598\) −18.0000 31.1769i −0.736075 1.27492i
\(599\) 13.0000 + 22.5167i 0.531166 + 0.920006i 0.999338 + 0.0363689i \(0.0115791\pi\)
−0.468173 + 0.883637i \(0.655088\pi\)
\(600\) 16.5000 9.52628i 0.673610 0.388909i
\(601\) −15.5000 + 26.8468i −0.632258 + 1.09510i 0.354831 + 0.934931i \(0.384538\pi\)
−0.987089 + 0.160173i \(0.948795\pi\)
\(602\) 0 0
\(603\) 22.5000 38.9711i 0.916271 1.58703i
\(604\) 12.0000 0.488273
\(605\) −20.0000 + 34.6410i −0.813116 + 1.40836i
\(606\) 24.2487i 0.985037i
\(607\) −8.00000 13.8564i −0.324710 0.562414i 0.656744 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191700i \(0.938600\pi\)
\(608\) −0.500000 0.866025i −0.0202777 0.0351220i
\(609\) 0 0
\(610\) 4.00000 6.92820i 0.161955 0.280515i
\(611\) −24.0000 −0.970936
\(612\) 4.50000 7.79423i 0.181902 0.315063i
\(613\) 44.0000 1.77714 0.888572 0.458738i \(-0.151698\pi\)
0.888572 + 0.458738i \(0.151698\pi\)
\(614\) 17.5000 30.3109i 0.706243 1.22325i
\(615\) 54.0000 31.1769i 2.17749 1.25717i
\(616\) 0 0
\(617\) 0.500000 + 0.866025i 0.0201292 + 0.0348649i 0.875915 0.482466i \(-0.160259\pi\)
−0.855785 + 0.517331i \(0.826926\pi\)
\(618\) 12.0000 + 6.92820i 0.482711 + 0.278693i
\(619\) −12.5000 + 21.6506i −0.502417 + 0.870212i 0.497579 + 0.867419i \(0.334223\pi\)
−0.999996 + 0.00279365i \(0.999111\pi\)
\(620\) 8.00000 0.321288
\(621\) −27.0000 + 15.5885i −1.08347 + 0.625543i
\(622\) −18.0000 −0.721734
\(623\) 0 0
\(624\) 9.00000 + 5.19615i 0.360288 + 0.208013i
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 9.50000 + 16.4545i 0.379696 + 0.657653i
\(627\) −1.50000 + 0.866025i −0.0599042 + 0.0345857i
\(628\) −5.00000 + 8.66025i −0.199522 + 0.345582i
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) −3.00000 + 5.19615i −0.119334 + 0.206692i
\(633\) 0 0
\(634\) −7.00000 12.1244i −0.278006 0.481520i
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 20.7846i 0.824163i
\(637\) 21.0000 36.3731i 0.832050 1.44115i
\(638\) 0 0
\(639\) 18.0000 + 31.1769i 0.712069 + 1.23334i
\(640\) 4.00000 0.158114
\(641\) 5.50000 9.52628i 0.217237 0.376265i −0.736725 0.676192i \(-0.763629\pi\)
0.953962 + 0.299927i \(0.0969622\pi\)
\(642\) 25.5000 14.7224i 1.00640 0.581048i
\(643\) −5.50000 9.52628i −0.216899 0.375680i 0.736959 0.675937i \(-0.236261\pi\)
−0.953858 + 0.300257i \(0.902928\pi\)
\(644\) 0 0
\(645\) 30.0000 + 17.3205i 1.18125 + 0.681994i
\(646\) −1.50000 + 2.59808i −0.0590167 + 0.102220i
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) −11.0000 −0.431788
\(650\) 33.0000 57.1577i 1.29437 2.24191i
\(651\) 0 0
\(652\) −2.00000 3.46410i −0.0783260 0.135665i
\(653\) −6.00000 10.3923i −0.234798 0.406682i 0.724416 0.689363i \(-0.242110\pi\)
−0.959214 + 0.282681i \(0.908776\pi\)
\(654\) −24.0000 + 13.8564i −0.938474 + 0.541828i
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) 9.00000 0.351391
\(657\) −7.50000 12.9904i −0.292603 0.506803i
\(658\) 0 0
\(659\) −20.0000 + 34.6410i −0.779089 + 1.34942i 0.153378 + 0.988168i \(0.450985\pi\)
−0.932467 + 0.361255i \(0.882348\pi\)
\(660\) 6.92820i 0.269680i
\(661\) 21.0000 + 36.3731i 0.816805 + 1.41475i 0.908024 + 0.418917i \(0.137590\pi\)
−0.0912190 + 0.995831i \(0.529076\pi\)
\(662\) 2.00000 + 3.46410i 0.0777322 + 0.134636i
\(663\) 31.1769i 1.21081i
\(664\) −2.00000 + 3.46410i −0.0776151 + 0.134433i
\(665\) 0 0
\(666\) 3.00000 0.116248
\(667\) 0 0
\(668\) 7.00000 12.1244i 0.270838 0.469105i
\(669\) −21.0000 + 12.1244i −0.811907 + 0.468755i
\(670\) −30.0000 51.9615i −1.15900 2.00745i
\(671\) −1.00000 1.73205i −0.0386046 0.0668651i
\(672\) 0 0
\(673\) 19.0000 32.9090i 0.732396 1.26855i −0.223460 0.974713i \(-0.571735\pi\)
0.955856 0.293834i \(-0.0949314\pi\)
\(674\) −27.0000 −1.04000
\(675\) −49.5000 28.5788i −1.90526 1.10000i
\(676\) 23.0000 0.884615
\(677\) 5.00000 8.66025i 0.192166 0.332841i −0.753802 0.657102i \(-0.771782\pi\)
0.945968 + 0.324261i \(0.105116\pi\)
\(678\) −21.0000 12.1244i −0.806500 0.465633i
\(679\) 0 0
\(680\) −6.00000 10.3923i −0.230089 0.398527i
\(681\) 4.50000 2.59808i 0.172440 0.0995585i
\(682\) 1.00000 1.73205i 0.0382920 0.0663237i
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) −1.50000 + 2.59808i −0.0573539 + 0.0993399i
\(685\) 60.0000 2.29248
\(686\) 0 0
\(687\) 3.46410i 0.132164i
\(688\) 2.50000 + 4.33013i 0.0953116 + 0.165085i
\(689\) 36.0000 + 62.3538i 1.37149 + 2.37549i
\(690\) 41.5692i 1.58251i
\(691\) 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i \(-0.809092\pi\)
0.901557 + 0.432660i \(0.142425\pi\)
\(692\) 16.0000 0.608229
\(693\) 0 0
\(694\) −9.00000 −0.341635
\(695\) −2.00000 + 3.46410i −0.0758643 + 0.131401i
\(696\) 0 0
\(697\) −13.5000 23.3827i −0.511349 0.885682i
\(698\) 5.00000 + 8.66025i 0.189253 + 0.327795i
\(699\) −1.50000 0.866025i −0.0567352 0.0327561i
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 31.1769i 1.17670i
\(703\) −1.00000 −0.0377157
\(704\) 0.500000 0.866025i 0.0188445 0.0326396i
\(705\) 24.0000 + 13.8564i 0.903892 + 0.521862i
\(706\) −7.50000 12.9904i −0.282266 0.488899i
\(707\) 0 0
\(708\) −16.5000 + 9.52628i −0.620108 + 0.358020i
\(709\) −18.0000 + 31.1769i −0.676004 + 1.17087i 0.300170 + 0.953886i \(0.402957\pi\)
−0.976174 + 0.216988i \(0.930377\pi\)
\(710\) 48.0000 1.80141
\(711\) 18.0000 0.675053
\(712\) 10.0000 0.374766
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) −12.0000 20.7846i −0.448775 0.777300i
\(716\) −6.00000 10.3923i −0.224231 0.388379i
\(717\) 27.7128i 1.03495i
\(718\) 11.0000 19.0526i 0.410516 0.711035i
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) −6.00000 10.3923i −0.223607 0.387298i
\(721\) 0 0
\(722\) −9.00000 + 15.5885i −0.334945 + 0.580142i
\(723\) 1.50000 0.866025i 0.0557856 0.0322078i
\(724\) −7.00000 12.1244i −0.260153 0.450598i
\(725\) 0 0
\(726\) 15.0000 + 8.66025i 0.556702 + 0.321412i
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −20.0000 −0.740233
\(731\) 7.50000 12.9904i 0.277398 0.480467i
\(732\) −3.00000 1.73205i −0.110883 0.0640184i
\(733\) 2.00000 + 3.46410i 0.0738717 + 0.127950i 0.900595 0.434659i \(-0.143131\pi\)
−0.826723 + 0.562609i \(0.809798\pi\)
\(734\) 1.00000 + 1.73205i 0.0369107 + 0.0639312i
\(735\) −42.0000 + 24.2487i −1.54919 + 0.894427i
\(736\) −3.00000 + 5.19615i −0.110581 + 0.191533i
\(737\) −15.0000 −0.552532
\(738\) −13.5000 23.3827i −0.496942 0.860729i
\(739\) −11.0000 −0.404642 −0.202321 0.979319i \(-0.564848\pi\)
−0.202321 + 0.979319i \(0.564848\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) 10.3923i 0.381771i
\(742\) 0 0
\(743\) −24.0000 41.5692i −0.880475 1.52503i −0.850814 0.525467i \(-0.823891\pi\)
−0.0296605 0.999560i \(-0.509443\pi\)
\(744\) 3.46410i 0.127000i
\(745\) −12.0000 + 20.7846i −0.439646 + 0.761489i
\(746\) 4.00000 0.146450
\(747\) 12.0000 0.439057
\(748\) −3.00000 −0.109691
\(749\) 0 0
\(750\) −36.0000 + 20.7846i −1.31453 + 0.758947i
\(751\) 11.0000 + 19.0526i 0.401396 + 0.695238i 0.993895 0.110333i \(-0.0351919\pi\)
−0.592499 + 0.805571i \(0.701859\pi\)
\(752\) 2.00000 + 3.46410i 0.0729325 + 0.126323i
\(753\) 25.5000 + 14.7224i 0.929272 + 0.536515i
\(754\) 0 0
\(755\) −48.0000 −1.74690
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 12.5000 21.6506i 0.454020 0.786386i
\(759\) 9.00000 + 5.19615i 0.326679 + 0.188608i
\(760\) 2.00000 + 3.46410i 0.0725476 + 0.125656i
\(761\) −13.0000 22.5167i −0.471250 0.816228i 0.528209 0.849114i \(-0.322864\pi\)
−0.999459 + 0.0328858i \(0.989530\pi\)
\(762\) −3.00000 + 1.73205i −0.108679 + 0.0627456i
\(763\) 0 0
\(764\) 22.0000 0.795932
\(765\) −18.0000 + 31.1769i −0.650791 + 1.12720i
\(766\) 28.0000 1.01168
\(767\) −33.0000 + 57.1577i −1.19156 + 2.06384i
\(768\) 1.73205i 0.0625000i
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 22.5167i 0.810918i
\(772\) −5.50000 + 9.52628i −0.197949 + 0.342858i
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 7.50000 12.9904i 0.269582 0.466930i
\(775\) −22.0000 −0.790263
\(776\) 1.50000 2.59808i 0.0538469 0.0932655i
\(777\) 0 0
\(778\) 16.0000 + 27.7128i 0.573628 + 0.993552i
\(779\) 4.50000 + 7.79423i 0.161229 + 0.279257i
\(780\) −36.0000 20.7846i −1.28901 0.744208i
\(781\) 6.00000 10.3923i 0.214697 0.371866i
\(782\) 18.0000 0.643679
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) 20.0000 34.6410i 0.713831 1.23639i
\(786\) 6.00000 + 3.46410i 0.214013 + 0.123560i
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 6.00000 + 10.3923i 0.213741 + 0.370211i
\(789\) −45.0000 + 25.9808i −1.60204 + 0.924940i
\(790\) 12.0000 20.7846i 0.426941 0.739483i
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) −12.0000 −0.426132
\(794\) 19.0000 32.9090i 0.674285 1.16790i
\(795\) 83.1384i 2.94862i
\(796\) 7.00000 + 12.1244i 0.248108 + 0.429736i
\(797\) 17.0000 + 29.4449i 0.602171 + 1.04299i 0.992492 + 0.122312i \(0.0390308\pi\)
−0.390321 + 0.920679i \(0.627636\pi\)
\(798\) 0 0
\(799\) 6.00000 10.3923i 0.212265 0.367653i
\(800\) −11.0000 −0.388909
\(801\) −15.0000 25.9808i −0.529999 0.917985i
\(802\) 33.0000 1.16527
\(803\) −2.50000 + 4.33013i −0.0882231 + 0.152807i
\(804\) −22.5000 + 12.9904i −0.793514 + 0.458135i
\(805\) 0 0
\(806\) −6.00000 10.3923i −0.211341 0.366053i
\(807\) 39.0000 + 22.5167i 1.37287 + 0.792624i
\(808\) −7.00000 + 12.1244i −0.246259 + 0.426533i
\(809\) 27.0000 0.949269 0.474635 0.880183i \(-0.342580\pi\)
0.474635 + 0.880183i \(0.342580\pi\)
\(810\) −18.0000 + 31.1769i −0.632456 + 1.09545i
\(811\) 15.0000 0.526721 0.263361 0.964697i \(-0.415169\pi\)
0.263361 + 0.964697i \(0.415169\pi\)
\(812\) 0 0
\(813\) −9.00000 5.19615i −0.315644 0.182237i
\(814\) −0.500000 0.866025i −0.0175250 0.0303542i
\(815\) 8.00000 + 13.8564i 0.280228 + 0.485369i
\(816\) −4.50000 + 2.59808i −0.157532 + 0.0909509i
\(817\) −2.50000 + 4.33013i −0.0874639 + 0.151492i
\(818\) −3.00000 −0.104893
\(819\) 0 0
\(820\) −36.0000 −1.25717
\(821\) 8.00000 13.8564i 0.279202 0.483592i −0.691985 0.721912i \(-0.743263\pi\)
0.971187 + 0.238320i \(0.0765968\pi\)
\(822\) 25.9808i 0.906183i
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 19.0526i 0.663325i
\(826\) 0 0
\(827\) 32.0000 1.11275 0.556375 0.830932i \(-0.312192\pi\)
0.556375 + 0.830932i \(0.312192\pi\)
\(828\) 18.0000 0.625543
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 8.00000 13.8564i 0.277684 0.480963i
\(831\) −36.0000 + 20.7846i −1.24883 + 0.721010i
\(832\) −3.00000 5.19615i −0.104006 0.180144i
\(833\) 10.5000 + 18.1865i 0.363803 + 0.630126i
\(834\) 1.50000 + 0.866025i 0.0519408 + 0.0299880i
\(835\) −28.0000 + 48.4974i −0.968980 + 1.67832i
\(836\) 1.00000 0.0345857
\(837\) −9.00000 + 5.19615i −0.311086 + 0.179605i
\(838\) 16.0000 0.552711
\(839\) −5.00000 + 8.66025i −0.172619 + 0.298985i −0.939335 0.343002i \(-0.888556\pi\)
0.766716 + 0.641987i \(0.221890\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) −2.00000 3.46410i −0.0689246 0.119381i
\(843\) −27.0000 + 15.5885i −0.929929 + 0.536895i
\(844\) 0 0
\(845\) −92.0000 −3.16490
\(846\) 6.00000 10.3923i 0.206284 0.357295i
\(847\) 0 0
\(848\) 6.00000 10.3923i 0.206041 0.356873i
\(849\) 34.6410i 1.18888i
\(850\) 16.5000 + 28.5788i 0.565945 + 0.980246i
\(851\) 3.00000 + 5.19615i 0.102839 + 0.178122i
\(852\) 20.7846i 0.712069i
\(853\) 8.00000 13.8564i 0.273915 0.474434i −0.695946 0.718094i \(-0.745015\pi\)
0.969861 + 0.243660i \(0.0783480\pi\)
\(854\) 0 0
\(855\) 6.00000 10.3923i 0.205196 0.355409i
\(856\) −17.0000 −0.581048
\(857\) −11.0000 + 19.0526i −0.375753 + 0.650823i −0.990439 0.137948i \(-0.955949\pi\)
0.614687 + 0.788771i \(0.289283\pi\)
\(858\) −9.00000 + 5.19615i −0.307255 + 0.177394i
\(859\) −9.50000 16.4545i −0.324136 0.561420i 0.657201 0.753715i \(-0.271740\pi\)
−0.981337 + 0.192295i \(0.938407\pi\)
\(860\) −10.0000 17.3205i −0.340997 0.590624i
\(861\) 0 0
\(862\) −4.00000 + 6.92820i −0.136241 + 0.235976i
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) −64.0000 −2.17607
\(866\) −7.50000 + 12.9904i −0.254860 + 0.441431i
\(867\) −12.0000 6.92820i −0.407541 0.235294i
\(868\) 0 0
\(869\) −3.00000 5.19615i −0.101768 0.176267i
\(870\) 0 0
\(871\) −45.0000 + 77.9423i −1.52477 + 2.64097i
\(872\) 16.0000 0.541828
\(873\) −9.00000 −0.304604
\(874\) −6.00000 −0.202953
\(875\) 0 0
\(876\) 8.66025i 0.292603i
\(877\) 7.00000 + 12.1244i 0.236373 + 0.409410i 0.959671 0.281126i \(-0.0907079\pi\)
−0.723298 + 0.690536i \(0.757375\pi\)
\(878\) 2.00000 + 3.46410i 0.0674967 + 0.116908i
\(879\) 24.2487i 0.817889i
\(880\) −2.00000 + 3.46410i −0.0674200 + 0.116775i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 10.5000 + 18.1865i 0.353553 + 0.612372i
\(883\) 25.0000 0.841317 0.420658 0.907219i \(-0.361799\pi\)
0.420658 + 0.907219i \(0.361799\pi\)
\(884\) −9.00000 + 15.5885i −0.302703 + 0.524297i
\(885\) 66.0000 38.1051i 2.21857 1.28089i
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) −8.00000 13.8564i −0.268614 0.465253i 0.699890 0.714250i \(-0.253232\pi\)
−0.968504 + 0.248998i \(0.919899\pi\)
\(888\) −1.50000 0.866025i −0.0503367 0.0290619i
\(889\) 0 0
\(890\) −40.0000 −1.34080
\(891\) 4.50000 + 7.79423i 0.150756 + 0.261116i
\(892\) 14.0000 0.468755
\(893\) −2.00000 + 3.46410i −0.0669274 + 0.115922i
\(894\) 9.00000 + 5.19615i 0.301005 + 0.173785i
\(895\) 24.0000 + 41.5692i 0.802232 + 1.38951i
\(896\) 0 0
\(897\) 54.0000 31.1769i 1.80301 1.04097i
\(898\) −12.5000 + 21.6506i −0.417130 + 0.722491i
\(899\) 0 0
\(900\) 16.5000 + 28.5788i 0.550000 + 0.952628i
\(901\) −36.0000 −1.19933
\(902\) −4.50000 + 7.79423i −0.149834 + 0.259519i
\(903\) 0 0
\(904\) 7.00000 + 12.1244i 0.232817 + 0.403250i
\(905\) 28.0000 + 48.4974i 0.930751 + 1.61211i
\(906\) 20.7846i 0.690522i
\(907\) 15.5000 26.8468i 0.514669 0.891433i −0.485186 0.874411i \(-0.661248\pi\)
0.999855 0.0170220i \(-0.00541854\pi\)
\(908\) −3.00000 −0.0995585
\(909\) 42.0000 1.39305
\(910\) 0 0
\(911\) 20.0000 34.6410i 0.662630 1.14771i −0.317293 0.948328i \(-0.602774\pi\)
0.979922 0.199380i \(-0.0638929\pi\)
\(912\) 1.50000 0.866025i 0.0496700 0.0286770i
\(913\) −2.00000 3.46410i −0.0661903 0.114645i
\(914\) −4.50000 7.79423i −0.148847 0.257810i
\(915\) 12.0000 + 6.92820i 0.396708 + 0.229039i
\(916\) 1.00000 1.73205i 0.0330409 0.0572286i
\(917\) 0 0
\(918\) 13.5000 + 7.79423i 0.445566 + 0.257248i
\(919\) −50.0000 −1.64935 −0.824674 0.565608i \(-0.808641\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(920\) 12.0000 20.7846i 0.395628 0.685248i
\(921\) 52.5000 + 30.3109i 1.72993 + 0.998778i
\(922\) −8.00000 13.8564i −0.263466 0.456336i
\(923\) −36.0000 62.3538i −1.18495 2.05240i
\(924\) 0 0
\(925\) −5.50000 + 9.52628i −0.180839 + 0.313222i
\(926\) 14.0000 0.460069
\(927\) −12.0000 + 20.7846i −0.394132 + 0.682656i
\(928\) 0 0
\(929\) −13.0000 + 22.5167i −0.426516 + 0.738748i −0.996561 0.0828661i \(-0.973593\pi\)
0.570045 + 0.821614i \(0.306926\pi\)
\(930\) 13.8564i 0.454369i
\(931\) −3.50000 6.06218i −0.114708 0.198680i
\(932\) 0.500000 + 0.866025i 0.0163780 + 0.0283676i
\(933\) 31.1769i 1.02069i
\(934\) 4.50000 7.79423i 0.147244 0.255035i
\(935\) 12.0000 0.392442
\(936\) −9.00000 + 15.5885i −0.294174 + 0.509525i
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 0 0
\(939\) −28.5000 + 16.4545i −0.930062 + 0.536972i
\(940\) −8.00000 13.8564i −0.260931 0.451946i
\(941\) 6.00000 + 10.3923i 0.195594 + 0.338779i 0.947095 0.320953i \(-0.104003\pi\)
−0.751501 + 0.659732i \(0.770670\pi\)
\(942\) −15.0000 8.66025i −0.488726 0.282166i
\(943\) 27.0000 46.7654i 0.879241 1.52289i
\(944\) 11.0000 0.358020
\(945\) 0 0
\(946\) −5.00000 −0.162564
\(947\) 10.5000 18.1865i 0.341204 0.590983i −0.643452 0.765486i \(-0.722499\pi\)
0.984657 + 0.174503i \(0.0558319\pi\)
\(948\) −9.00000 5.19615i −0.292306 0.168763i
\(949\) 15.0000 + 25.9808i 0.486921 + 0.843371i
\(950\) −5.50000 9.52628i −0.178444 0.309073i
\(951\) 21.0000 12.1244i 0.680972 0.393159i
\(952\) 0 0
\(953\) 49.0000 1.58727 0.793633 0.608397i \(-0.208187\pi\)
0.793633 + 0.608397i \(0.208187\pi\)
\(954\) −36.0000 −1.16554
\(955\) −88.0000 −2.84761
\(956\) −8.00000 + 13.8564i −0.258738 + 0.448148i
\(957\) 0 0
\(958\) 16.0000 + 27.7128i 0.516937 + 0.895360i
\(959\) 0 0
\(960\) 6.92820i 0.223607i
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) −6.00000 −0.193448
\(963\) 25.5000 + 44.1673i 0.821726 + 1.42327i
\(964\) −1.00000 −0.0322078
\(965\) 22.0000 38.1051i 0.708205 1.22665i
\(966\) 0 0
\(967\) 26.0000 + 45.0333i 0.836104 + 1.44817i 0.893129 + 0.449801i \(0.148505\pi\)
−0.0570251 + 0.998373i \(0.518161\pi\)
\(968\) −5.00000 8.66025i −0.160706 0.278351i
\(969\) −4.50000 2.59808i −0.144561 0.0834622i
\(970\) −6.00000 + 10.3923i −0.192648 + 0.333677i
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) 0 0
\(974\) −1.00000 + 1.73205i −0.0320421 + 0.0554985i
\(975\) 99.0000 + 57.1577i 3.17054 + 1.83051i
\(976\) 1.00000 + 1.73205i 0.0320092 + 0.0554416i
\(977\) 4.50000 + 7.79423i 0.143968 + 0.249359i 0.928987 0.370111i \(-0.120681\pi\)
−0.785020 + 0.619471i \(0.787347\pi\)
\(978\) 6.00000 3.46410i 0.191859 0.110770i
\(979\) −5.00000 + 8.66025i −0.159801 + 0.276783i
\(980\) 28.0000 0.894427
\(981\) −24.0000 41.5692i −0.766261 1.32720i
\(982\) −15.0000 −0.478669
\(983\) 30.0000 51.9615i 0.956851 1.65732i 0.226778 0.973946i \(-0.427181\pi\)
0.730073 0.683369i \(-0.239486\pi\)
\(984\) 15.5885i 0.496942i
\(985\) −24.0000 41.5692i −0.764704 1.32451i
\(986\) 0 0
\(987\) 0 0
\(988\) 3.00000 5.19615i 0.0954427 0.165312i
\(989\) 30.0000 0.953945
\(990\) 12.0000 0.381385
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) −1.00000 + 1.73205i −0.0317500 + 0.0549927i
\(993\) −6.00000 + 3.46410i −0.190404 + 0.109930i
\(994\) 0 0
\(995\) −28.0000 48.4974i −0.887660 1.53747i
\(996\) −6.00000 3.46410i −0.190117 0.109764i
\(997\) 6.00000 10.3923i 0.190022 0.329128i −0.755235 0.655454i \(-0.772477\pi\)
0.945257 + 0.326326i \(0.105811\pi\)
\(998\) −39.0000 −1.23452
\(999\) 5.19615i 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 666.2.e.b.223.1 2
3.2 odd 2 1998.2.e.a.667.1 2
9.2 odd 6 5994.2.a.h.1.1 1
9.4 even 3 inner 666.2.e.b.445.1 yes 2
9.5 odd 6 1998.2.e.a.1333.1 2
9.7 even 3 5994.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.e.b.223.1 2 1.1 even 1 trivial
666.2.e.b.445.1 yes 2 9.4 even 3 inner
1998.2.e.a.667.1 2 3.2 odd 2
1998.2.e.a.1333.1 2 9.5 odd 6
5994.2.a.a.1.1 1 9.7 even 3
5994.2.a.h.1.1 1 9.2 odd 6