Properties

Label 666.2.bs.b.611.4
Level $666$
Weight $2$
Character 666.611
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 611.4
Character \(\chi\) \(=\) 666.611
Dual form 666.2.bs.b.557.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0871557 - 0.996195i) q^{2} +(-0.984808 + 0.173648i) q^{4} +(3.03635 - 1.41587i) q^{5} +(-1.63046 - 0.593439i) q^{7} +(0.258819 + 0.965926i) q^{8} +O(q^{10})\) \(q+(-0.0871557 - 0.996195i) q^{2} +(-0.984808 + 0.173648i) q^{4} +(3.03635 - 1.41587i) q^{5} +(-1.63046 - 0.593439i) q^{7} +(0.258819 + 0.965926i) q^{8} +(-1.67512 - 2.90139i) q^{10} +(-0.408947 + 0.708318i) q^{11} +(3.82328 - 5.46021i) q^{13} +(-0.449077 + 1.67598i) q^{14} +(0.939693 - 0.342020i) q^{16} +(0.771448 + 1.10174i) q^{17} +(-1.63867 - 0.143365i) q^{19} +(-2.74436 + 1.92162i) q^{20} +(0.741264 + 0.345657i) q^{22} +(-4.85685 - 1.30139i) q^{23} +(4.00077 - 4.76794i) q^{25} +(-5.77265 - 3.33284i) q^{26} +(1.70874 + 0.301297i) q^{28} +(3.12298 - 0.836800i) q^{29} +(5.52010 - 5.52010i) q^{31} +(-0.422618 - 0.906308i) q^{32} +(1.03031 - 0.864536i) q^{34} +(-5.79088 + 0.506636i) q^{35} +(4.15058 + 4.44665i) q^{37} +1.64493i q^{38} +(2.15349 + 2.56643i) q^{40} +(0.631977 + 3.58412i) q^{41} +(-7.38109 - 7.38109i) q^{43} +(0.279736 - 0.768570i) q^{44} +(-0.873134 + 4.95179i) q^{46} +(2.69999 - 1.55884i) q^{47} +(-3.05608 - 2.56435i) q^{49} +(-5.09848 - 3.57000i) q^{50} +(-2.81704 + 6.04116i) q^{52} +(1.64843 + 4.52901i) q^{53} +(-0.238819 + 2.72972i) q^{55} +(0.151224 - 1.72850i) q^{56} +(-1.10580 - 3.03817i) q^{58} +(-3.21090 + 6.88580i) q^{59} +(-9.61763 - 6.73434i) q^{61} +(-5.98021 - 5.01799i) q^{62} +(-0.866025 + 0.500000i) q^{64} +(3.87785 - 21.9924i) q^{65} +(1.99855 - 5.49098i) q^{67} +(-0.951044 - 0.951044i) q^{68} +(1.00942 + 5.72469i) q^{70} +(7.41721 + 8.83948i) q^{71} -6.79194i q^{73} +(4.06798 - 4.52233i) q^{74} +(1.63867 - 0.143365i) q^{76} +(1.08712 - 0.912199i) q^{77} +(3.68293 + 7.89808i) q^{79} +(2.36898 - 2.36898i) q^{80} +(3.51540 - 0.941948i) q^{82} +(-8.80119 - 1.55189i) q^{83} +(3.90231 + 2.25300i) q^{85} +(-6.70970 + 7.99631i) q^{86} +(-0.790026 - 0.211687i) q^{88} +(4.08541 + 1.90506i) q^{89} +(-9.47401 + 6.63377i) q^{91} +(5.00904 + 0.438235i) q^{92} +(-1.78823 - 2.55386i) q^{94} +(-5.17856 + 1.88484i) q^{95} +(-2.31502 + 8.63977i) q^{97} +(-2.28824 + 3.26795i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82} - 108 q^{85} - 24 q^{88} + 216 q^{91} - 60 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{35}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0871557 0.996195i −0.0616284 0.704416i
\(3\) 0 0
\(4\) −0.984808 + 0.173648i −0.492404 + 0.0868241i
\(5\) 3.03635 1.41587i 1.35790 0.633197i 0.398999 0.916951i \(-0.369358\pi\)
0.958897 + 0.283754i \(0.0915800\pi\)
\(6\) 0 0
\(7\) −1.63046 0.593439i −0.616256 0.224299i 0.0149822 0.999888i \(-0.495231\pi\)
−0.631238 + 0.775589i \(0.717453\pi\)
\(8\) 0.258819 + 0.965926i 0.0915064 + 0.341506i
\(9\) 0 0
\(10\) −1.67512 2.90139i −0.529719 0.917501i
\(11\) −0.408947 + 0.708318i −0.123302 + 0.213566i −0.921068 0.389402i \(-0.872682\pi\)
0.797766 + 0.602967i \(0.206015\pi\)
\(12\) 0 0
\(13\) 3.82328 5.46021i 1.06039 1.51439i 0.217677 0.976021i \(-0.430152\pi\)
0.842710 0.538368i \(-0.180959\pi\)
\(14\) −0.449077 + 1.67598i −0.120021 + 0.447924i
\(15\) 0 0
\(16\) 0.939693 0.342020i 0.234923 0.0855050i
\(17\) 0.771448 + 1.10174i 0.187104 + 0.267212i 0.901735 0.432290i \(-0.142294\pi\)
−0.714631 + 0.699502i \(0.753405\pi\)
\(18\) 0 0
\(19\) −1.63867 0.143365i −0.375937 0.0328902i −0.102378 0.994746i \(-0.532645\pi\)
−0.273559 + 0.961855i \(0.588201\pi\)
\(20\) −2.74436 + 1.92162i −0.613656 + 0.429687i
\(21\) 0 0
\(22\) 0.741264 + 0.345657i 0.158038 + 0.0736944i
\(23\) −4.85685 1.30139i −1.01272 0.271358i −0.285956 0.958243i \(-0.592311\pi\)
−0.726766 + 0.686885i \(0.758978\pi\)
\(24\) 0 0
\(25\) 4.00077 4.76794i 0.800155 0.953588i
\(26\) −5.77265 3.33284i −1.13211 0.653624i
\(27\) 0 0
\(28\) 1.70874 + 0.301297i 0.322922 + 0.0569398i
\(29\) 3.12298 0.836800i 0.579923 0.155390i 0.0430794 0.999072i \(-0.486283\pi\)
0.536844 + 0.843682i \(0.319616\pi\)
\(30\) 0 0
\(31\) 5.52010 5.52010i 0.991440 0.991440i −0.00852369 0.999964i \(-0.502713\pi\)
0.999964 + 0.00852369i \(0.00271321\pi\)
\(32\) −0.422618 0.906308i −0.0747091 0.160214i
\(33\) 0 0
\(34\) 1.03031 0.864536i 0.176697 0.148267i
\(35\) −5.79088 + 0.506636i −0.978837 + 0.0856372i
\(36\) 0 0
\(37\) 4.15058 + 4.44665i 0.682351 + 0.731025i
\(38\) 1.64493i 0.266843i
\(39\) 0 0
\(40\) 2.15349 + 2.56643i 0.340497 + 0.405789i
\(41\) 0.631977 + 3.58412i 0.0986982 + 0.559745i 0.993551 + 0.113384i \(0.0361691\pi\)
−0.894853 + 0.446361i \(0.852720\pi\)
\(42\) 0 0
\(43\) −7.38109 7.38109i −1.12561 1.12561i −0.990883 0.134723i \(-0.956986\pi\)
−0.134723 0.990883i \(-0.543014\pi\)
\(44\) 0.279736 0.768570i 0.0421719 0.115866i
\(45\) 0 0
\(46\) −0.873134 + 4.95179i −0.128737 + 0.730101i
\(47\) 2.69999 1.55884i 0.393834 0.227380i −0.289986 0.957031i \(-0.593651\pi\)
0.683820 + 0.729651i \(0.260317\pi\)
\(48\) 0 0
\(49\) −3.05608 2.56435i −0.436583 0.366336i
\(50\) −5.09848 3.57000i −0.721035 0.504874i
\(51\) 0 0
\(52\) −2.81704 + 6.04116i −0.390653 + 0.837758i
\(53\) 1.64843 + 4.52901i 0.226429 + 0.622108i 0.999932 0.0116849i \(-0.00371952\pi\)
−0.773503 + 0.633793i \(0.781497\pi\)
\(54\) 0 0
\(55\) −0.238819 + 2.72972i −0.0322024 + 0.368075i
\(56\) 0.151224 1.72850i 0.0202081 0.230980i
\(57\) 0 0
\(58\) −1.10580 3.03817i −0.145199 0.398931i
\(59\) −3.21090 + 6.88580i −0.418024 + 0.896454i 0.578698 + 0.815542i \(0.303561\pi\)
−0.996721 + 0.0809123i \(0.974217\pi\)
\(60\) 0 0
\(61\) −9.61763 6.73434i −1.23141 0.862243i −0.237388 0.971415i \(-0.576291\pi\)
−0.994023 + 0.109171i \(0.965180\pi\)
\(62\) −5.98021 5.01799i −0.759487 0.637285i
\(63\) 0 0
\(64\) −0.866025 + 0.500000i −0.108253 + 0.0625000i
\(65\) 3.87785 21.9924i 0.480988 2.72782i
\(66\) 0 0
\(67\) 1.99855 5.49098i 0.244162 0.670830i −0.755711 0.654905i \(-0.772709\pi\)
0.999873 0.0159247i \(-0.00506921\pi\)
\(68\) −0.951044 0.951044i −0.115331 0.115331i
\(69\) 0 0
\(70\) 1.00942 + 5.72469i 0.120648 + 0.684231i
\(71\) 7.41721 + 8.83948i 0.880260 + 1.04905i 0.998427 + 0.0560597i \(0.0178537\pi\)
−0.118167 + 0.992994i \(0.537702\pi\)
\(72\) 0 0
\(73\) 6.79194i 0.794936i −0.917616 0.397468i \(-0.869889\pi\)
0.917616 0.397468i \(-0.130111\pi\)
\(74\) 4.06798 4.52233i 0.472894 0.525711i
\(75\) 0 0
\(76\) 1.63867 0.143365i 0.187968 0.0164451i
\(77\) 1.08712 0.912199i 0.123888 0.103955i
\(78\) 0 0
\(79\) 3.68293 + 7.89808i 0.414363 + 0.888603i 0.997112 + 0.0759511i \(0.0241993\pi\)
−0.582749 + 0.812652i \(0.698023\pi\)
\(80\) 2.36898 2.36898i 0.264860 0.264860i
\(81\) 0 0
\(82\) 3.51540 0.941948i 0.388211 0.104021i
\(83\) −8.80119 1.55189i −0.966057 0.170342i −0.331702 0.943384i \(-0.607623\pi\)
−0.634354 + 0.773042i \(0.718734\pi\)
\(84\) 0 0
\(85\) 3.90231 + 2.25300i 0.423265 + 0.244372i
\(86\) −6.70970 + 7.99631i −0.723526 + 0.862264i
\(87\) 0 0
\(88\) −0.790026 0.211687i −0.0842170 0.0225659i
\(89\) 4.08541 + 1.90506i 0.433052 + 0.201936i 0.626906 0.779095i \(-0.284321\pi\)
−0.193854 + 0.981030i \(0.562099\pi\)
\(90\) 0 0
\(91\) −9.47401 + 6.63377i −0.993146 + 0.695408i
\(92\) 5.00904 + 0.438235i 0.522229 + 0.0456891i
\(93\) 0 0
\(94\) −1.78823 2.55386i −0.184442 0.263410i
\(95\) −5.17856 + 1.88484i −0.531309 + 0.193381i
\(96\) 0 0
\(97\) −2.31502 + 8.63977i −0.235055 + 0.877236i 0.743070 + 0.669214i \(0.233369\pi\)
−0.978124 + 0.208022i \(0.933298\pi\)
\(98\) −2.28824 + 3.26795i −0.231147 + 0.330113i
\(99\) 0 0
\(100\) −3.11205 + 5.39023i −0.311205 + 0.539023i
\(101\) 0.210861 + 0.365223i 0.0209815 + 0.0363410i 0.876326 0.481719i \(-0.159988\pi\)
−0.855344 + 0.518060i \(0.826654\pi\)
\(102\) 0 0
\(103\) 1.60026 + 5.97223i 0.157678 + 0.588462i 0.998861 + 0.0477116i \(0.0151929\pi\)
−0.841183 + 0.540750i \(0.818140\pi\)
\(104\) 6.26369 + 2.27980i 0.614206 + 0.223553i
\(105\) 0 0
\(106\) 4.36811 2.03688i 0.424268 0.197839i
\(107\) 15.1622 2.67351i 1.46579 0.258458i 0.616903 0.787039i \(-0.288387\pi\)
0.848882 + 0.528582i \(0.177276\pi\)
\(108\) 0 0
\(109\) 0.911651 + 10.4202i 0.0873204 + 0.998076i 0.905846 + 0.423607i \(0.139236\pi\)
−0.818526 + 0.574470i \(0.805208\pi\)
\(110\) 2.74014 0.261262
\(111\) 0 0
\(112\) −1.73510 −0.163952
\(113\) 0.178190 + 2.03672i 0.0167627 + 0.191599i 0.999959 + 0.00904765i \(0.00287999\pi\)
−0.983196 + 0.182551i \(0.941564\pi\)
\(114\) 0 0
\(115\) −16.5897 + 2.92521i −1.54699 + 0.272777i
\(116\) −2.93023 + 1.36639i −0.272065 + 0.126866i
\(117\) 0 0
\(118\) 7.13944 + 2.59854i 0.657239 + 0.239215i
\(119\) −0.603999 2.25416i −0.0553685 0.206638i
\(120\) 0 0
\(121\) 5.16552 + 8.94695i 0.469593 + 0.813359i
\(122\) −5.87048 + 10.1680i −0.531488 + 0.920564i
\(123\) 0 0
\(124\) −4.47769 + 6.39480i −0.402108 + 0.574270i
\(125\) 1.06142 3.96129i 0.0949367 0.354309i
\(126\) 0 0
\(127\) 14.0829 5.12576i 1.24966 0.454838i 0.369371 0.929282i \(-0.379573\pi\)
0.880285 + 0.474445i \(0.157351\pi\)
\(128\) 0.573576 + 0.819152i 0.0506975 + 0.0724035i
\(129\) 0 0
\(130\) −22.2466 1.94633i −1.95116 0.170704i
\(131\) −11.1992 + 7.84177i −0.978480 + 0.685139i −0.949279 0.314435i \(-0.898185\pi\)
−0.0292006 + 0.999574i \(0.509296\pi\)
\(132\) 0 0
\(133\) 2.58671 + 1.20620i 0.224296 + 0.104591i
\(134\) −5.64427 1.51238i −0.487591 0.130650i
\(135\) 0 0
\(136\) −0.864536 + 1.03031i −0.0741333 + 0.0883487i
\(137\) 17.7917 + 10.2720i 1.52004 + 0.877598i 0.999721 + 0.0236291i \(0.00752207\pi\)
0.520324 + 0.853969i \(0.325811\pi\)
\(138\) 0 0
\(139\) 12.1974 + 2.15072i 1.03457 + 0.182422i 0.665047 0.746801i \(-0.268411\pi\)
0.369519 + 0.929223i \(0.379523\pi\)
\(140\) 5.61493 1.50452i 0.474548 0.127155i
\(141\) 0 0
\(142\) 8.15939 8.15939i 0.684721 0.684721i
\(143\) 2.30404 + 4.94103i 0.192674 + 0.413190i
\(144\) 0 0
\(145\) 8.29765 6.96256i 0.689083 0.578209i
\(146\) −6.76609 + 0.591956i −0.559966 + 0.0489906i
\(147\) 0 0
\(148\) −4.85967 3.65836i −0.399463 0.300715i
\(149\) 19.4180i 1.59078i 0.606095 + 0.795392i \(0.292735\pi\)
−0.606095 + 0.795392i \(0.707265\pi\)
\(150\) 0 0
\(151\) 12.6426 + 15.0668i 1.02884 + 1.22612i 0.973746 + 0.227639i \(0.0731006\pi\)
0.0550915 + 0.998481i \(0.482455\pi\)
\(152\) −0.285639 1.61994i −0.0231684 0.131395i
\(153\) 0 0
\(154\) −1.00348 1.00348i −0.0808624 0.0808624i
\(155\) 8.94519 24.5767i 0.718495 1.97405i
\(156\) 0 0
\(157\) −0.731079 + 4.14615i −0.0583465 + 0.330899i −0.999984 0.00573047i \(-0.998176\pi\)
0.941637 + 0.336630i \(0.109287\pi\)
\(158\) 7.54704 4.35728i 0.600410 0.346647i
\(159\) 0 0
\(160\) −2.56643 2.15349i −0.202894 0.170248i
\(161\) 7.14660 + 5.00411i 0.563231 + 0.394379i
\(162\) 0 0
\(163\) −8.79852 + 18.8685i −0.689153 + 1.47789i 0.180163 + 0.983637i \(0.442337\pi\)
−0.869316 + 0.494257i \(0.835440\pi\)
\(164\) −1.24475 3.41993i −0.0971987 0.267051i
\(165\) 0 0
\(166\) −0.778908 + 8.90296i −0.0604550 + 0.691004i
\(167\) 0.789044 9.01881i 0.0610581 0.697897i −0.902551 0.430582i \(-0.858308\pi\)
0.963609 0.267314i \(-0.0861362\pi\)
\(168\) 0 0
\(169\) −10.7501 29.5358i −0.826934 2.27198i
\(170\) 1.90432 4.08382i 0.146055 0.313215i
\(171\) 0 0
\(172\) 8.55067 + 5.98724i 0.651983 + 0.456523i
\(173\) −8.81124 7.39351i −0.669906 0.562118i 0.243131 0.969993i \(-0.421825\pi\)
−0.913038 + 0.407875i \(0.866270\pi\)
\(174\) 0 0
\(175\) −9.35259 + 5.39972i −0.706989 + 0.408180i
\(176\) −0.142026 + 0.805469i −0.0107056 + 0.0607145i
\(177\) 0 0
\(178\) 1.54174 4.23590i 0.115558 0.317494i
\(179\) 12.1575 + 12.1575i 0.908692 + 0.908692i 0.996167 0.0874747i \(-0.0278797\pi\)
−0.0874747 + 0.996167i \(0.527880\pi\)
\(180\) 0 0
\(181\) −3.32936 18.8817i −0.247469 1.40347i −0.814688 0.579900i \(-0.803092\pi\)
0.567219 0.823567i \(-0.308019\pi\)
\(182\) 7.43424 + 8.85978i 0.551063 + 0.656731i
\(183\) 0 0
\(184\) 5.02818i 0.370682i
\(185\) 18.8985 + 7.62489i 1.38944 + 0.560593i
\(186\) 0 0
\(187\) −1.09587 + 0.0958758i −0.0801376 + 0.00701113i
\(188\) −2.38828 + 2.00401i −0.174184 + 0.146157i
\(189\) 0 0
\(190\) 2.32901 + 4.99458i 0.168964 + 0.362345i
\(191\) 0.602298 0.602298i 0.0435807 0.0435807i −0.684981 0.728561i \(-0.740189\pi\)
0.728561 + 0.684981i \(0.240189\pi\)
\(192\) 0 0
\(193\) −11.7976 + 3.16116i −0.849211 + 0.227545i −0.657077 0.753823i \(-0.728207\pi\)
−0.192134 + 0.981369i \(0.561541\pi\)
\(194\) 8.80866 + 1.55320i 0.632425 + 0.111514i
\(195\) 0 0
\(196\) 3.45495 + 1.99471i 0.246782 + 0.142480i
\(197\) 10.3433 12.3266i 0.736927 0.878236i −0.259230 0.965816i \(-0.583469\pi\)
0.996158 + 0.0875797i \(0.0279133\pi\)
\(198\) 0 0
\(199\) 1.01938 + 0.273141i 0.0722617 + 0.0193625i 0.294769 0.955569i \(-0.404757\pi\)
−0.222507 + 0.974931i \(0.571424\pi\)
\(200\) 5.64095 + 2.63042i 0.398875 + 0.185999i
\(201\) 0 0
\(202\) 0.345455 0.241890i 0.0243061 0.0170193i
\(203\) −5.58849 0.488929i −0.392235 0.0343161i
\(204\) 0 0
\(205\) 6.99355 + 9.98783i 0.488451 + 0.697580i
\(206\) 5.81004 2.11468i 0.404804 0.147337i
\(207\) 0 0
\(208\) 1.72521 6.43855i 0.119621 0.446433i
\(209\) 0.771678 1.10207i 0.0533781 0.0762318i
\(210\) 0 0
\(211\) −2.02817 + 3.51289i −0.139625 + 0.241838i −0.927355 0.374183i \(-0.877923\pi\)
0.787730 + 0.616021i \(0.211256\pi\)
\(212\) −2.40984 4.17396i −0.165508 0.286669i
\(213\) 0 0
\(214\) −3.98480 14.8715i −0.272396 1.01659i
\(215\) −32.8622 11.9609i −2.24119 0.815725i
\(216\) 0 0
\(217\) −12.2762 + 5.72447i −0.833360 + 0.388602i
\(218\) 10.3011 1.81636i 0.697680 0.123020i
\(219\) 0 0
\(220\) −0.238819 2.72972i −0.0161012 0.184037i
\(221\) 8.96520 0.603065
\(222\) 0 0
\(223\) 10.8070 0.723688 0.361844 0.932239i \(-0.382147\pi\)
0.361844 + 0.932239i \(0.382147\pi\)
\(224\) 0.151224 + 1.72850i 0.0101041 + 0.115490i
\(225\) 0 0
\(226\) 2.01344 0.355024i 0.133932 0.0236159i
\(227\) 13.6816 6.37985i 0.908082 0.423446i 0.0882819 0.996096i \(-0.471862\pi\)
0.819800 + 0.572650i \(0.194085\pi\)
\(228\) 0 0
\(229\) −14.2293 5.17903i −0.940296 0.342240i −0.174013 0.984743i \(-0.555674\pi\)
−0.766283 + 0.642504i \(0.777896\pi\)
\(230\) 4.35996 + 16.2716i 0.287487 + 1.07292i
\(231\) 0 0
\(232\) 1.61657 + 2.79999i 0.106133 + 0.183828i
\(233\) −10.1069 + 17.5057i −0.662128 + 1.14684i 0.317928 + 0.948115i \(0.397013\pi\)
−0.980056 + 0.198724i \(0.936320\pi\)
\(234\) 0 0
\(235\) 5.99100 8.55603i 0.390810 0.558134i
\(236\) 1.96641 7.33875i 0.128003 0.477712i
\(237\) 0 0
\(238\) −2.19294 + 0.798163i −0.142147 + 0.0517372i
\(239\) −13.6639 19.5141i −0.883846 1.26226i −0.964114 0.265489i \(-0.914467\pi\)
0.0802681 0.996773i \(-0.474422\pi\)
\(240\) 0 0
\(241\) −8.22920 0.719962i −0.530090 0.0463768i −0.181030 0.983477i \(-0.557943\pi\)
−0.349059 + 0.937101i \(0.613499\pi\)
\(242\) 8.46270 5.92565i 0.544003 0.380915i
\(243\) 0 0
\(244\) 10.6409 + 4.96194i 0.681215 + 0.317656i
\(245\) −12.9101 3.45925i −0.824797 0.221004i
\(246\) 0 0
\(247\) −7.04790 + 8.39936i −0.448447 + 0.534438i
\(248\) 6.76072 + 3.90330i 0.429306 + 0.247860i
\(249\) 0 0
\(250\) −4.03873 0.712136i −0.255431 0.0450395i
\(251\) −26.3270 + 7.05430i −1.66175 + 0.445264i −0.962867 0.269976i \(-0.912984\pi\)
−0.698879 + 0.715240i \(0.746317\pi\)
\(252\) 0 0
\(253\) 2.90799 2.90799i 0.182824 0.182824i
\(254\) −6.33366 13.5826i −0.397409 0.852247i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −11.1131 + 0.972272i −0.693217 + 0.0606486i −0.428319 0.903628i \(-0.640894\pi\)
−0.264898 + 0.964276i \(0.585338\pi\)
\(258\) 0 0
\(259\) −4.12854 9.71321i −0.256535 0.603549i
\(260\) 22.3316i 1.38495i
\(261\) 0 0
\(262\) 8.78801 + 10.4731i 0.542925 + 0.647033i
\(263\) 1.86233 + 10.5618i 0.114836 + 0.651269i 0.986831 + 0.161754i \(0.0517151\pi\)
−0.871995 + 0.489515i \(0.837174\pi\)
\(264\) 0 0
\(265\) 11.4177 + 11.4177i 0.701383 + 0.701383i
\(266\) 0.976166 2.68199i 0.0598526 0.164444i
\(267\) 0 0
\(268\) −1.01469 + 5.75460i −0.0619822 + 0.351518i
\(269\) −12.7358 + 7.35301i −0.776515 + 0.448321i −0.835194 0.549956i \(-0.814645\pi\)
0.0586788 + 0.998277i \(0.481311\pi\)
\(270\) 0 0
\(271\) 15.0829 + 12.6560i 0.916218 + 0.768798i 0.973292 0.229572i \(-0.0737325\pi\)
−0.0570735 + 0.998370i \(0.518177\pi\)
\(272\) 1.10174 + 0.771448i 0.0668029 + 0.0467759i
\(273\) 0 0
\(274\) 8.68229 18.6192i 0.524516 1.12483i
\(275\) 1.74111 + 4.78365i 0.104993 + 0.288465i
\(276\) 0 0
\(277\) −0.361843 + 4.13588i −0.0217410 + 0.248501i 0.977545 + 0.210726i \(0.0675827\pi\)
−0.999286 + 0.0377754i \(0.987973\pi\)
\(278\) 1.07947 12.3384i 0.0647422 0.740007i
\(279\) 0 0
\(280\) −1.98816 5.46243i −0.118815 0.326443i
\(281\) 3.39778 7.28656i 0.202695 0.434680i −0.778515 0.627626i \(-0.784027\pi\)
0.981209 + 0.192946i \(0.0618044\pi\)
\(282\) 0 0
\(283\) −17.3177 12.1260i −1.02943 0.720817i −0.0685151 0.997650i \(-0.521826\pi\)
−0.960918 + 0.276833i \(0.910715\pi\)
\(284\) −8.83948 7.41721i −0.524527 0.440130i
\(285\) 0 0
\(286\) 4.72142 2.72591i 0.279183 0.161187i
\(287\) 1.09654 6.21880i 0.0647269 0.367084i
\(288\) 0 0
\(289\) 5.19564 14.2749i 0.305626 0.839700i
\(290\) −7.65925 7.65925i −0.449767 0.449767i
\(291\) 0 0
\(292\) 1.17941 + 6.68875i 0.0690196 + 0.391430i
\(293\) 19.0596 + 22.7143i 1.11347 + 1.32698i 0.939623 + 0.342210i \(0.111176\pi\)
0.173848 + 0.984773i \(0.444380\pi\)
\(294\) 0 0
\(295\) 25.4539i 1.48198i
\(296\) −3.22089 + 5.16003i −0.187210 + 0.299921i
\(297\) 0 0
\(298\) 19.3441 1.69239i 1.12057 0.0980375i
\(299\) −25.6749 + 21.5438i −1.48482 + 1.24591i
\(300\) 0 0
\(301\) 7.65435 + 16.4148i 0.441190 + 0.946134i
\(302\) 13.9076 13.9076i 0.800293 0.800293i
\(303\) 0 0
\(304\) −1.58888 + 0.425739i −0.0911286 + 0.0244178i
\(305\) −38.7374 6.83045i −2.21810 0.391111i
\(306\) 0 0
\(307\) −0.876906 0.506282i −0.0500476 0.0288950i 0.474767 0.880111i \(-0.342532\pi\)
−0.524815 + 0.851216i \(0.675866\pi\)
\(308\) −0.912199 + 1.08712i −0.0519773 + 0.0619442i
\(309\) 0 0
\(310\) −25.2628 6.76915i −1.43483 0.384462i
\(311\) −20.1595 9.40054i −1.14314 0.533056i −0.243594 0.969877i \(-0.578326\pi\)
−0.899548 + 0.436822i \(0.856104\pi\)
\(312\) 0 0
\(313\) 0.248543 0.174032i 0.0140485 0.00983686i −0.566531 0.824040i \(-0.691715\pi\)
0.580580 + 0.814203i \(0.302826\pi\)
\(314\) 4.19410 + 0.366936i 0.236686 + 0.0207074i
\(315\) 0 0
\(316\) −4.99847 7.13855i −0.281186 0.401575i
\(317\) −4.54976 + 1.65598i −0.255540 + 0.0930088i −0.466614 0.884461i \(-0.654526\pi\)
0.211074 + 0.977470i \(0.432304\pi\)
\(318\) 0 0
\(319\) −0.684415 + 2.55427i −0.0383199 + 0.143012i
\(320\) −1.92162 + 2.74436i −0.107422 + 0.153414i
\(321\) 0 0
\(322\) 4.36220 7.55554i 0.243096 0.421054i
\(323\) −1.10620 1.91599i −0.0615505 0.106609i
\(324\) 0 0
\(325\) −10.7379 40.0742i −0.595629 2.22292i
\(326\) 19.5635 + 7.12054i 1.08352 + 0.394370i
\(327\) 0 0
\(328\) −3.29842 + 1.53808i −0.182125 + 0.0849263i
\(329\) −5.32731 + 0.939349i −0.293704 + 0.0517880i
\(330\) 0 0
\(331\) −0.0646081 0.738474i −0.00355118 0.0405902i 0.994212 0.107433i \(-0.0342630\pi\)
−0.997764 + 0.0668426i \(0.978707\pi\)
\(332\) 8.93697 0.490480
\(333\) 0 0
\(334\) −9.05326 −0.495373
\(335\) −1.70622 19.5022i −0.0932209 1.06552i
\(336\) 0 0
\(337\) 8.58179 1.51320i 0.467480 0.0824294i 0.0650538 0.997882i \(-0.479278\pi\)
0.402426 + 0.915452i \(0.368167\pi\)
\(338\) −28.4864 + 13.2834i −1.54946 + 0.722524i
\(339\) 0 0
\(340\) −4.23426 1.54114i −0.229635 0.0835802i
\(341\) 1.65255 + 6.16742i 0.0894909 + 0.333984i
\(342\) 0 0
\(343\) 9.53388 + 16.5132i 0.514781 + 0.891627i
\(344\) 5.21922 9.03996i 0.281402 0.487402i
\(345\) 0 0
\(346\) −6.59742 + 9.42210i −0.354680 + 0.506535i
\(347\) −1.84100 + 6.87072i −0.0988302 + 0.368840i −0.997572 0.0696382i \(-0.977816\pi\)
0.898742 + 0.438478i \(0.144482\pi\)
\(348\) 0 0
\(349\) 19.7211 7.17791i 1.05565 0.384225i 0.244857 0.969559i \(-0.421259\pi\)
0.810792 + 0.585335i \(0.199037\pi\)
\(350\) 6.19430 + 8.84638i 0.331099 + 0.472859i
\(351\) 0 0
\(352\) 0.814782 + 0.0712842i 0.0434280 + 0.00379946i
\(353\) 19.5114 13.6621i 1.03849 0.727158i 0.0756226 0.997137i \(-0.475906\pi\)
0.962866 + 0.269979i \(0.0870167\pi\)
\(354\) 0 0
\(355\) 35.0368 + 16.3379i 1.85956 + 0.867127i
\(356\) −4.35415 1.16669i −0.230769 0.0618345i
\(357\) 0 0
\(358\) 11.0516 13.1708i 0.584096 0.696099i
\(359\) −21.6682 12.5101i −1.14360 0.660259i −0.196281 0.980548i \(-0.562887\pi\)
−0.947320 + 0.320289i \(0.896220\pi\)
\(360\) 0 0
\(361\) −16.0467 2.82946i −0.844561 0.148919i
\(362\) −18.5197 + 4.96234i −0.973374 + 0.260815i
\(363\) 0 0
\(364\) 8.17813 8.17813i 0.428651 0.428651i
\(365\) −9.61651 20.6227i −0.503351 1.07944i
\(366\) 0 0
\(367\) 4.09410 3.43536i 0.213710 0.179324i −0.529648 0.848217i \(-0.677676\pi\)
0.743359 + 0.668893i \(0.233232\pi\)
\(368\) −5.00904 + 0.438235i −0.261114 + 0.0228446i
\(369\) 0 0
\(370\) 5.94877 19.4911i 0.309262 1.01330i
\(371\) 8.36262i 0.434165i
\(372\) 0 0
\(373\) −18.0104 21.4640i −0.932544 1.11136i −0.993569 0.113227i \(-0.963881\pi\)
0.0610250 0.998136i \(-0.480563\pi\)
\(374\) 0.191022 + 1.08334i 0.00987751 + 0.0560181i
\(375\) 0 0
\(376\) 2.20453 + 2.20453i 0.113690 + 0.113690i
\(377\) 7.37092 20.2514i 0.379622 1.04300i
\(378\) 0 0
\(379\) 3.89565 22.0933i 0.200106 1.13486i −0.704851 0.709355i \(-0.748986\pi\)
0.904957 0.425503i \(-0.139903\pi\)
\(380\) 4.77259 2.75545i 0.244829 0.141352i
\(381\) 0 0
\(382\) −0.652499 0.547512i −0.0333848 0.0280131i
\(383\) −25.7936 18.0609i −1.31799 0.922869i −0.318309 0.947987i \(-0.603115\pi\)
−0.999684 + 0.0251179i \(0.992004\pi\)
\(384\) 0 0
\(385\) 2.00931 4.30897i 0.102404 0.219605i
\(386\) 4.17736 + 11.4772i 0.212622 + 0.584174i
\(387\) 0 0
\(388\) 0.779569 8.91051i 0.0395766 0.452363i
\(389\) 2.18251 24.9462i 0.110658 1.26482i −0.714385 0.699752i \(-0.753294\pi\)
0.825043 0.565070i \(-0.191151\pi\)
\(390\) 0 0
\(391\) −2.31301 6.35495i −0.116974 0.321383i
\(392\) 1.68600 3.61565i 0.0851561 0.182618i
\(393\) 0 0
\(394\) −13.1812 9.22957i −0.664059 0.464979i
\(395\) 22.3653 + 18.7667i 1.12532 + 0.944258i
\(396\) 0 0
\(397\) −3.61960 + 2.08978i −0.181662 + 0.104883i −0.588074 0.808807i \(-0.700113\pi\)
0.406411 + 0.913690i \(0.366780\pi\)
\(398\) 0.183257 1.03930i 0.00918586 0.0520956i
\(399\) 0 0
\(400\) 2.12877 5.84874i 0.106438 0.292437i
\(401\) −2.65103 2.65103i −0.132386 0.132386i 0.637809 0.770195i \(-0.279841\pi\)
−0.770195 + 0.637809i \(0.779841\pi\)
\(402\) 0 0
\(403\) −9.03602 51.2458i −0.450116 2.55274i
\(404\) −0.271078 0.323058i −0.0134866 0.0160728i
\(405\) 0 0
\(406\) 5.60984i 0.278411i
\(407\) −4.84701 + 1.12148i −0.240257 + 0.0555897i
\(408\) 0 0
\(409\) 0.413946 0.0362156i 0.0204683 0.00179075i −0.0769170 0.997038i \(-0.524508\pi\)
0.0973853 + 0.995247i \(0.468952\pi\)
\(410\) 9.34029 7.83744i 0.461284 0.387063i
\(411\) 0 0
\(412\) −2.61301 5.60362i −0.128734 0.276071i
\(413\) 9.32155 9.32155i 0.458683 0.458683i
\(414\) 0 0
\(415\) −28.9208 + 7.74929i −1.41966 + 0.380398i
\(416\) −6.56442 1.15748i −0.321847 0.0567503i
\(417\) 0 0
\(418\) −1.16513 0.672690i −0.0569885 0.0329023i
\(419\) −9.74603 + 11.6149i −0.476124 + 0.567423i −0.949632 0.313367i \(-0.898543\pi\)
0.473508 + 0.880790i \(0.342988\pi\)
\(420\) 0 0
\(421\) 6.39946 + 1.71473i 0.311891 + 0.0835708i 0.411369 0.911469i \(-0.365051\pi\)
−0.0994784 + 0.995040i \(0.531717\pi\)
\(422\) 3.67629 + 1.71428i 0.178959 + 0.0834500i
\(423\) 0 0
\(424\) −3.94805 + 2.76445i −0.191734 + 0.134254i
\(425\) 8.33943 + 0.729605i 0.404522 + 0.0353911i
\(426\) 0 0
\(427\) 11.6847 + 16.6875i 0.565465 + 0.807567i
\(428\) −14.4676 + 5.26578i −0.699318 + 0.254531i
\(429\) 0 0
\(430\) −9.05123 + 33.7797i −0.436489 + 1.62900i
\(431\) −10.7562 + 15.3614i −0.518108 + 0.739935i −0.989899 0.141776i \(-0.954719\pi\)
0.471791 + 0.881710i \(0.343608\pi\)
\(432\) 0 0
\(433\) −8.51178 + 14.7428i −0.409050 + 0.708495i −0.994784 0.102008i \(-0.967473\pi\)
0.585734 + 0.810504i \(0.300806\pi\)
\(434\) 6.77262 + 11.7305i 0.325096 + 0.563083i
\(435\) 0 0
\(436\) −2.70725 10.1036i −0.129654 0.483875i
\(437\) 7.77220 + 2.82885i 0.371795 + 0.135322i
\(438\) 0 0
\(439\) −5.76976 + 2.69048i −0.275375 + 0.128410i −0.555400 0.831583i \(-0.687435\pi\)
0.280025 + 0.959993i \(0.409657\pi\)
\(440\) −2.69851 + 0.475821i −0.128647 + 0.0226839i
\(441\) 0 0
\(442\) −0.781369 8.93109i −0.0371659 0.424808i
\(443\) 37.3415 1.77415 0.887075 0.461626i \(-0.152734\pi\)
0.887075 + 0.461626i \(0.152734\pi\)
\(444\) 0 0
\(445\) 15.1020 0.715905
\(446\) −0.941890 10.7658i −0.0445998 0.509778i
\(447\) 0 0
\(448\) 1.70874 0.301297i 0.0807304 0.0142349i
\(449\) 19.1943 8.95045i 0.905835 0.422398i 0.0868558 0.996221i \(-0.472318\pi\)
0.818979 + 0.573823i \(0.194540\pi\)
\(450\) 0 0
\(451\) −2.79714 1.01808i −0.131712 0.0479393i
\(452\) −0.529157 1.97484i −0.0248894 0.0928886i
\(453\) 0 0
\(454\) −7.54801 13.0735i −0.354245 0.613571i
\(455\) −19.3738 + 33.5564i −0.908258 + 1.57315i
\(456\) 0 0
\(457\) −2.18859 + 3.12562i −0.102378 + 0.146211i −0.867072 0.498182i \(-0.834001\pi\)
0.764695 + 0.644393i \(0.222890\pi\)
\(458\) −3.91916 + 14.6265i −0.183130 + 0.683451i
\(459\) 0 0
\(460\) 15.8297 5.76153i 0.738063 0.268633i
\(461\) −3.94703 5.63695i −0.183832 0.262539i 0.716650 0.697433i \(-0.245675\pi\)
−0.900481 + 0.434894i \(0.856786\pi\)
\(462\) 0 0
\(463\) −3.21677 0.281431i −0.149496 0.0130792i 0.0121620 0.999926i \(-0.496129\pi\)
−0.161658 + 0.986847i \(0.551684\pi\)
\(464\) 2.64844 1.85446i 0.122951 0.0860910i
\(465\) 0 0
\(466\) 18.3200 + 8.54275i 0.848657 + 0.395735i
\(467\) 31.6040 + 8.46826i 1.46246 + 0.391864i 0.900338 0.435191i \(-0.143319\pi\)
0.562120 + 0.827056i \(0.309986\pi\)
\(468\) 0 0
\(469\) −6.51712 + 7.76681i −0.300933 + 0.358638i
\(470\) −9.04562 5.22249i −0.417243 0.240896i
\(471\) 0 0
\(472\) −7.48221 1.31932i −0.344397 0.0607264i
\(473\) 8.24664 2.20968i 0.379181 0.101601i
\(474\) 0 0
\(475\) −7.23951 + 7.23951i −0.332171 + 0.332171i
\(476\) 0.986253 + 2.11503i 0.0452048 + 0.0969421i
\(477\) 0 0
\(478\) −18.2490 + 15.3127i −0.834688 + 0.700386i
\(479\) −12.4516 + 1.08937i −0.568928 + 0.0497748i −0.367991 0.929829i \(-0.619954\pi\)
−0.200937 + 0.979604i \(0.564399\pi\)
\(480\) 0 0
\(481\) 40.1484 5.66222i 1.83061 0.258175i
\(482\) 8.26064i 0.376262i
\(483\) 0 0
\(484\) −6.64067 7.91404i −0.301849 0.359729i
\(485\) 5.20361 + 29.5111i 0.236284 + 1.34003i
\(486\) 0 0
\(487\) 19.6770 + 19.6770i 0.891648 + 0.891648i 0.994678 0.103030i \(-0.0328538\pi\)
−0.103030 + 0.994678i \(0.532854\pi\)
\(488\) 4.01564 11.0329i 0.181780 0.499435i
\(489\) 0 0
\(490\) −2.32090 + 13.1625i −0.104848 + 0.594620i
\(491\) 29.7687 17.1870i 1.34344 0.775638i 0.356134 0.934435i \(-0.384095\pi\)
0.987311 + 0.158797i \(0.0507615\pi\)
\(492\) 0 0
\(493\) 3.33116 + 2.79517i 0.150028 + 0.125888i
\(494\) 8.98166 + 6.28903i 0.404104 + 0.282957i
\(495\) 0 0
\(496\) 3.29921 7.07519i 0.148139 0.317685i
\(497\) −6.84777 18.8141i −0.307164 0.843927i
\(498\) 0 0
\(499\) −1.75238 + 20.0298i −0.0784475 + 0.896659i 0.850386 + 0.526160i \(0.176369\pi\)
−0.928833 + 0.370499i \(0.879187\pi\)
\(500\) −0.357428 + 4.08542i −0.0159847 + 0.182706i
\(501\) 0 0
\(502\) 9.32201 + 25.6120i 0.416062 + 1.14312i
\(503\) −1.35987 + 2.91624i −0.0606334 + 0.130029i −0.934290 0.356515i \(-0.883965\pi\)
0.873656 + 0.486544i \(0.161743\pi\)
\(504\) 0 0
\(505\) 1.15736 + 0.810390i 0.0515017 + 0.0360619i
\(506\) −3.15037 2.64348i −0.140051 0.117517i
\(507\) 0 0
\(508\) −12.9789 + 7.49336i −0.575845 + 0.332464i
\(509\) −2.19317 + 12.4381i −0.0972105 + 0.551308i 0.896837 + 0.442361i \(0.145859\pi\)
−0.994048 + 0.108947i \(0.965252\pi\)
\(510\) 0 0
\(511\) −4.03060 + 11.0740i −0.178303 + 0.489884i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 1.93714 + 10.9861i 0.0854438 + 0.484576i
\(515\) 13.3149 + 15.8680i 0.586722 + 0.699229i
\(516\) 0 0
\(517\) 2.54994i 0.112146i
\(518\) −9.31642 + 4.95939i −0.409340 + 0.217903i
\(519\) 0 0
\(520\) 22.2466 1.94633i 0.975580 0.0853522i
\(521\) −24.5741 + 20.6201i −1.07661 + 0.903384i −0.995635 0.0933320i \(-0.970248\pi\)
−0.0809762 + 0.996716i \(0.525804\pi\)
\(522\) 0 0
\(523\) −6.24419 13.3907i −0.273039 0.585535i 0.721199 0.692728i \(-0.243591\pi\)
−0.994238 + 0.107193i \(0.965814\pi\)
\(524\) 9.66736 9.66736i 0.422321 0.422321i
\(525\) 0 0
\(526\) 10.3593 2.77577i 0.451687 0.121029i
\(527\) 10.3402 + 1.82326i 0.450426 + 0.0794223i
\(528\) 0 0
\(529\) 1.97676 + 1.14128i 0.0859461 + 0.0496210i
\(530\) 10.3791 12.3694i 0.450841 0.537291i
\(531\) 0 0
\(532\) −2.75687 0.738700i −0.119525 0.0320267i
\(533\) 21.9862 + 10.2524i 0.952330 + 0.444079i
\(534\) 0 0
\(535\) 42.2524 29.5854i 1.82673 1.27909i
\(536\) 5.82114 + 0.509284i 0.251435 + 0.0219977i
\(537\) 0 0
\(538\) 8.43503 + 12.0465i 0.363660 + 0.519360i
\(539\) 3.06615 1.11599i 0.132069 0.0480690i
\(540\) 0 0
\(541\) −7.38298 + 27.5537i −0.317419 + 1.18462i 0.604297 + 0.796759i \(0.293454\pi\)
−0.921716 + 0.387865i \(0.873213\pi\)
\(542\) 11.2933 16.1285i 0.485089 0.692779i
\(543\) 0 0
\(544\) 0.672489 1.16479i 0.0288327 0.0499398i
\(545\) 17.5218 + 30.3486i 0.750551 + 1.29999i
\(546\) 0 0
\(547\) −8.29393 30.9534i −0.354623 1.32347i −0.880958 0.473194i \(-0.843101\pi\)
0.526335 0.850277i \(-0.323566\pi\)
\(548\) −19.3051 7.02648i −0.824673 0.300156i
\(549\) 0 0
\(550\) 4.61370 2.15141i 0.196729 0.0917362i
\(551\) −5.23751 + 0.923514i −0.223125 + 0.0393430i
\(552\) 0 0
\(553\) −1.31785 15.0631i −0.0560407 0.640548i
\(554\) 4.15168 0.176388
\(555\) 0 0
\(556\) −12.3855 −0.525263
\(557\) −2.44565 27.9540i −0.103626 1.18445i −0.852859 0.522141i \(-0.825133\pi\)
0.749233 0.662306i \(-0.230422\pi\)
\(558\) 0 0
\(559\) −68.5223 + 12.0823i −2.89818 + 0.511028i
\(560\) −5.26837 + 2.45668i −0.222629 + 0.103814i
\(561\) 0 0
\(562\) −7.55497 2.74978i −0.318687 0.115993i
\(563\) −1.80695 6.74362i −0.0761538 0.284210i 0.917339 0.398108i \(-0.130333\pi\)
−0.993492 + 0.113898i \(0.963666\pi\)
\(564\) 0 0
\(565\) 3.42479 + 5.93191i 0.144082 + 0.249557i
\(566\) −10.5705 + 18.3087i −0.444313 + 0.769572i
\(567\) 0 0
\(568\) −6.61857 + 9.45230i −0.277709 + 0.396610i
\(569\) −9.55065 + 35.6435i −0.400384 + 1.49425i 0.412028 + 0.911171i \(0.364820\pi\)
−0.812413 + 0.583083i \(0.801846\pi\)
\(570\) 0 0
\(571\) 14.9607 5.44523i 0.626084 0.227876i −0.00944192 0.999955i \(-0.503006\pi\)
0.635526 + 0.772079i \(0.280783\pi\)
\(572\) −3.12704 4.46587i −0.130748 0.186728i
\(573\) 0 0
\(574\) −6.29071 0.550366i −0.262569 0.0229718i
\(575\) −25.6361 + 17.9506i −1.06910 + 0.748591i
\(576\) 0 0
\(577\) 23.2050 + 10.8207i 0.966035 + 0.450470i 0.840614 0.541634i \(-0.182194\pi\)
0.125421 + 0.992104i \(0.459972\pi\)
\(578\) −14.6734 3.93173i −0.610333 0.163538i
\(579\) 0 0
\(580\) −6.96256 + 8.29765i −0.289105 + 0.344541i
\(581\) 13.4291 + 7.75327i 0.557131 + 0.321660i
\(582\) 0 0
\(583\) −3.88210 0.684519i −0.160780 0.0283499i
\(584\) 6.56051 1.75788i 0.271476 0.0727417i
\(585\) 0 0
\(586\) 20.9667 20.9667i 0.866127 0.866127i
\(587\) −1.66266 3.56560i −0.0686255 0.147168i 0.869003 0.494807i \(-0.164761\pi\)
−0.937628 + 0.347639i \(0.886983\pi\)
\(588\) 0 0
\(589\) −9.83702 + 8.25424i −0.405328 + 0.340110i
\(590\) 25.3570 2.21845i 1.04393 0.0913323i
\(591\) 0 0
\(592\) 5.42111 + 2.75890i 0.222806 + 0.113390i
\(593\) 48.1508i 1.97732i −0.150186 0.988658i \(-0.547987\pi\)
0.150186 0.988658i \(-0.452013\pi\)
\(594\) 0 0
\(595\) −5.02555 5.98921i −0.206027 0.245534i
\(596\) −3.37190 19.1230i −0.138118 0.783308i
\(597\) 0 0
\(598\) 23.6996 + 23.6996i 0.969147 + 0.969147i
\(599\) −12.6466 + 34.7463i −0.516726 + 1.41969i 0.357380 + 0.933959i \(0.383670\pi\)
−0.874106 + 0.485734i \(0.838552\pi\)
\(600\) 0 0
\(601\) 1.37685 7.80848i 0.0561627 0.318514i −0.943764 0.330620i \(-0.892742\pi\)
0.999927 + 0.0121053i \(0.00385335\pi\)
\(602\) 15.6852 9.05587i 0.639282 0.369090i
\(603\) 0 0
\(604\) −15.0668 12.6426i −0.613060 0.514419i
\(605\) 28.3521 + 19.8523i 1.15268 + 0.807112i
\(606\) 0 0
\(607\) 7.35163 15.7656i 0.298394 0.639907i −0.698756 0.715360i \(-0.746263\pi\)
0.997149 + 0.0754532i \(0.0240404\pi\)
\(608\) 0.562599 + 1.54573i 0.0228164 + 0.0626876i
\(609\) 0 0
\(610\) −3.42827 + 39.1853i −0.138807 + 1.58657i
\(611\) 1.81123 20.7024i 0.0732744 0.837530i
\(612\) 0 0
\(613\) −11.8053 32.4349i −0.476812 1.31003i −0.912184 0.409781i \(-0.865605\pi\)
0.435372 0.900251i \(-0.356617\pi\)
\(614\) −0.427928 + 0.917694i −0.0172698 + 0.0370351i
\(615\) 0 0
\(616\) 1.16248 + 0.813979i 0.0468378 + 0.0327962i
\(617\) 5.88742 + 4.94013i 0.237018 + 0.198882i 0.753558 0.657381i \(-0.228336\pi\)
−0.516540 + 0.856263i \(0.672780\pi\)
\(618\) 0 0
\(619\) −28.1737 + 16.2661i −1.13240 + 0.653790i −0.944537 0.328406i \(-0.893489\pi\)
−0.187860 + 0.982196i \(0.560155\pi\)
\(620\) −4.54159 + 25.7567i −0.182395 + 1.03441i
\(621\) 0 0
\(622\) −7.60775 + 20.9021i −0.305043 + 0.838099i
\(623\) −5.53056 5.53056i −0.221577 0.221577i
\(624\) 0 0
\(625\) 3.01819 + 17.1170i 0.120728 + 0.684681i
\(626\) −0.195032 0.232430i −0.00779503 0.00928975i
\(627\) 0 0
\(628\) 4.21012i 0.168002i
\(629\) −1.69711 + 8.00323i −0.0676681 + 0.319110i
\(630\) 0 0
\(631\) −45.5685 + 3.98673i −1.81405 + 0.158709i −0.943068 0.332599i \(-0.892074\pi\)
−0.870986 + 0.491308i \(0.836519\pi\)
\(632\) −6.67574 + 5.60161i −0.265547 + 0.222820i
\(633\) 0 0
\(634\) 2.04621 + 4.38811i 0.0812654 + 0.174274i
\(635\) 35.5032 35.5032i 1.40890 1.40890i
\(636\) 0 0
\(637\) −25.6861 + 6.88258i −1.01772 + 0.272698i
\(638\) 2.60420 + 0.459191i 0.103101 + 0.0181795i
\(639\) 0 0
\(640\) 2.90139 + 1.67512i 0.114688 + 0.0662149i
\(641\) 11.9478 14.2389i 0.471912 0.562402i −0.476610 0.879115i \(-0.658135\pi\)
0.948522 + 0.316712i \(0.102579\pi\)
\(642\) 0 0
\(643\) −3.08212 0.825851i −0.121547 0.0325684i 0.197533 0.980296i \(-0.436707\pi\)
−0.319080 + 0.947728i \(0.603374\pi\)
\(644\) −7.90698 3.68709i −0.311579 0.145292i
\(645\) 0 0
\(646\) −1.81229 + 1.26898i −0.0713036 + 0.0499273i
\(647\) 26.5704 + 2.32461i 1.04459 + 0.0913897i 0.596511 0.802605i \(-0.296553\pi\)
0.448078 + 0.893994i \(0.352109\pi\)
\(648\) 0 0
\(649\) −3.56424 5.09027i −0.139909 0.199810i
\(650\) −38.9859 + 14.1897i −1.52915 + 0.556565i
\(651\) 0 0
\(652\) 5.38837 20.1097i 0.211025 0.787556i
\(653\) −4.16408 + 5.94692i −0.162953 + 0.232721i −0.892322 0.451400i \(-0.850925\pi\)
0.729369 + 0.684121i \(0.239814\pi\)
\(654\) 0 0
\(655\) −22.9018 + 39.6670i −0.894846 + 1.54992i
\(656\) 1.81970 + 3.15182i 0.0710475 + 0.123058i
\(657\) 0 0
\(658\) 1.40008 + 5.22517i 0.0545808 + 0.203698i
\(659\) −32.3747 11.7834i −1.26114 0.459018i −0.376989 0.926218i \(-0.623040\pi\)
−0.884151 + 0.467200i \(0.845263\pi\)
\(660\) 0 0
\(661\) −33.1559 + 15.4608i −1.28961 + 0.601357i −0.941790 0.336203i \(-0.890857\pi\)
−0.347825 + 0.937560i \(0.613080\pi\)
\(662\) −0.730033 + 0.128724i −0.0283735 + 0.00500302i
\(663\) 0 0
\(664\) −0.778908 8.90296i −0.0302275 0.345502i
\(665\) 9.56198 0.370798
\(666\) 0 0
\(667\) −16.2568 −0.629467
\(668\) 0.789044 + 9.01881i 0.0305290 + 0.348948i
\(669\) 0 0
\(670\) −19.2793 + 3.39946i −0.744824 + 0.131333i
\(671\) 8.70315 4.05835i 0.335981 0.156671i
\(672\) 0 0
\(673\) 37.0570 + 13.4876i 1.42844 + 0.519910i 0.936485 0.350709i \(-0.114059\pi\)
0.491957 + 0.870619i \(0.336282\pi\)
\(674\) −2.25540 8.41725i −0.0868746 0.324220i
\(675\) 0 0
\(676\) 15.7157 + 27.2203i 0.604448 + 1.04694i
\(677\) 21.1366 36.6096i 0.812344 1.40702i −0.0988759 0.995100i \(-0.531525\pi\)
0.911220 0.411921i \(-0.135142\pi\)
\(678\) 0 0
\(679\) 8.90173 12.7130i 0.341617 0.487880i
\(680\) −1.16624 + 4.35246i −0.0447232 + 0.166909i
\(681\) 0 0
\(682\) 5.99992 2.18379i 0.229749 0.0836217i
\(683\) −5.32225 7.60097i −0.203650 0.290843i 0.704315 0.709887i \(-0.251254\pi\)
−0.907966 + 0.419044i \(0.862365\pi\)
\(684\) 0 0
\(685\) 68.5656 + 5.99871i 2.61976 + 0.229199i
\(686\) 15.6194 10.9368i 0.596351 0.417570i
\(687\) 0 0
\(688\) −9.46044 4.41148i −0.360676 0.168186i
\(689\) 31.0317 + 8.31493i 1.18221 + 0.316773i
\(690\) 0 0
\(691\) 8.66544 10.3271i 0.329649 0.392860i −0.575608 0.817726i \(-0.695234\pi\)
0.905256 + 0.424866i \(0.139679\pi\)
\(692\) 9.96125 + 5.75113i 0.378670 + 0.218625i
\(693\) 0 0
\(694\) 7.00503 + 1.23518i 0.265907 + 0.0468866i
\(695\) 40.0806 10.7396i 1.52034 0.407374i
\(696\) 0 0
\(697\) −3.46124 + 3.46124i −0.131104 + 0.131104i
\(698\) −8.86941 19.0205i −0.335712 0.719937i
\(699\) 0 0
\(700\) 8.27285 6.94174i 0.312684 0.262373i
\(701\) −17.4580 + 1.52738i −0.659381 + 0.0576884i −0.411935 0.911213i \(-0.635147\pi\)
−0.247446 + 0.968902i \(0.579591\pi\)
\(702\) 0 0
\(703\) −6.16394 7.88165i −0.232477 0.297262i
\(704\) 0.817895i 0.0308256i
\(705\) 0 0
\(706\) −15.3106 18.2465i −0.576222 0.686715i
\(707\) −0.127064 0.720615i −0.00477873 0.0271015i
\(708\) 0 0
\(709\) 11.5743 + 11.5743i 0.434682 + 0.434682i 0.890217 0.455536i \(-0.150552\pi\)
−0.455536 + 0.890217i \(0.650552\pi\)
\(710\) 13.2221 36.3274i 0.496216 1.36334i
\(711\) 0 0
\(712\) −0.782762 + 4.43926i −0.0293352 + 0.166368i
\(713\) −33.9941 + 19.6265i −1.27309 + 0.735018i
\(714\) 0 0
\(715\) 13.9917 + 11.7405i 0.523261 + 0.439068i
\(716\) −14.0839 9.86165i −0.526340 0.368547i
\(717\) 0 0
\(718\) −10.5740 + 22.6760i −0.394618 + 0.846262i
\(719\) −0.0849192 0.233314i −0.00316695 0.00870113i 0.938099 0.346367i \(-0.112585\pi\)
−0.941266 + 0.337666i \(0.890363\pi\)
\(720\) 0 0
\(721\) 0.935004 10.6871i 0.0348214 0.398010i
\(722\) −1.42013 + 16.2322i −0.0528519 + 0.604100i
\(723\) 0 0
\(724\) 6.55755 + 18.0167i 0.243710 + 0.669586i
\(725\) 8.50453 18.2380i 0.315850 0.677343i
\(726\) 0 0
\(727\) 22.6187 + 15.8378i 0.838882 + 0.587392i 0.912120 0.409923i \(-0.134444\pi\)
−0.0732381 + 0.997314i \(0.523333\pi\)
\(728\) −8.85978 7.43424i −0.328365 0.275531i
\(729\) 0 0
\(730\) −19.7061 + 11.3773i −0.729354 + 0.421093i
\(731\) 2.43793 13.8262i 0.0901701 0.511380i
\(732\) 0 0
\(733\) 17.1150 47.0230i 0.632156 1.73683i −0.0429139 0.999079i \(-0.513664\pi\)
0.675069 0.737754i \(-0.264114\pi\)
\(734\) −3.77911 3.77911i −0.139489 0.139489i
\(735\) 0 0
\(736\) 0.873134 + 4.95179i 0.0321841 + 0.182525i
\(737\) 3.07205 + 3.66113i 0.113161 + 0.134860i
\(738\) 0 0
\(739\) 9.81171i 0.360930i −0.983581 0.180465i \(-0.942240\pi\)
0.983581 0.180465i \(-0.0577602\pi\)
\(740\) −19.9354 4.22737i −0.732841 0.155401i
\(741\) 0 0
\(742\) −8.33079 + 0.728850i −0.305833 + 0.0267569i
\(743\) 8.68448 7.28714i 0.318603 0.267339i −0.469434 0.882967i \(-0.655542\pi\)
0.788037 + 0.615628i \(0.211098\pi\)
\(744\) 0 0
\(745\) 27.4934 + 58.9598i 1.00728 + 2.16012i
\(746\) −19.8126 + 19.8126i −0.725391 + 0.725391i
\(747\) 0 0
\(748\) 1.06257 0.284714i 0.0388513 0.0104102i
\(749\) −26.3079 4.63880i −0.961271 0.169498i
\(750\) 0 0
\(751\) 9.74676 + 5.62729i 0.355664 + 0.205343i 0.667177 0.744899i \(-0.267502\pi\)
−0.311513 + 0.950242i \(0.600836\pi\)
\(752\) 2.00401 2.38828i 0.0730787 0.0870918i
\(753\) 0 0
\(754\) −20.8168 5.57784i −0.758103 0.203133i
\(755\) 59.7199 + 27.8478i 2.17343 + 1.01349i
\(756\) 0 0
\(757\) −36.7598 + 25.7395i −1.33606 + 0.935519i −0.999980 0.00631526i \(-0.997990\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(758\) −22.3488 1.95527i −0.811744 0.0710184i
\(759\) 0 0
\(760\) −3.16093 4.51427i −0.114659 0.163750i
\(761\) −43.7804 + 15.9348i −1.58704 + 0.577635i −0.976719 0.214521i \(-0.931181\pi\)
−0.610319 + 0.792156i \(0.708959\pi\)
\(762\) 0 0
\(763\) 4.69736 17.5308i 0.170056 0.634657i
\(764\) −0.488559 + 0.697735i −0.0176755 + 0.0252432i
\(765\) 0 0
\(766\) −15.7441 + 27.2696i −0.568858 + 0.985291i
\(767\) 25.3217 + 43.8585i 0.914314 + 1.58364i
\(768\) 0 0
\(769\) −6.23702 23.2769i −0.224913 0.839385i −0.982439 0.186581i \(-0.940259\pi\)
0.757527 0.652804i \(-0.226407\pi\)
\(770\) −4.46770 1.62611i −0.161005 0.0586009i
\(771\) 0 0
\(772\) 11.0695 5.16177i 0.398398 0.185776i
\(773\) 19.9357 3.51520i 0.717036 0.126433i 0.196786 0.980447i \(-0.436950\pi\)
0.520250 + 0.854014i \(0.325839\pi\)
\(774\) 0 0
\(775\) −4.23482 48.4042i −0.152119 1.73873i
\(776\) −8.94455 −0.321091
\(777\) 0 0
\(778\) −25.0415 −0.897781
\(779\) −0.521764 5.96379i −0.0186941 0.213675i
\(780\) 0 0
\(781\) −9.29441 + 1.63885i −0.332580 + 0.0586428i
\(782\) −6.12917 + 2.85808i −0.219179 + 0.102205i
\(783\) 0