Properties

Label 666.2.bs.b.557.2
Level $666$
Weight $2$
Character 666.557
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 557.2
Character \(\chi\) \(=\) 666.557
Dual form 666.2.bs.b.611.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0871557 + 0.996195i) q^{2} +(-0.984808 - 0.173648i) q^{4} +(-0.0741011 - 0.0345539i) q^{5} +(-1.92570 + 0.700897i) q^{7} +(0.258819 - 0.965926i) q^{8} +O(q^{10})\) \(q+(-0.0871557 + 0.996195i) q^{2} +(-0.984808 - 0.173648i) q^{4} +(-0.0741011 - 0.0345539i) q^{5} +(-1.92570 + 0.700897i) q^{7} +(0.258819 - 0.965926i) q^{8} +(0.0408808 - 0.0708076i) q^{10} +(0.0467419 + 0.0809593i) q^{11} +(-3.00542 - 4.29219i) q^{13} +(-0.530394 - 1.97946i) q^{14} +(0.939693 + 0.342020i) q^{16} +(-2.94921 + 4.21190i) q^{17} +(-7.61336 + 0.666082i) q^{19} +(0.0669751 + 0.0468965i) q^{20} +(-0.0847251 + 0.0395080i) q^{22} +(6.72256 - 1.80130i) q^{23} +(-3.20964 - 3.82510i) q^{25} +(4.53780 - 2.61990i) q^{26} +(2.01815 - 0.355855i) q^{28} +(-3.03735 - 0.813856i) q^{29} +(-0.356247 - 0.356247i) q^{31} +(-0.422618 + 0.906308i) q^{32} +(-3.93883 - 3.30507i) q^{34} +(0.166915 + 0.0146032i) q^{35} +(-6.08100 - 0.146577i) q^{37} -7.64244i q^{38} +(-0.0525553 + 0.0626330i) q^{40} +(0.847815 - 4.80820i) q^{41} +(5.17585 - 5.17585i) q^{43} +(-0.0319733 - 0.0878460i) q^{44} +(1.20854 + 6.85397i) q^{46} +(-7.78930 - 4.49715i) q^{47} +(-2.14525 + 1.80008i) q^{49} +(4.09028 - 2.86405i) q^{50} +(2.21443 + 4.74887i) q^{52} +(-2.03092 + 5.57992i) q^{53} +(-0.000666164 - 0.00761429i) q^{55} +(0.178607 + 2.04149i) q^{56} +(1.07548 - 2.95486i) q^{58} +(3.74133 + 8.02332i) q^{59} +(-4.71665 + 3.30264i) q^{61} +(0.385940 - 0.323842i) q^{62} +(-0.866025 - 0.500000i) q^{64} +(0.0743933 + 0.421905i) q^{65} +(1.89197 + 5.19815i) q^{67} +(3.63579 - 3.63579i) q^{68} +(-0.0290952 + 0.165007i) q^{70} +(6.74204 - 8.03485i) q^{71} -4.72714i q^{73} +(0.676013 - 6.04508i) q^{74} +(7.61336 + 0.666082i) q^{76} +(-0.146755 - 0.123142i) q^{77} +(5.96506 - 12.7921i) q^{79} +(-0.0578141 - 0.0578141i) q^{80} +(4.71601 + 1.26365i) q^{82} +(-11.2270 + 1.97962i) q^{83} +(0.364077 - 0.210200i) q^{85} +(4.70505 + 5.60726i) q^{86} +(0.0902984 - 0.0241954i) q^{88} +(5.09003 - 2.37352i) q^{89} +(8.79593 + 6.15898i) q^{91} +(-6.93322 + 0.606578i) q^{92} +(5.15892 - 7.36770i) q^{94} +(0.587174 + 0.213714i) q^{95} +(0.309796 + 1.15618i) q^{97} +(-1.60626 - 2.29398i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82} - 108 q^{85} - 24 q^{88} + 216 q^{91} - 60 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0871557 + 0.996195i −0.0616284 + 0.704416i
\(3\) 0 0
\(4\) −0.984808 0.173648i −0.492404 0.0868241i
\(5\) −0.0741011 0.0345539i −0.0331390 0.0154530i 0.405978 0.913883i \(-0.366931\pi\)
−0.439117 + 0.898430i \(0.644709\pi\)
\(6\) 0 0
\(7\) −1.92570 + 0.700897i −0.727846 + 0.264914i −0.679253 0.733904i \(-0.737696\pi\)
−0.0485931 + 0.998819i \(0.515474\pi\)
\(8\) 0.258819 0.965926i 0.0915064 0.341506i
\(9\) 0 0
\(10\) 0.0408808 0.0708076i 0.0129276 0.0223913i
\(11\) 0.0467419 + 0.0809593i 0.0140932 + 0.0244102i 0.872986 0.487745i \(-0.162181\pi\)
−0.858893 + 0.512155i \(0.828847\pi\)
\(12\) 0 0
\(13\) −3.00542 4.29219i −0.833555 1.19044i −0.979559 0.201156i \(-0.935530\pi\)
0.146004 0.989284i \(-0.453359\pi\)
\(14\) −0.530394 1.97946i −0.141754 0.529033i
\(15\) 0 0
\(16\) 0.939693 + 0.342020i 0.234923 + 0.0855050i
\(17\) −2.94921 + 4.21190i −0.715287 + 1.02154i 0.282767 + 0.959189i \(0.408748\pi\)
−0.998054 + 0.0623477i \(0.980141\pi\)
\(18\) 0 0
\(19\) −7.61336 + 0.666082i −1.74662 + 0.152810i −0.915245 0.402897i \(-0.868003\pi\)
−0.831379 + 0.555707i \(0.812448\pi\)
\(20\) 0.0669751 + 0.0468965i 0.0149761 + 0.0104864i
\(21\) 0 0
\(22\) −0.0847251 + 0.0395080i −0.0180634 + 0.00842312i
\(23\) 6.72256 1.80130i 1.40175 0.375598i 0.522777 0.852469i \(-0.324896\pi\)
0.878973 + 0.476871i \(0.158229\pi\)
\(24\) 0 0
\(25\) −3.20964 3.82510i −0.641928 0.765020i
\(26\) 4.53780 2.61990i 0.889935 0.513805i
\(27\) 0 0
\(28\) 2.01815 0.355855i 0.381395 0.0672502i
\(29\) −3.03735 0.813856i −0.564022 0.151129i −0.0344685 0.999406i \(-0.510974\pi\)
−0.529554 + 0.848277i \(0.677641\pi\)
\(30\) 0 0
\(31\) −0.356247 0.356247i −0.0639838 0.0639838i 0.674391 0.738375i \(-0.264406\pi\)
−0.738375 + 0.674391i \(0.764406\pi\)
\(32\) −0.422618 + 0.906308i −0.0747091 + 0.160214i
\(33\) 0 0
\(34\) −3.93883 3.30507i −0.675504 0.566816i
\(35\) 0.166915 + 0.0146032i 0.0282138 + 0.00246839i
\(36\) 0 0
\(37\) −6.08100 0.146577i −0.999710 0.0240971i
\(38\) 7.64244i 1.23977i
\(39\) 0 0
\(40\) −0.0525553 + 0.0626330i −0.00830972 + 0.00990314i
\(41\) 0.847815 4.80820i 0.132406 0.750915i −0.844224 0.535990i \(-0.819938\pi\)
0.976631 0.214924i \(-0.0689505\pi\)
\(42\) 0 0
\(43\) 5.17585 5.17585i 0.789310 0.789310i −0.192071 0.981381i \(-0.561520\pi\)
0.981381 + 0.192071i \(0.0615205\pi\)
\(44\) −0.0319733 0.0878460i −0.00482016 0.0132433i
\(45\) 0 0
\(46\) 1.20854 + 6.85397i 0.178190 + 1.01056i
\(47\) −7.78930 4.49715i −1.13619 0.655977i −0.190702 0.981648i \(-0.561077\pi\)
−0.945483 + 0.325671i \(0.894410\pi\)
\(48\) 0 0
\(49\) −2.14525 + 1.80008i −0.306464 + 0.257154i
\(50\) 4.09028 2.86405i 0.578454 0.405038i
\(51\) 0 0
\(52\) 2.21443 + 4.74887i 0.307087 + 0.658550i
\(53\) −2.03092 + 5.57992i −0.278969 + 0.766461i 0.718511 + 0.695515i \(0.244824\pi\)
−0.997480 + 0.0709454i \(0.977398\pi\)
\(54\) 0 0
\(55\) −0.000666164 0.00761429i −8.98255e−5 0.00102671i
\(56\) 0.178607 + 2.04149i 0.0238674 + 0.272805i
\(57\) 0 0
\(58\) 1.07548 2.95486i 0.141218 0.387992i
\(59\) 3.74133 + 8.02332i 0.487080 + 1.04455i 0.984232 + 0.176883i \(0.0566015\pi\)
−0.497152 + 0.867664i \(0.665621\pi\)
\(60\) 0 0
\(61\) −4.71665 + 3.30264i −0.603906 + 0.422859i −0.835139 0.550039i \(-0.814613\pi\)
0.231233 + 0.972898i \(0.425724\pi\)
\(62\) 0.385940 0.323842i 0.0490145 0.0411280i
\(63\) 0 0
\(64\) −0.866025 0.500000i −0.108253 0.0625000i
\(65\) 0.0743933 + 0.421905i 0.00922735 + 0.0523309i
\(66\) 0 0
\(67\) 1.89197 + 5.19815i 0.231141 + 0.635055i 0.999990 0.00437504i \(-0.00139262\pi\)
−0.768849 + 0.639430i \(0.779170\pi\)
\(68\) 3.63579 3.63579i 0.440904 0.440904i
\(69\) 0 0
\(70\) −0.0290952 + 0.165007i −0.00347755 + 0.0197221i
\(71\) 6.74204 8.03485i 0.800133 0.953561i −0.199520 0.979894i \(-0.563938\pi\)
0.999653 + 0.0263324i \(0.00838284\pi\)
\(72\) 0 0
\(73\) 4.72714i 0.553270i −0.960975 0.276635i \(-0.910781\pi\)
0.960975 0.276635i \(-0.0892192\pi\)
\(74\) 0.676013 6.04508i 0.0785849 0.702726i
\(75\) 0 0
\(76\) 7.61336 + 0.666082i 0.873312 + 0.0764049i
\(77\) −0.146755 0.123142i −0.0167243 0.0140333i
\(78\) 0 0
\(79\) 5.96506 12.7921i 0.671122 1.43922i −0.215394 0.976527i \(-0.569104\pi\)
0.886516 0.462698i \(-0.153118\pi\)
\(80\) −0.0578141 0.0578141i −0.00646382 0.00646382i
\(81\) 0 0
\(82\) 4.71601 + 1.26365i 0.520796 + 0.139547i
\(83\) −11.2270 + 1.97962i −1.23232 + 0.217291i −0.751622 0.659594i \(-0.770728\pi\)
−0.480699 + 0.876886i \(0.659617\pi\)
\(84\) 0 0
\(85\) 0.364077 0.210200i 0.0394897 0.0227994i
\(86\) 4.70505 + 5.60726i 0.507359 + 0.604646i
\(87\) 0 0
\(88\) 0.0902984 0.0241954i 0.00962584 0.00257924i
\(89\) 5.09003 2.37352i 0.539542 0.251593i −0.133691 0.991023i \(-0.542683\pi\)
0.673233 + 0.739430i \(0.264905\pi\)
\(90\) 0 0
\(91\) 8.79593 + 6.15898i 0.922064 + 0.645636i
\(92\) −6.93322 + 0.606578i −0.722838 + 0.0632402i
\(93\) 0 0
\(94\) 5.15892 7.36770i 0.532102 0.759921i
\(95\) 0.587174 + 0.213714i 0.0602428 + 0.0219266i
\(96\) 0 0
\(97\) 0.309796 + 1.15618i 0.0314551 + 0.117392i 0.979868 0.199645i \(-0.0639788\pi\)
−0.948413 + 0.317037i \(0.897312\pi\)
\(98\) −1.60626 2.29398i −0.162257 0.231726i
\(99\) 0 0
\(100\) 2.49666 + 4.32434i 0.249666 + 0.432434i
\(101\) −4.65686 + 8.06592i −0.463375 + 0.802589i −0.999127 0.0417866i \(-0.986695\pi\)
0.535752 + 0.844376i \(0.320028\pi\)
\(102\) 0 0
\(103\) −5.00217 + 18.6684i −0.492879 + 1.83945i 0.0487214 + 0.998812i \(0.484485\pi\)
−0.541600 + 0.840636i \(0.682181\pi\)
\(104\) −4.92380 + 1.79212i −0.482818 + 0.175731i
\(105\) 0 0
\(106\) −5.38168 2.50952i −0.522715 0.243746i
\(107\) 6.82200 + 1.20290i 0.659508 + 0.116289i 0.493378 0.869815i \(-0.335762\pi\)
0.166130 + 0.986104i \(0.446873\pi\)
\(108\) 0 0
\(109\) −0.415060 + 4.74416i −0.0397556 + 0.454408i 0.950061 + 0.312063i \(0.101020\pi\)
−0.989817 + 0.142346i \(0.954536\pi\)
\(110\) 0.00764338 0.000728767
\(111\) 0 0
\(112\) −2.04929 −0.193639
\(113\) −1.75594 + 20.0705i −0.165185 + 1.88808i 0.235519 + 0.971870i \(0.424321\pi\)
−0.400704 + 0.916207i \(0.631235\pi\)
\(114\) 0 0
\(115\) −0.560391 0.0988121i −0.0522568 0.00921427i
\(116\) 2.84988 + 1.32892i 0.264605 + 0.123387i
\(117\) 0 0
\(118\) −8.31886 + 3.02782i −0.765813 + 0.278733i
\(119\) 2.72717 10.1779i 0.249999 0.933011i
\(120\) 0 0
\(121\) 5.49563 9.51871i 0.499603 0.865337i
\(122\) −2.87899 4.98655i −0.260651 0.451461i
\(123\) 0 0
\(124\) 0.288973 + 0.412696i 0.0259505 + 0.0370612i
\(125\) 0.211473 + 0.789228i 0.0189147 + 0.0705907i
\(126\) 0 0
\(127\) 11.9540 + 4.35091i 1.06075 + 0.386081i 0.812710 0.582669i \(-0.197991\pi\)
0.248040 + 0.968750i \(0.420214\pi\)
\(128\) 0.573576 0.819152i 0.0506975 0.0724035i
\(129\) 0 0
\(130\) −0.426784 + 0.0373387i −0.0374314 + 0.00327482i
\(131\) −1.32503 0.927796i −0.115768 0.0810619i 0.514258 0.857635i \(-0.328067\pi\)
−0.630027 + 0.776573i \(0.716956\pi\)
\(132\) 0 0
\(133\) 14.1942 6.61885i 1.23079 0.573927i
\(134\) −5.34326 + 1.43172i −0.461588 + 0.123682i
\(135\) 0 0
\(136\) 3.30507 + 3.93883i 0.283408 + 0.337752i
\(137\) −13.7839 + 7.95811i −1.17763 + 0.679908i −0.955466 0.295101i \(-0.904647\pi\)
−0.222168 + 0.975008i \(0.571313\pi\)
\(138\) 0 0
\(139\) −5.21477 + 0.919504i −0.442311 + 0.0779913i −0.390368 0.920659i \(-0.627652\pi\)
−0.0519424 + 0.998650i \(0.516541\pi\)
\(140\) −0.161844 0.0433658i −0.0136783 0.00366508i
\(141\) 0 0
\(142\) 7.41667 + 7.41667i 0.622393 + 0.622393i
\(143\) 0.207014 0.443942i 0.0173114 0.0371243i
\(144\) 0 0
\(145\) 0.196949 + 0.165260i 0.0163557 + 0.0137241i
\(146\) 4.70915 + 0.411997i 0.389732 + 0.0340971i
\(147\) 0 0
\(148\) 5.96316 + 1.20030i 0.490169 + 0.0986644i
\(149\) 4.75836i 0.389820i 0.980821 + 0.194910i \(0.0624414\pi\)
−0.980821 + 0.194910i \(0.937559\pi\)
\(150\) 0 0
\(151\) 2.62654 3.13019i 0.213745 0.254731i −0.648510 0.761206i \(-0.724607\pi\)
0.862254 + 0.506475i \(0.169052\pi\)
\(152\) −1.32710 + 7.52633i −0.107642 + 0.610466i
\(153\) 0 0
\(154\) 0.135464 0.135464i 0.0109160 0.0109160i
\(155\) 0.0140886 + 0.0387080i 0.00113162 + 0.00310910i
\(156\) 0 0
\(157\) −0.745032 4.22529i −0.0594600 0.337215i 0.940537 0.339692i \(-0.110323\pi\)
−0.999997 + 0.00247695i \(0.999212\pi\)
\(158\) 12.2235 + 7.05727i 0.972453 + 0.561446i
\(159\) 0 0
\(160\) 0.0626330 0.0525553i 0.00495157 0.00415486i
\(161\) −11.6831 + 8.18059i −0.920757 + 0.644721i
\(162\) 0 0
\(163\) −1.73199 3.71427i −0.135660 0.290924i 0.826728 0.562601i \(-0.190199\pi\)
−0.962388 + 0.271677i \(0.912422\pi\)
\(164\) −1.66987 + 4.58793i −0.130395 + 0.358257i
\(165\) 0 0
\(166\) −0.993590 11.3568i −0.0771176 0.881458i
\(167\) −0.228078 2.60695i −0.0176492 0.201732i −0.999900 0.0141579i \(-0.995493\pi\)
0.982251 0.187574i \(-0.0600623\pi\)
\(168\) 0 0
\(169\) −4.94407 + 13.5837i −0.380313 + 1.04490i
\(170\) 0.177669 + 0.381012i 0.0136266 + 0.0292223i
\(171\) 0 0
\(172\) −5.99599 + 4.19844i −0.457190 + 0.320128i
\(173\) −0.932633 + 0.782572i −0.0709068 + 0.0594978i −0.677552 0.735475i \(-0.736959\pi\)
0.606645 + 0.794973i \(0.292515\pi\)
\(174\) 0 0
\(175\) 8.86181 + 5.11637i 0.669890 + 0.386761i
\(176\) 0.0162333 + 0.0920635i 0.00122363 + 0.00693955i
\(177\) 0 0
\(178\) 1.92086 + 5.27753i 0.143975 + 0.395567i
\(179\) −5.10868 + 5.10868i −0.381840 + 0.381840i −0.871765 0.489924i \(-0.837024\pi\)
0.489924 + 0.871765i \(0.337024\pi\)
\(180\) 0 0
\(181\) −1.95114 + 11.0655i −0.145027 + 0.822490i 0.822318 + 0.569028i \(0.192680\pi\)
−0.967345 + 0.253462i \(0.918431\pi\)
\(182\) −6.90215 + 8.22567i −0.511622 + 0.609727i
\(183\) 0 0
\(184\) 6.95971i 0.513076i
\(185\) 0.445544 + 0.220984i 0.0327570 + 0.0162470i
\(186\) 0 0
\(187\) −0.478844 0.0418934i −0.0350166 0.00306355i
\(188\) 6.89004 + 5.78143i 0.502508 + 0.421654i
\(189\) 0 0
\(190\) −0.264076 + 0.566313i −0.0191581 + 0.0410847i
\(191\) 7.95827 + 7.95827i 0.575840 + 0.575840i 0.933754 0.357914i \(-0.116512\pi\)
−0.357914 + 0.933754i \(0.616512\pi\)
\(192\) 0 0
\(193\) −18.8822 5.05946i −1.35917 0.364188i −0.495658 0.868518i \(-0.665073\pi\)
−0.863511 + 0.504330i \(0.831740\pi\)
\(194\) −1.17878 + 0.207850i −0.0846313 + 0.0149228i
\(195\) 0 0
\(196\) 2.42524 1.40021i 0.173231 0.100015i
\(197\) −5.28637 6.30005i −0.376638 0.448860i 0.544112 0.839013i \(-0.316867\pi\)
−0.920750 + 0.390153i \(0.872422\pi\)
\(198\) 0 0
\(199\) 6.27114 1.68035i 0.444549 0.119117i −0.0295987 0.999562i \(-0.509423\pi\)
0.474148 + 0.880445i \(0.342756\pi\)
\(200\) −4.52548 + 2.11027i −0.320000 + 0.149218i
\(201\) 0 0
\(202\) −7.62936 5.34213i −0.536800 0.375871i
\(203\) 6.41945 0.561630i 0.450557 0.0394187i
\(204\) 0 0
\(205\) −0.228966 + 0.326998i −0.0159917 + 0.0228385i
\(206\) −18.1614 6.61019i −1.26536 0.460554i
\(207\) 0 0
\(208\) −1.35616 5.06126i −0.0940327 0.350935i
\(209\) −0.409788 0.585238i −0.0283456 0.0404818i
\(210\) 0 0
\(211\) −6.66962 11.5521i −0.459156 0.795281i 0.539761 0.841818i \(-0.318515\pi\)
−0.998917 + 0.0465376i \(0.985181\pi\)
\(212\) 2.96901 5.14248i 0.203913 0.353187i
\(213\) 0 0
\(214\) −1.79290 + 6.69120i −0.122560 + 0.457401i
\(215\) −0.562382 + 0.204690i −0.0383541 + 0.0139598i
\(216\) 0 0
\(217\) 0.935717 + 0.436332i 0.0635206 + 0.0296201i
\(218\) −4.68994 0.826962i −0.317642 0.0560089i
\(219\) 0 0
\(220\) −0.000666164 0.00761429i −4.49128e−5 0.000513355i
\(221\) 26.9419 1.81231
\(222\) 0 0
\(223\) −8.61963 −0.577213 −0.288606 0.957448i \(-0.593192\pi\)
−0.288606 + 0.957448i \(0.593192\pi\)
\(224\) 0.178607 2.04149i 0.0119337 0.136403i
\(225\) 0 0
\(226\) −19.8411 3.49852i −1.31981 0.232718i
\(227\) −1.54260 0.719325i −0.102386 0.0477433i 0.370751 0.928732i \(-0.379100\pi\)
−0.473136 + 0.880989i \(0.656878\pi\)
\(228\) 0 0
\(229\) 20.2839 7.38274i 1.34040 0.487865i 0.430461 0.902609i \(-0.358351\pi\)
0.909938 + 0.414744i \(0.136129\pi\)
\(230\) 0.147277 0.549647i 0.00971118 0.0362426i
\(231\) 0 0
\(232\) −1.57225 + 2.72322i −0.103223 + 0.178788i
\(233\) −7.87150 13.6338i −0.515679 0.893182i −0.999834 0.0182000i \(-0.994206\pi\)
0.484155 0.874982i \(-0.339127\pi\)
\(234\) 0 0
\(235\) 0.421801 + 0.602395i 0.0275153 + 0.0392959i
\(236\) −2.29126 8.55110i −0.149148 0.556629i
\(237\) 0 0
\(238\) 9.90153 + 3.60386i 0.641821 + 0.233604i
\(239\) 6.16633 8.80642i 0.398866 0.569640i −0.568608 0.822609i \(-0.692518\pi\)
0.967475 + 0.252968i \(0.0814068\pi\)
\(240\) 0 0
\(241\) 7.12164 0.623063i 0.458745 0.0401350i 0.144558 0.989496i \(-0.453824\pi\)
0.314187 + 0.949361i \(0.398268\pi\)
\(242\) 9.00351 + 6.30433i 0.578768 + 0.405258i
\(243\) 0 0
\(244\) 5.21849 2.43342i 0.334080 0.155784i
\(245\) 0.221165 0.0592611i 0.0141297 0.00378605i
\(246\) 0 0
\(247\) 25.7403 + 30.6761i 1.63782 + 1.95188i
\(248\) −0.436312 + 0.251905i −0.0277058 + 0.0159960i
\(249\) 0 0
\(250\) −0.804656 + 0.141882i −0.0508909 + 0.00897344i
\(251\) 11.9186 + 3.19357i 0.752292 + 0.201576i 0.614535 0.788890i \(-0.289344\pi\)
0.137758 + 0.990466i \(0.456010\pi\)
\(252\) 0 0
\(253\) 0.460058 + 0.460058i 0.0289236 + 0.0289236i
\(254\) −5.37622 + 11.5293i −0.337334 + 0.723415i
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) −21.8099 1.90812i −1.36046 0.119025i −0.616558 0.787310i \(-0.711473\pi\)
−0.743906 + 0.668285i \(0.767029\pi\)
\(258\) 0 0
\(259\) 11.8129 3.97989i 0.734018 0.247298i
\(260\) 0.428414i 0.0265691i
\(261\) 0 0
\(262\) 1.03975 1.23913i 0.0642360 0.0765534i
\(263\) 1.66000 9.41434i 0.102360 0.580513i −0.889882 0.456191i \(-0.849213\pi\)
0.992242 0.124322i \(-0.0396755\pi\)
\(264\) 0 0
\(265\) 0.343302 0.343302i 0.0210889 0.0210889i
\(266\) 5.35656 + 14.7170i 0.328432 + 0.902359i
\(267\) 0 0
\(268\) −0.960579 5.44771i −0.0586767 0.332772i
\(269\) 24.6295 + 14.2199i 1.50169 + 0.867001i 0.999998 + 0.00195476i \(0.000622219\pi\)
0.501692 + 0.865046i \(0.332711\pi\)
\(270\) 0 0
\(271\) 0.258733 0.217103i 0.0157169 0.0131881i −0.634895 0.772598i \(-0.718957\pi\)
0.650612 + 0.759410i \(0.274512\pi\)
\(272\) −4.21190 + 2.94921i −0.255384 + 0.178822i
\(273\) 0 0
\(274\) −6.72649 14.4250i −0.406362 0.871446i
\(275\) 0.159653 0.438643i 0.00962743 0.0264512i
\(276\) 0 0
\(277\) −0.787339 8.99932i −0.0473066 0.540717i −0.982460 0.186474i \(-0.940294\pi\)
0.935153 0.354243i \(-0.115261\pi\)
\(278\) −0.461508 5.27506i −0.0276794 0.316377i
\(279\) 0 0
\(280\) 0.0573064 0.157448i 0.00342471 0.00940932i
\(281\) −11.8672 25.4492i −0.707936 1.51817i −0.849125 0.528191i \(-0.822870\pi\)
0.141189 0.989983i \(-0.454907\pi\)
\(282\) 0 0
\(283\) −11.1429 + 7.80236i −0.662378 + 0.463802i −0.855796 0.517314i \(-0.826932\pi\)
0.193417 + 0.981117i \(0.438043\pi\)
\(284\) −8.03485 + 6.74204i −0.476781 + 0.400066i
\(285\) 0 0
\(286\) 0.424211 + 0.244918i 0.0250841 + 0.0144823i
\(287\) 1.73742 + 9.85338i 0.102556 + 0.581626i
\(288\) 0 0
\(289\) −3.22796 8.86875i −0.189880 0.521691i
\(290\) −0.181796 + 0.181796i −0.0106755 + 0.0106755i
\(291\) 0 0
\(292\) −0.820859 + 4.65532i −0.0480371 + 0.272432i
\(293\) 16.0120 19.0823i 0.935430 1.11480i −0.0577640 0.998330i \(-0.518397\pi\)
0.993194 0.116472i \(-0.0371585\pi\)
\(294\) 0 0
\(295\) 0.723814i 0.0421421i
\(296\) −1.71546 + 5.83585i −0.0997091 + 0.339202i
\(297\) 0 0
\(298\) −4.74025 0.414718i −0.274595 0.0240240i
\(299\) −27.9357 23.4408i −1.61556 1.35562i
\(300\) 0 0
\(301\) −6.33939 + 13.5949i −0.365396 + 0.783595i
\(302\) 2.88936 + 2.88936i 0.166264 + 0.166264i
\(303\) 0 0
\(304\) −7.38203 1.97801i −0.423388 0.113447i
\(305\) 0.463628 0.0817502i 0.0265473 0.00468100i
\(306\) 0 0
\(307\) −5.88777 + 3.39930i −0.336033 + 0.194008i −0.658516 0.752567i \(-0.728816\pi\)
0.322484 + 0.946575i \(0.395482\pi\)
\(308\) 0.123142 + 0.146755i 0.00701667 + 0.00836214i
\(309\) 0 0
\(310\) −0.0397886 + 0.0106613i −0.00225984 + 0.000605523i
\(311\) 31.8564 14.8549i 1.80641 0.842344i 0.868272 0.496088i \(-0.165231\pi\)
0.938140 0.346256i \(-0.112547\pi\)
\(312\) 0 0
\(313\) −24.1676 16.9223i −1.36603 0.956506i −0.999661 0.0260366i \(-0.991711\pi\)
−0.366371 0.930469i \(-0.619400\pi\)
\(314\) 4.27414 0.373939i 0.241204 0.0211026i
\(315\) 0 0
\(316\) −8.09576 + 11.5619i −0.455422 + 0.650410i
\(317\) −32.0131 11.6518i −1.79804 0.654432i −0.998555 0.0537429i \(-0.982885\pi\)
−0.799483 0.600689i \(-0.794893\pi\)
\(318\) 0 0
\(319\) −0.0760823 0.283943i −0.00425979 0.0158978i
\(320\) 0.0468965 + 0.0669751i 0.00262159 + 0.00374402i
\(321\) 0 0
\(322\) −7.13121 12.3516i −0.397407 0.688329i
\(323\) 19.6479 34.0311i 1.09324 1.89354i
\(324\) 0 0
\(325\) −6.77173 + 25.2724i −0.375628 + 1.40186i
\(326\) 3.85109 1.40168i 0.213292 0.0776320i
\(327\) 0 0
\(328\) −4.42493 2.06338i −0.244326 0.113931i
\(329\) 18.1519 + 3.20067i 1.00075 + 0.176458i
\(330\) 0 0
\(331\) 0.437724 5.00321i 0.0240595 0.275001i −0.974630 0.223822i \(-0.928147\pi\)
0.998689 0.0511790i \(-0.0162979\pi\)
\(332\) 11.4002 0.625666
\(333\) 0 0
\(334\) 2.61690 0.143191
\(335\) 0.0394192 0.450564i 0.00215370 0.0246169i
\(336\) 0 0
\(337\) −22.3573 3.94219i −1.21788 0.214745i −0.472466 0.881349i \(-0.656636\pi\)
−0.745412 + 0.666604i \(0.767747\pi\)
\(338\) −13.1011 6.10915i −0.712607 0.332294i
\(339\) 0 0
\(340\) −0.395047 + 0.143785i −0.0214244 + 0.00779785i
\(341\) 0.0121899 0.0454932i 0.000660118 0.00246359i
\(342\) 0 0
\(343\) 10.0419 17.3931i 0.542214 0.939142i
\(344\) −3.65988 6.33910i −0.197327 0.341781i
\(345\) 0 0
\(346\) −0.698310 0.997290i −0.0375414 0.0536146i
\(347\) −3.97719 14.8431i −0.213507 0.796817i −0.986687 0.162631i \(-0.948002\pi\)
0.773180 0.634186i \(-0.218665\pi\)
\(348\) 0 0
\(349\) −6.38284 2.32316i −0.341666 0.124356i 0.165488 0.986212i \(-0.447080\pi\)
−0.507154 + 0.861856i \(0.669302\pi\)
\(350\) −5.86925 + 8.38216i −0.313725 + 0.448045i
\(351\) 0 0
\(352\) −0.0931280 + 0.00814765i −0.00496374 + 0.000434271i
\(353\) 13.7006 + 9.59325i 0.729209 + 0.510597i 0.878231 0.478236i \(-0.158724\pi\)
−0.149023 + 0.988834i \(0.547613\pi\)
\(354\) 0 0
\(355\) −0.777228 + 0.362427i −0.0412510 + 0.0192356i
\(356\) −5.42486 + 1.45359i −0.287517 + 0.0770399i
\(357\) 0 0
\(358\) −4.64399 5.53449i −0.245442 0.292507i
\(359\) 21.3335 12.3169i 1.12594 0.650062i 0.183030 0.983107i \(-0.441409\pi\)
0.942911 + 0.333045i \(0.108076\pi\)
\(360\) 0 0
\(361\) 38.8082 6.84293i 2.04254 0.360154i
\(362\) −10.8533 2.90813i −0.570437 0.152848i
\(363\) 0 0
\(364\) −7.59280 7.59280i −0.397971 0.397971i
\(365\) −0.163341 + 0.350286i −0.00854966 + 0.0183348i
\(366\) 0 0
\(367\) 6.82666 + 5.72824i 0.356349 + 0.299012i 0.803333 0.595530i \(-0.203058\pi\)
−0.446985 + 0.894542i \(0.647502\pi\)
\(368\) 6.93322 + 0.606578i 0.361419 + 0.0316201i
\(369\) 0 0
\(370\) −0.258974 + 0.424588i −0.0134634 + 0.0220733i
\(371\) 12.1687i 0.631768i
\(372\) 0 0
\(373\) 17.9693 21.4149i 0.930413 1.10882i −0.0634257 0.997987i \(-0.520203\pi\)
0.993839 0.110836i \(-0.0353530\pi\)
\(374\) 0.0834680 0.473371i 0.00431603 0.0244774i
\(375\) 0 0
\(376\) −6.35993 + 6.35993i −0.327989 + 0.327989i
\(377\) 5.63531 + 15.4829i 0.290233 + 0.797409i
\(378\) 0 0
\(379\) −1.67165 9.48042i −0.0858671 0.486977i −0.997166 0.0752313i \(-0.976030\pi\)
0.911299 0.411745i \(-0.135081\pi\)
\(380\) −0.541142 0.312429i −0.0277600 0.0160273i
\(381\) 0 0
\(382\) −8.62159 + 7.23437i −0.441119 + 0.370143i
\(383\) 7.69620 5.38893i 0.393257 0.275362i −0.360178 0.932884i \(-0.617284\pi\)
0.753436 + 0.657522i \(0.228395\pi\)
\(384\) 0 0
\(385\) 0.00661967 + 0.0141959i 0.000337369 + 0.000723491i
\(386\) 6.68590 18.3694i 0.340303 0.934976i
\(387\) 0 0
\(388\) −0.104322 1.19241i −0.00529615 0.0605353i
\(389\) 0.198208 + 2.26553i 0.0100496 + 0.114867i 0.999562 0.0295773i \(-0.00941610\pi\)
−0.989513 + 0.144444i \(0.953861\pi\)
\(390\) 0 0
\(391\) −12.2393 + 33.6272i −0.618968 + 1.70060i
\(392\) 1.18351 + 2.53805i 0.0597763 + 0.128191i
\(393\) 0 0
\(394\) 6.73682 4.71717i 0.339396 0.237648i
\(395\) −0.884035 + 0.741793i −0.0444806 + 0.0373237i
\(396\) 0 0
\(397\) −33.3296 19.2428i −1.67276 0.965770i −0.966081 0.258238i \(-0.916858\pi\)
−0.706681 0.707532i \(-0.749809\pi\)
\(398\) 1.12739 + 6.39372i 0.0565108 + 0.320488i
\(399\) 0 0
\(400\) −1.70781 4.69218i −0.0853907 0.234609i
\(401\) −19.6027 + 19.6027i −0.978914 + 0.978914i −0.999782 0.0208684i \(-0.993357\pi\)
0.0208684 + 0.999782i \(0.493357\pi\)
\(402\) 0 0
\(403\) −0.458407 + 2.59975i −0.0228349 + 0.129503i
\(404\) 5.98675 7.13473i 0.297852 0.354966i
\(405\) 0 0
\(406\) 6.44398i 0.319809i
\(407\) −0.272370 0.499165i −0.0135009 0.0247427i
\(408\) 0 0
\(409\) −20.3493 1.78033i −1.00621 0.0880319i −0.427880 0.903835i \(-0.640739\pi\)
−0.578329 + 0.815804i \(0.696295\pi\)
\(410\) −0.305797 0.256595i −0.0151023 0.0126723i
\(411\) 0 0
\(412\) 8.16791 17.5161i 0.402404 0.862958i
\(413\) −12.8282 12.8282i −0.631235 0.631235i
\(414\) 0 0
\(415\) 0.900335 + 0.241244i 0.0441957 + 0.0118422i
\(416\) 5.16019 0.909881i 0.252999 0.0446106i
\(417\) 0 0
\(418\) 0.618727 0.357222i 0.0302629 0.0174723i
\(419\) 15.8623 + 18.9040i 0.774925 + 0.923520i 0.998692 0.0511230i \(-0.0162801\pi\)
−0.223767 + 0.974643i \(0.571836\pi\)
\(420\) 0 0
\(421\) −34.0718 + 9.12952i −1.66056 + 0.444945i −0.962541 0.271135i \(-0.912601\pi\)
−0.698018 + 0.716080i \(0.745934\pi\)
\(422\) 12.0895 5.63741i 0.588505 0.274425i
\(423\) 0 0
\(424\) 4.86414 + 3.40591i 0.236224 + 0.165406i
\(425\) 25.5768 2.23768i 1.24066 0.108544i
\(426\) 0 0
\(427\) 6.76805 9.66577i 0.327529 0.467760i
\(428\) −6.50948 2.36926i −0.314648 0.114522i
\(429\) 0 0
\(430\) −0.154897 0.578082i −0.00746978 0.0278776i
\(431\) −13.0562 18.6462i −0.628897 0.898158i 0.370634 0.928779i \(-0.379140\pi\)
−0.999531 + 0.0306209i \(0.990252\pi\)
\(432\) 0 0
\(433\) −13.3867 23.1864i −0.643322 1.11427i −0.984686 0.174336i \(-0.944222\pi\)
0.341364 0.939931i \(-0.389111\pi\)
\(434\) −0.516225 + 0.894127i −0.0247796 + 0.0429195i
\(435\) 0 0
\(436\) 1.23257 4.60001i 0.0590294 0.220301i
\(437\) −49.9814 + 18.1918i −2.39094 + 0.870230i
\(438\) 0 0
\(439\) −13.6646 6.37192i −0.652177 0.304115i 0.0682269 0.997670i \(-0.478266\pi\)
−0.720404 + 0.693555i \(0.756044\pi\)
\(440\) −0.00752726 0.00132726i −0.000358848 6.32746e-5i
\(441\) 0 0
\(442\) −2.34814 + 26.8394i −0.111690 + 1.27662i
\(443\) −16.9338 −0.804548 −0.402274 0.915519i \(-0.631780\pi\)
−0.402274 + 0.915519i \(0.631780\pi\)
\(444\) 0 0
\(445\) −0.459191 −0.0217678
\(446\) 0.751250 8.58683i 0.0355727 0.406598i
\(447\) 0 0
\(448\) 2.01815 + 0.355855i 0.0953488 + 0.0168126i
\(449\) 21.3254 + 9.94421i 1.00641 + 0.469296i 0.854696 0.519129i \(-0.173743\pi\)
0.151713 + 0.988425i \(0.451521\pi\)
\(450\) 0 0
\(451\) 0.428897 0.156106i 0.0201960 0.00735073i
\(452\) 5.21448 19.4607i 0.245268 0.915354i
\(453\) 0 0
\(454\) 0.851034 1.47403i 0.0399410 0.0691798i
\(455\) −0.438971 0.760321i −0.0205793 0.0356444i
\(456\) 0 0
\(457\) 20.3937 + 29.1252i 0.953978 + 1.36242i 0.931920 + 0.362665i \(0.118133\pi\)
0.0220584 + 0.999757i \(0.492978\pi\)
\(458\) 5.58679 + 20.8502i 0.261053 + 0.974265i
\(459\) 0 0
\(460\) 0.534719 + 0.194622i 0.0249314 + 0.00907429i
\(461\) −10.6754 + 15.2460i −0.497202 + 0.710078i −0.986813 0.161863i \(-0.948250\pi\)
0.489612 + 0.871941i \(0.337139\pi\)
\(462\) 0 0
\(463\) −9.07890 + 0.794301i −0.421932 + 0.0369143i −0.296145 0.955143i \(-0.595701\pi\)
−0.125787 + 0.992057i \(0.540146\pi\)
\(464\) −2.57582 1.80361i −0.119580 0.0837305i
\(465\) 0 0
\(466\) 14.2680 6.65328i 0.660952 0.308207i
\(467\) −6.23587 + 1.67090i −0.288562 + 0.0773199i −0.400196 0.916429i \(-0.631058\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(468\) 0 0
\(469\) −7.28674 8.68399i −0.336470 0.400990i
\(470\) −0.636865 + 0.367694i −0.0293764 + 0.0169605i
\(471\) 0 0
\(472\) 8.71826 1.53726i 0.401290 0.0707583i
\(473\) 0.660962 + 0.177104i 0.0303911 + 0.00814327i
\(474\) 0 0
\(475\) 26.9840 + 26.9840i 1.23811 + 1.23811i
\(476\) −4.45312 + 9.54975i −0.204109 + 0.437712i
\(477\) 0 0
\(478\) 8.23548 + 6.91039i 0.376682 + 0.316074i
\(479\) 21.2061 + 1.85530i 0.968933 + 0.0847707i 0.560622 0.828072i \(-0.310562\pi\)
0.408311 + 0.912843i \(0.366118\pi\)
\(480\) 0 0
\(481\) 17.6468 + 26.5413i 0.804627 + 1.21018i
\(482\) 7.14884i 0.325621i
\(483\) 0 0
\(484\) −7.06505 + 8.41979i −0.321138 + 0.382718i
\(485\) 0.0169941 0.0963786i 0.000771664 0.00437633i
\(486\) 0 0
\(487\) 9.59314 9.59314i 0.434707 0.434707i −0.455519 0.890226i \(-0.650546\pi\)
0.890226 + 0.455519i \(0.150546\pi\)
\(488\) 1.96934 + 5.41072i 0.0891479 + 0.244932i
\(489\) 0 0
\(490\) 0.0397597 + 0.225489i 0.00179616 + 0.0101865i
\(491\) −23.0346 13.2990i −1.03954 0.600177i −0.119835 0.992794i \(-0.538237\pi\)
−0.919702 + 0.392616i \(0.871570\pi\)
\(492\) 0 0
\(493\) 12.3857 10.3928i 0.557822 0.468068i
\(494\) −32.8028 + 22.9688i −1.47587 + 1.03341i
\(495\) 0 0
\(496\) −0.212919 0.456606i −0.00956034 0.0205022i
\(497\) −7.35154 + 20.1982i −0.329761 + 0.906012i
\(498\) 0 0
\(499\) −0.583121 6.66511i −0.0261041 0.298371i −0.998013 0.0630127i \(-0.979929\pi\)
0.971909 0.235358i \(-0.0756264\pi\)
\(500\) −0.0712122 0.813959i −0.00318471 0.0364014i
\(501\) 0 0
\(502\) −4.22018 + 11.5949i −0.188356 + 0.517504i
\(503\) 13.8860 + 29.7785i 0.619144 + 1.32776i 0.926547 + 0.376179i \(0.122762\pi\)
−0.307403 + 0.951579i \(0.599460\pi\)
\(504\) 0 0
\(505\) 0.623788 0.436781i 0.0277582 0.0194365i
\(506\) −0.498404 + 0.418210i −0.0221567 + 0.0185917i
\(507\) 0 0
\(508\) −11.0169 6.36061i −0.488796 0.282206i
\(509\) −0.923450 5.23715i −0.0409312 0.232132i 0.957479 0.288504i \(-0.0931579\pi\)
−0.998410 + 0.0563717i \(0.982047\pi\)
\(510\) 0 0
\(511\) 3.31324 + 9.10305i 0.146569 + 0.402695i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 3.80171 21.5606i 0.167686 0.950997i
\(515\) 1.01573 1.21050i 0.0447585 0.0533411i
\(516\) 0 0
\(517\) 0.840822i 0.0369793i
\(518\) 2.93518 + 12.1148i 0.128965 + 0.532295i
\(519\) 0 0
\(520\) 0.426784 + 0.0373387i 0.0187157 + 0.00163741i
\(521\) 8.93876 + 7.50051i 0.391614 + 0.328603i 0.817242 0.576295i \(-0.195502\pi\)
−0.425627 + 0.904898i \(0.639947\pi\)
\(522\) 0 0
\(523\) 16.5894 35.5761i 0.725405 1.55564i −0.102478 0.994735i \(-0.532677\pi\)
0.827883 0.560901i \(-0.189545\pi\)
\(524\) 1.14379 + 1.14379i 0.0499667 + 0.0499667i
\(525\) 0 0
\(526\) 9.23383 + 2.47420i 0.402614 + 0.107880i
\(527\) 2.55112 0.449832i 0.111129 0.0195950i
\(528\) 0 0
\(529\) 22.0295 12.7188i 0.957806 0.552989i
\(530\) 0.312075 + 0.371916i 0.0135557 + 0.0161550i
\(531\) 0 0
\(532\) −15.1279 + 4.05351i −0.655877 + 0.175742i
\(533\) −23.1858 + 10.8117i −1.00429 + 0.468307i
\(534\) 0 0
\(535\) −0.463953 0.324863i −0.0200584 0.0140451i
\(536\) 5.51070 0.482124i 0.238026 0.0208246i
\(537\) 0 0
\(538\) −16.3124 + 23.2965i −0.703276 + 1.00438i
\(539\) −0.246006 0.0895390i −0.0105962 0.00385672i
\(540\) 0 0
\(541\) −1.59701 5.96011i −0.0686607 0.256245i 0.923061 0.384655i \(-0.125679\pi\)
−0.991721 + 0.128410i \(0.959013\pi\)
\(542\) 0.193727 + 0.276671i 0.00832128 + 0.0118840i
\(543\) 0 0
\(544\) −2.57089 4.45291i −0.110226 0.190917i
\(545\) 0.194686 0.337206i 0.00833942 0.0144443i
\(546\) 0 0
\(547\) −5.17369 + 19.3085i −0.221211 + 0.825571i 0.762676 + 0.646781i \(0.223885\pi\)
−0.983887 + 0.178791i \(0.942782\pi\)
\(548\) 14.9564 5.44367i 0.638904 0.232542i
\(549\) 0 0
\(550\) 0.423059 + 0.197276i 0.0180393 + 0.00841186i
\(551\) 23.6665 + 4.17305i 1.00823 + 0.177778i
\(552\) 0 0
\(553\) −2.52096 + 28.8146i −0.107202 + 1.22532i
\(554\) 9.03370 0.383805
\(555\) 0 0
\(556\) 5.29521 0.224567
\(557\) −3.31456 + 37.8856i −0.140442 + 1.60526i 0.519852 + 0.854256i \(0.325987\pi\)
−0.660294 + 0.751007i \(0.729568\pi\)
\(558\) 0 0
\(559\) −37.7714 6.66011i −1.59756 0.281693i
\(560\) 0.151854 + 0.0708109i 0.00641702 + 0.00299230i
\(561\) 0 0
\(562\) 26.3867 9.60397i 1.11306 0.405119i
\(563\) −10.5776 + 39.4761i −0.445792 + 1.66372i 0.268045 + 0.963407i \(0.413623\pi\)
−0.713837 + 0.700312i \(0.753044\pi\)
\(564\) 0 0
\(565\) 0.823633 1.42657i 0.0346505 0.0600164i
\(566\) −6.80150 11.7805i −0.285888 0.495173i
\(567\) 0 0
\(568\) −6.01610 8.59188i −0.252430 0.360507i
\(569\) −9.76404 36.4399i −0.409330 1.52764i −0.795928 0.605392i \(-0.793017\pi\)
0.386598 0.922248i \(-0.373650\pi\)
\(570\) 0 0
\(571\) −13.6730 4.97657i −0.572198 0.208263i 0.0396837 0.999212i \(-0.487365\pi\)
−0.611882 + 0.790949i \(0.709587\pi\)
\(572\) −0.280958 + 0.401250i −0.0117475 + 0.0167771i
\(573\) 0 0
\(574\) −9.96731 + 0.872026i −0.416027 + 0.0363977i
\(575\) −28.4672 19.9329i −1.18716 0.831261i
\(576\) 0 0
\(577\) 28.4758 13.2785i 1.18546 0.552791i 0.273026 0.962007i \(-0.411976\pi\)
0.912438 + 0.409216i \(0.134198\pi\)
\(578\) 9.11634 2.44272i 0.379190 0.101604i
\(579\) 0 0
\(580\) −0.165260 0.196949i −0.00686205 0.00817787i
\(581\) 20.2323 11.6811i 0.839376 0.484614i
\(582\) 0 0
\(583\) −0.546676 + 0.0963936i −0.0226410 + 0.00399222i
\(584\) −4.56607 1.22347i −0.188945 0.0506277i
\(585\) 0 0
\(586\) 17.6142 + 17.6142i 0.727635 + 0.727635i
\(587\) −18.7182 + 40.1414i −0.772584 + 1.65681i −0.0186807 + 0.999826i \(0.505947\pi\)
−0.753903 + 0.656986i \(0.771831\pi\)
\(588\) 0 0
\(589\) 2.94952 + 2.47494i 0.121533 + 0.101978i
\(590\) 0.721060 + 0.0630846i 0.0296856 + 0.00259715i
\(591\) 0 0
\(592\) −5.66414 2.21756i −0.232795 0.0911412i
\(593\) 28.5125i 1.17087i −0.810721 0.585433i \(-0.800924\pi\)
0.810721 0.585433i \(-0.199076\pi\)
\(594\) 0 0
\(595\) −0.553774 + 0.659962i −0.0227025 + 0.0270558i
\(596\) 0.826280 4.68607i 0.0338457 0.191949i
\(597\) 0 0
\(598\) 25.7864 25.7864i 1.05448 1.05448i
\(599\) 4.98253 + 13.6894i 0.203581 + 0.559333i 0.998902 0.0468554i \(-0.0149200\pi\)
−0.795321 + 0.606188i \(0.792698\pi\)
\(600\) 0 0
\(601\) 1.16812 + 6.62472i 0.0476485 + 0.270228i 0.999319 0.0368922i \(-0.0117458\pi\)
−0.951671 + 0.307120i \(0.900635\pi\)
\(602\) −12.9906 7.50014i −0.529458 0.305683i
\(603\) 0 0
\(604\) −3.13019 + 2.62654i −0.127366 + 0.106872i
\(605\) −0.736141 + 0.515451i −0.0299284 + 0.0209561i
\(606\) 0 0
\(607\) 10.2261 + 21.9300i 0.415066 + 0.890112i 0.997039 + 0.0769037i \(0.0245034\pi\)
−0.581972 + 0.813209i \(0.697719\pi\)
\(608\) 2.61387 7.18154i 0.106006 0.291250i
\(609\) 0 0
\(610\) 0.0410312 + 0.468989i 0.00166131 + 0.0189888i
\(611\) 4.10751 + 46.9490i 0.166172 + 1.89935i
\(612\) 0 0
\(613\) −0.234258 + 0.643620i −0.00946161 + 0.0259956i −0.944334 0.328990i \(-0.893292\pi\)
0.934872 + 0.354985i \(0.115514\pi\)
\(614\) −2.87322 6.16163i −0.115954 0.248663i
\(615\) 0 0
\(616\) −0.156929 + 0.109883i −0.00632285 + 0.00442731i
\(617\) 5.94794 4.99091i 0.239455 0.200927i −0.515161 0.857094i \(-0.672268\pi\)
0.754616 + 0.656167i \(0.227823\pi\)
\(618\) 0 0
\(619\) −24.3094 14.0350i −0.977076 0.564115i −0.0756901 0.997131i \(-0.524116\pi\)
−0.901386 + 0.433016i \(0.857449\pi\)
\(620\) −0.00715295 0.0405664i −0.000287269 0.00162919i
\(621\) 0 0
\(622\) 12.0219 + 33.0299i 0.482034 + 1.32438i
\(623\) −8.13827 + 8.13827i −0.326053 + 0.326053i
\(624\) 0 0
\(625\) −4.32380 + 24.5215i −0.172952 + 0.980859i
\(626\) 18.9643 22.6007i 0.757964 0.903307i
\(627\) 0 0
\(628\) 4.29047i 0.171208i
\(629\) 18.5515 25.1803i 0.739696 1.00400i
\(630\) 0 0
\(631\) 31.9009 + 2.79097i 1.26996 + 0.111107i 0.702134 0.712045i \(-0.252231\pi\)
0.567821 + 0.823152i \(0.307786\pi\)
\(632\) −10.8124 9.07265i −0.430093 0.360891i
\(633\) 0 0
\(634\) 14.3976 30.8758i 0.571803 1.22623i
\(635\) −0.735466 0.735466i −0.0291861 0.0291861i
\(636\) 0 0
\(637\) 14.1737 + 3.79783i 0.561582 + 0.150475i
\(638\) 0.289494 0.0510455i 0.0114612 0.00202091i
\(639\) 0 0
\(640\) −0.0708076 + 0.0408808i −0.00279891 + 0.00161595i
\(641\) −8.62878 10.2834i −0.340816 0.406169i 0.568226 0.822872i \(-0.307630\pi\)
−0.909043 + 0.416703i \(0.863185\pi\)
\(642\) 0 0
\(643\) 5.56362 1.49077i 0.219408 0.0587902i −0.147440 0.989071i \(-0.547103\pi\)
0.366848 + 0.930281i \(0.380437\pi\)
\(644\) 12.9262 6.02756i 0.509362 0.237519i
\(645\) 0 0
\(646\) 32.1892 + 22.5391i 1.26647 + 0.886790i
\(647\) −27.5548 + 2.41073i −1.08329 + 0.0947757i −0.614793 0.788689i \(-0.710760\pi\)
−0.468498 + 0.883464i \(0.655205\pi\)
\(648\) 0 0
\(649\) −0.474685 + 0.677921i −0.0186330 + 0.0266107i
\(650\) −24.5861 8.94860i −0.964346 0.350993i
\(651\) 0 0
\(652\) 1.06070 + 3.95860i 0.0415404 + 0.155031i
\(653\) 13.5295 + 19.3221i 0.529451 + 0.756134i 0.991413 0.130765i \(-0.0417434\pi\)
−0.461963 + 0.886899i \(0.652855\pi\)
\(654\) 0 0
\(655\) 0.0661272 + 0.114536i 0.00258380 + 0.00447528i
\(656\) 2.44119 4.22826i 0.0953123 0.165086i
\(657\) 0 0
\(658\) −4.77053 + 17.8039i −0.185975 + 0.694066i
\(659\) −15.3229 + 5.57707i −0.596895 + 0.217252i −0.622759 0.782414i \(-0.713988\pi\)
0.0258646 + 0.999665i \(0.491766\pi\)
\(660\) 0 0
\(661\) −2.49678 1.16427i −0.0971135 0.0452848i 0.373455 0.927648i \(-0.378173\pi\)
−0.470568 + 0.882364i \(0.655951\pi\)
\(662\) 4.94602 + 0.872116i 0.192232 + 0.0338958i
\(663\) 0 0
\(664\) −0.993590 + 11.3568i −0.0385588 + 0.440729i
\(665\) −1.28051 −0.0496561
\(666\) 0 0
\(667\) −21.8848 −0.847382
\(668\) −0.228078 + 2.60695i −0.00882461 + 0.100866i
\(669\) 0 0
\(670\) 0.445413 + 0.0785384i 0.0172078 + 0.00303420i
\(671\) −0.487845 0.227486i −0.0188330 0.00878199i
\(672\) 0 0
\(673\) −14.8999 + 5.42313i −0.574350 + 0.209046i −0.612832 0.790213i \(-0.709970\pi\)
0.0384821 + 0.999259i \(0.487748\pi\)
\(674\) 5.87575 21.9286i 0.226325 0.844658i
\(675\) 0 0
\(676\) 7.22774 12.5188i 0.277990 0.481493i
\(677\) −2.29819 3.98058i −0.0883266 0.152986i 0.818477 0.574539i \(-0.194819\pi\)
−0.906804 + 0.421553i \(0.861485\pi\)
\(678\) 0 0
\(679\) −1.40694 2.00931i −0.0539932 0.0771103i
\(680\) −0.108808 0.406075i −0.00417258 0.0155723i
\(681\) 0 0
\(682\) 0.0442576 + 0.0161085i 0.00169471 + 0.000616825i
\(683\) −27.1672 + 38.7988i −1.03952 + 1.48459i −0.173346 + 0.984861i \(0.555458\pi\)
−0.866179 + 0.499734i \(0.833431\pi\)
\(684\) 0 0
\(685\) 1.29638 0.113419i 0.0495322 0.00433351i
\(686\) 16.4517 + 11.5196i 0.628131 + 0.439822i
\(687\) 0 0
\(688\) 6.63395 3.09346i 0.252917 0.117937i
\(689\) 30.0539 8.05291i 1.14496 0.306791i
\(690\) 0 0
\(691\) −10.0433 11.9691i −0.382065 0.455327i 0.540400 0.841408i \(-0.318273\pi\)
−0.922465 + 0.386081i \(0.873828\pi\)
\(692\) 1.05436 0.608733i 0.0400806 0.0231406i
\(693\) 0 0
\(694\) 15.1332 2.66839i 0.574449 0.101291i
\(695\) 0.418192 + 0.112054i 0.0158629 + 0.00425046i
\(696\) 0 0
\(697\) 17.7513 + 17.7513i 0.672378 + 0.672378i
\(698\) 2.87062 6.15607i 0.108655 0.233011i
\(699\) 0 0
\(700\) −7.83873 6.57747i −0.296276 0.248605i
\(701\) 1.81313 + 0.158628i 0.0684810 + 0.00599131i 0.121345 0.992610i \(-0.461279\pi\)
−0.0528638 + 0.998602i \(0.516835\pi\)
\(702\) 0 0
\(703\) 46.3944 2.93450i 1.74980 0.110677i
\(704\) 0.0934838i 0.00352330i
\(705\) 0 0
\(706\) −10.7508 + 12.8123i −0.404613 + 0.482199i
\(707\) 3.31433 18.7965i 0.124648 0.706916i
\(708\) 0 0
\(709\) 30.3617 30.3617i 1.14026 1.14026i 0.151857 0.988402i \(-0.451475\pi\)
0.988402 0.151857i \(-0.0485253\pi\)
\(710\) −0.293308 0.805858i −0.0110077 0.0302433i
\(711\) 0 0
\(712\) −0.975248 5.53090i −0.0365490 0.207279i
\(713\) −3.03660 1.75318i −0.113722 0.0656572i
\(714\) 0 0
\(715\) −0.0306799 + 0.0257435i −0.00114736 + 0.000962752i
\(716\) 5.91818 4.14395i 0.221173 0.154867i
\(717\) 0 0
\(718\) 10.4107 + 22.3258i 0.388524 + 0.833193i
\(719\) −0.175409 + 0.481933i −0.00654166 + 0.0179731i −0.942920 0.333018i \(-0.891933\pi\)
0.936379 + 0.350991i \(0.114155\pi\)
\(720\) 0 0
\(721\) −3.45192 39.4557i −0.128556 1.46941i
\(722\) 3.43454 + 39.2569i 0.127820 + 1.46099i
\(723\) 0 0
\(724\) 3.84300 10.5585i 0.142824 0.392405i
\(725\) 6.63573 + 14.2304i 0.246445 + 0.528502i
\(726\) 0 0
\(727\) −7.88484 + 5.52102i −0.292432 + 0.204763i −0.710581 0.703615i \(-0.751568\pi\)
0.418149 + 0.908379i \(0.362679\pi\)
\(728\) 8.22567 6.90215i 0.304864 0.255811i
\(729\) 0 0
\(730\) −0.334717 0.193249i −0.0123884 0.00715247i
\(731\) 6.53553 + 37.0648i 0.241725 + 1.37089i
\(732\) 0 0
\(733\) 11.6456 + 31.9960i 0.430139 + 1.18180i 0.945727 + 0.324961i \(0.105351\pi\)
−0.515588 + 0.856836i \(0.672427\pi\)
\(734\) −6.30143 + 6.30143i −0.232590 + 0.232590i
\(735\) 0 0
\(736\) −1.20854 + 6.85397i −0.0445474 + 0.252641i
\(737\) −0.332404 + 0.396144i −0.0122443 + 0.0145922i
\(738\) 0 0
\(739\) 21.9621i 0.807888i 0.914784 + 0.403944i \(0.132361\pi\)
−0.914784 + 0.403944i \(0.867639\pi\)
\(740\) −0.400401 0.294994i −0.0147191 0.0108442i
\(741\) 0 0
\(742\) 12.1224 + 1.06057i 0.445027 + 0.0389349i
\(743\) −22.7466 19.0867i −0.834492 0.700222i 0.121825 0.992552i \(-0.461125\pi\)
−0.956318 + 0.292329i \(0.905570\pi\)
\(744\) 0 0
\(745\) 0.164420 0.352599i 0.00602388 0.0129182i
\(746\) 19.7673 + 19.7673i 0.723733 + 0.723733i
\(747\) 0 0
\(748\) 0.464295 + 0.124407i 0.0169763 + 0.00454878i
\(749\) −13.9802 + 2.46509i −0.510827 + 0.0900726i
\(750\) 0 0
\(751\) −37.0006 + 21.3623i −1.35017 + 0.779521i −0.988273 0.152697i \(-0.951204\pi\)
−0.361897 + 0.932218i \(0.617871\pi\)
\(752\) −5.78143 6.89004i −0.210827 0.251254i
\(753\) 0 0
\(754\) −15.9151 + 4.26444i −0.579594 + 0.155302i
\(755\) −0.302790 + 0.141193i −0.0110196 + 0.00513854i
\(756\) 0 0
\(757\) 5.26333 + 3.68542i 0.191299 + 0.133949i 0.665302 0.746574i \(-0.268303\pi\)
−0.474003 + 0.880523i \(0.657192\pi\)
\(758\) 9.59004 0.839020i 0.348326 0.0304746i
\(759\) 0 0
\(760\) 0.358404 0.511853i 0.0130007 0.0185669i
\(761\) 14.9673 + 5.44766i 0.542565 + 0.197477i 0.598740 0.800943i \(-0.295668\pi\)
−0.0561751 + 0.998421i \(0.517891\pi\)
\(762\) 0 0
\(763\) −2.52589 9.42674i −0.0914433 0.341271i
\(764\) −6.45542 9.21930i −0.233549 0.333543i
\(765\) 0 0
\(766\) 4.69766 + 8.13659i 0.169733 + 0.293987i
\(767\) 23.1933 40.1720i 0.837462 1.45053i
\(768\) 0 0
\(769\) 1.24915 4.66189i 0.0450455 0.168112i −0.939739 0.341893i \(-0.888932\pi\)
0.984784 + 0.173781i \(0.0555986\pi\)
\(770\) −0.0147188 + 0.00535722i −0.000530430 + 0.000193061i
\(771\) 0 0
\(772\) 17.7167 + 8.26146i 0.637640 + 0.297336i
\(773\) −35.3635 6.23554i −1.27194 0.224277i −0.503384 0.864063i \(-0.667912\pi\)
−0.768553 + 0.639786i \(0.779023\pi\)
\(774\) 0 0
\(775\) −0.219256 + 2.50610i −0.00787590 + 0.0900219i
\(776\) 1.19696 0.0429684
\(777\) 0 0
\(778\) −2.27419 −0.0815335
\(779\) −3.25206 + 37.1713i −0.116517 + 1.33180i
\(780\) 0 0
\(781\) 0.965632 + 0.170267i 0.0345530 + 0.00609263i
\(782\) −32.4325 15.1235i −1.15978 0.540816i
\(783\) 0 0
\(784\)