Properties

Label 666.2.c.d
Level $666$
Weight $2$
Character orbit 666.c
Analytic conductor $5.318$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(73,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{4} + q^{7} + \beta_1 q^{8} - \beta_{3} q^{11} - \beta_{2} q^{13} - \beta_1 q^{14} + q^{16} - 3 \beta_1 q^{17} - \beta_{2} q^{19} + \beta_{2} q^{22} - 3 \beta_1 q^{23} + 5 q^{25}+ \cdots + 6 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{7} + 4 q^{16} + 20 q^{25} - 4 q^{28} - 12 q^{34} + 16 q^{37} - 12 q^{46} - 24 q^{49} - 24 q^{58} - 4 q^{64} - 8 q^{67} + 28 q^{73}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 11x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 6\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 16\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{2} + 8\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
1.79129i
2.79129i
1.79129i
2.79129i
1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
73.2 1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
73.3 1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
73.4 1.00000i 0 −1.00000 0 0 1.00000 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
37.b even 2 1 inner
111.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 666.2.c.d 4
3.b odd 2 1 inner 666.2.c.d 4
4.b odd 2 1 5328.2.h.h 4
12.b even 2 1 5328.2.h.h 4
37.b even 2 1 inner 666.2.c.d 4
111.d odd 2 1 inner 666.2.c.d 4
148.b odd 2 1 5328.2.h.h 4
444.g even 2 1 5328.2.h.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
666.2.c.d 4 1.a even 1 1 trivial
666.2.c.d 4 3.b odd 2 1 inner
666.2.c.d 4 37.b even 2 1 inner
666.2.c.d 4 111.d odd 2 1 inner
5328.2.h.h 4 4.b odd 2 1
5328.2.h.h 4 12.b even 2 1
5328.2.h.h 4 148.b odd 2 1
5328.2.h.h 4 444.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 21)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 21)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 8 T + 37)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 84)^{2} \) Copy content Toggle raw display
$67$ \( (T + 2)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$73$ \( (T - 7)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 84)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 21)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 225)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 84)^{2} \) Copy content Toggle raw display
show more
show less