Properties

Label 666.2.bs.b.17.5
Level $666$
Weight $2$
Character 666.17
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 666.17
Dual form 666.2.bs.b.431.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.573576 - 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(-3.55188 + 0.310750i) q^{5} +(3.11397 + 2.61293i) q^{7} +(-0.965926 - 0.258819i) q^{8} +O(q^{10})\) \(q+(0.573576 - 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(-3.55188 + 0.310750i) q^{5} +(3.11397 + 2.61293i) q^{7} +(-0.965926 - 0.258819i) q^{8} +(-1.78273 + 3.08777i) q^{10} +(0.00168590 + 0.00292006i) q^{11} +(1.48479 + 0.692367i) q^{13} +(3.92649 - 1.05210i) q^{14} +(-0.766044 + 0.642788i) q^{16} +(6.72035 - 3.13375i) q^{17} +(5.40925 - 3.78760i) q^{19} +(1.50683 + 3.23140i) q^{20} +(0.00335897 + 0.000293872i) q^{22} +(1.87861 + 7.01106i) q^{23} +(7.59528 - 1.33925i) q^{25} +(1.41879 - 0.819140i) q^{26} +(1.39031 - 3.81985i) q^{28} +(-0.451637 + 1.68553i) q^{29} +(-6.34406 + 6.34406i) q^{31} +(0.0871557 + 0.996195i) q^{32} +(1.28762 - 7.30243i) q^{34} +(-11.8724 - 8.31317i) q^{35} +(5.96785 - 1.17677i) q^{37} -6.60347i q^{38} +(3.51129 + 0.619134i) q^{40} +(8.09602 - 2.94671i) q^{41} +(-3.92740 - 3.92740i) q^{43} +(0.00216735 - 0.00258295i) q^{44} +(6.82065 + 2.48251i) q^{46} +(-0.830808 - 0.479667i) q^{47} +(1.65387 + 9.37955i) q^{49} +(3.25942 - 6.98986i) q^{50} +(0.142786 - 1.63205i) q^{52} +(-7.38951 - 8.80648i) q^{53} +(-0.00689553 - 0.00984784i) q^{55} +(-2.33159 - 3.32985i) q^{56} +(1.12166 + 1.33674i) q^{58} +(-0.918352 + 10.4968i) q^{59} +(-4.66422 + 10.0025i) q^{61} +(1.55795 + 8.83555i) q^{62} +(0.866025 + 0.500000i) q^{64} +(-5.48894 - 1.99781i) q^{65} +(6.84313 - 8.15532i) q^{67} +(-5.24325 - 5.24325i) q^{68} +(-13.6195 + 4.95709i) q^{70} +(6.56350 + 1.15732i) q^{71} +1.04063i q^{73} +(2.45906 - 5.56354i) q^{74} +(-5.40925 - 3.78760i) q^{76} +(-0.00238009 + 0.0134981i) q^{77} +(0.482790 + 5.51832i) q^{79} +(2.52116 - 2.52116i) q^{80} +(2.22988 - 8.32204i) q^{82} +(0.623717 - 1.71365i) q^{83} +(-22.8961 + 13.2191i) q^{85} +(-5.46980 + 0.964473i) q^{86} +(-0.000872686 - 0.00325691i) q^{88} +(-3.68659 - 0.322535i) q^{89} +(2.81447 + 6.03566i) q^{91} +(5.94572 - 4.16324i) q^{92} +(-0.869453 + 0.405432i) q^{94} +(-18.0360 + 15.1340i) q^{95} +(-4.41394 + 1.18271i) q^{97} +(8.63189 + 4.02512i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82} - 108 q^{85} - 24 q^{88} + 216 q^{91} - 60 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.573576 0.819152i 0.405580 0.579228i
\(3\) 0 0
\(4\) −0.342020 0.939693i −0.171010 0.469846i
\(5\) −3.55188 + 0.310750i −1.58845 + 0.138971i −0.846836 0.531854i \(-0.821495\pi\)
−0.741615 + 0.670826i \(0.765940\pi\)
\(6\) 0 0
\(7\) 3.11397 + 2.61293i 1.17697 + 0.987596i 0.999994 + 0.00338075i \(0.00107613\pi\)
0.176977 + 0.984215i \(0.443368\pi\)
\(8\) −0.965926 0.258819i −0.341506 0.0915064i
\(9\) 0 0
\(10\) −1.78273 + 3.08777i −0.563748 + 0.976439i
\(11\) 0.00168590 + 0.00292006i 0.000508318 + 0.000880433i 0.866279 0.499560i \(-0.166505\pi\)
−0.865771 + 0.500440i \(0.833172\pi\)
\(12\) 0 0
\(13\) 1.48479 + 0.692367i 0.411806 + 0.192028i 0.617470 0.786594i \(-0.288158\pi\)
−0.205664 + 0.978623i \(0.565935\pi\)
\(14\) 3.92649 1.05210i 1.04940 0.281186i
\(15\) 0 0
\(16\) −0.766044 + 0.642788i −0.191511 + 0.160697i
\(17\) 6.72035 3.13375i 1.62992 0.760046i 0.630059 0.776547i \(-0.283031\pi\)
0.999864 + 0.0165015i \(0.00525282\pi\)
\(18\) 0 0
\(19\) 5.40925 3.78760i 1.24097 0.868934i 0.246013 0.969267i \(-0.420879\pi\)
0.994954 + 0.100332i \(0.0319906\pi\)
\(20\) 1.50683 + 3.23140i 0.336936 + 0.722562i
\(21\) 0 0
\(22\) 0.00335897 0.000293872i 0.000716135 6.26537e-5i
\(23\) 1.87861 + 7.01106i 0.391717 + 1.46191i 0.827301 + 0.561758i \(0.189875\pi\)
−0.435585 + 0.900148i \(0.643458\pi\)
\(24\) 0 0
\(25\) 7.59528 1.33925i 1.51906 0.267851i
\(26\) 1.41879 0.819140i 0.278248 0.160647i
\(27\) 0 0
\(28\) 1.39031 3.81985i 0.262744 0.721884i
\(29\) −0.451637 + 1.68553i −0.0838669 + 0.312995i −0.995097 0.0989018i \(-0.968467\pi\)
0.911230 + 0.411897i \(0.135134\pi\)
\(30\) 0 0
\(31\) −6.34406 + 6.34406i −1.13943 + 1.13943i −0.150873 + 0.988553i \(0.548209\pi\)
−0.988553 + 0.150873i \(0.951791\pi\)
\(32\) 0.0871557 + 0.996195i 0.0154071 + 0.176104i
\(33\) 0 0
\(34\) 1.28762 7.30243i 0.220824 1.25236i
\(35\) −11.8724 8.31317i −2.00681 1.40518i
\(36\) 0 0
\(37\) 5.96785 1.17677i 0.981108 0.193460i
\(38\) 6.60347i 1.07122i
\(39\) 0 0
\(40\) 3.51129 + 0.619134i 0.555183 + 0.0978937i
\(41\) 8.09602 2.94671i 1.26439 0.460199i 0.379148 0.925336i \(-0.376217\pi\)
0.885239 + 0.465137i \(0.153995\pi\)
\(42\) 0 0
\(43\) −3.92740 3.92740i −0.598923 0.598923i 0.341103 0.940026i \(-0.389199\pi\)
−0.940026 + 0.341103i \(0.889199\pi\)
\(44\) 0.00216735 0.00258295i 0.000326741 0.000389394i
\(45\) 0 0
\(46\) 6.82065 + 2.48251i 1.00565 + 0.366026i
\(47\) −0.830808 0.479667i −0.121186 0.0699667i 0.438182 0.898886i \(-0.355623\pi\)
−0.559368 + 0.828920i \(0.688956\pi\)
\(48\) 0 0
\(49\) 1.65387 + 9.37955i 0.236267 + 1.33994i
\(50\) 3.25942 6.98986i 0.460952 0.988515i
\(51\) 0 0
\(52\) 0.142786 1.63205i 0.0198008 0.226324i
\(53\) −7.38951 8.80648i −1.01503 1.20966i −0.977623 0.210362i \(-0.932536\pi\)
−0.0374040 0.999300i \(-0.511909\pi\)
\(54\) 0 0
\(55\) −0.00689553 0.00984784i −0.000929793 0.00132788i
\(56\) −2.33159 3.32985i −0.311572 0.444971i
\(57\) 0 0
\(58\) 1.12166 + 1.33674i 0.147281 + 0.175523i
\(59\) −0.918352 + 10.4968i −0.119559 + 1.36657i 0.665152 + 0.746708i \(0.268367\pi\)
−0.784712 + 0.619861i \(0.787189\pi\)
\(60\) 0 0
\(61\) −4.66422 + 10.0025i −0.597193 + 1.28068i 0.342774 + 0.939418i \(0.388633\pi\)
−0.939967 + 0.341266i \(0.889144\pi\)
\(62\) 1.55795 + 8.83555i 0.197859 + 1.12212i
\(63\) 0 0
\(64\) 0.866025 + 0.500000i 0.108253 + 0.0625000i
\(65\) −5.48894 1.99781i −0.680820 0.247798i
\(66\) 0 0
\(67\) 6.84313 8.15532i 0.836021 0.996331i −0.163930 0.986472i \(-0.552417\pi\)
0.999951 0.00985913i \(-0.00313831\pi\)
\(68\) −5.24325 5.24325i −0.635838 0.635838i
\(69\) 0 0
\(70\) −13.6195 + 4.95709i −1.62784 + 0.592486i
\(71\) 6.56350 + 1.15732i 0.778944 + 0.137349i 0.548964 0.835846i \(-0.315023\pi\)
0.229981 + 0.973195i \(0.426134\pi\)
\(72\) 0 0
\(73\) 1.04063i 0.121796i 0.998144 + 0.0608982i \(0.0193965\pi\)
−0.998144 + 0.0608982i \(0.980603\pi\)
\(74\) 2.45906 5.56354i 0.285860 0.646749i
\(75\) 0 0
\(76\) −5.40925 3.78760i −0.620483 0.434467i
\(77\) −0.00238009 + 0.0134981i −0.000271236 + 0.00153826i
\(78\) 0 0
\(79\) 0.482790 + 5.51832i 0.0543181 + 0.620859i 0.973752 + 0.227613i \(0.0730922\pi\)
−0.919433 + 0.393246i \(0.871352\pi\)
\(80\) 2.52116 2.52116i 0.281874 0.281874i
\(81\) 0 0
\(82\) 2.22988 8.32204i 0.246249 0.919016i
\(83\) 0.623717 1.71365i 0.0684618 0.188097i −0.900743 0.434351i \(-0.856978\pi\)
0.969205 + 0.246254i \(0.0791998\pi\)
\(84\) 0 0
\(85\) −22.8961 + 13.2191i −2.48343 + 1.43381i
\(86\) −5.46980 + 0.964473i −0.589824 + 0.104002i
\(87\) 0 0
\(88\) −0.000872686 0.00325691i −9.30286e−5 0.000347188i
\(89\) −3.68659 0.322535i −0.390778 0.0341886i −0.109926 0.993940i \(-0.535061\pi\)
−0.280852 + 0.959751i \(0.590617\pi\)
\(90\) 0 0
\(91\) 2.81447 + 6.03566i 0.295037 + 0.632709i
\(92\) 5.94572 4.16324i 0.619884 0.434047i
\(93\) 0 0
\(94\) −0.869453 + 0.405432i −0.0896772 + 0.0418172i
\(95\) −18.0360 + 15.1340i −1.85046 + 1.55272i
\(96\) 0 0
\(97\) −4.41394 + 1.18271i −0.448168 + 0.120086i −0.475842 0.879531i \(-0.657857\pi\)
0.0276742 + 0.999617i \(0.491190\pi\)
\(98\) 8.63189 + 4.02512i 0.871953 + 0.406598i
\(99\) 0 0
\(100\) −3.85623 6.67918i −0.385623 0.667918i
\(101\) 0.0461206 0.0798833i 0.00458917 0.00794868i −0.863722 0.503969i \(-0.831873\pi\)
0.868311 + 0.496020i \(0.165206\pi\)
\(102\) 0 0
\(103\) −5.68882 1.52431i −0.560536 0.150195i −0.0325833 0.999469i \(-0.510373\pi\)
−0.527952 + 0.849274i \(0.677040\pi\)
\(104\) −1.25500 1.05307i −0.123062 0.103262i
\(105\) 0 0
\(106\) −11.4523 + 1.00195i −1.11235 + 0.0973176i
\(107\) 1.35290 + 3.71707i 0.130790 + 0.359343i 0.987751 0.156039i \(-0.0498724\pi\)
−0.856961 + 0.515382i \(0.827650\pi\)
\(108\) 0 0
\(109\) 4.72339 6.74570i 0.452419 0.646121i −0.526547 0.850146i \(-0.676514\pi\)
0.978966 + 0.204025i \(0.0654024\pi\)
\(110\) −0.0120220 −0.00114625
\(111\) 0 0
\(112\) −4.06500 −0.384107
\(113\) −3.97766 + 5.68069i −0.374187 + 0.534395i −0.961442 0.275007i \(-0.911320\pi\)
0.587255 + 0.809402i \(0.300209\pi\)
\(114\) 0 0
\(115\) −8.85128 24.3187i −0.825386 2.26773i
\(116\) 1.73835 0.152086i 0.161402 0.0141208i
\(117\) 0 0
\(118\) 8.07174 + 6.77299i 0.743064 + 0.623505i
\(119\) 29.1152 + 7.80141i 2.66899 + 0.715154i
\(120\) 0 0
\(121\) 5.49999 9.52627i 0.499999 0.866025i
\(122\) 5.51825 + 9.55788i 0.499599 + 0.865330i
\(123\) 0 0
\(124\) 8.13126 + 3.79167i 0.730209 + 0.340502i
\(125\) −9.34158 + 2.50307i −0.835537 + 0.223881i
\(126\) 0 0
\(127\) 2.05515 1.72448i 0.182365 0.153023i −0.547035 0.837110i \(-0.684244\pi\)
0.729400 + 0.684087i \(0.239799\pi\)
\(128\) 0.906308 0.422618i 0.0801070 0.0373545i
\(129\) 0 0
\(130\) −4.78484 + 3.35038i −0.419658 + 0.293848i
\(131\) 3.38409 + 7.25720i 0.295669 + 0.634064i 0.996884 0.0788860i \(-0.0251363\pi\)
−0.701215 + 0.712950i \(0.747359\pi\)
\(132\) 0 0
\(133\) 26.7410 + 2.33953i 2.31874 + 0.202863i
\(134\) −2.75539 10.2833i −0.238030 0.888338i
\(135\) 0 0
\(136\) −7.30243 + 1.28762i −0.626178 + 0.110412i
\(137\) −10.6929 + 6.17353i −0.913553 + 0.527440i −0.881573 0.472049i \(-0.843515\pi\)
−0.0319803 + 0.999489i \(0.510181\pi\)
\(138\) 0 0
\(139\) 0.0881489 0.242187i 0.00747669 0.0205420i −0.935898 0.352271i \(-0.885410\pi\)
0.943375 + 0.331729i \(0.107632\pi\)
\(140\) −3.75121 + 13.9997i −0.317035 + 1.18319i
\(141\) 0 0
\(142\) 4.71269 4.71269i 0.395480 0.395480i
\(143\) 0.000481444 0.00550293i 4.02604e−5 0.000460178i
\(144\) 0 0
\(145\) 1.08038 6.12716i 0.0897210 0.508833i
\(146\) 0.852433 + 0.596880i 0.0705479 + 0.0493982i
\(147\) 0 0
\(148\) −3.14693 5.20546i −0.258676 0.427886i
\(149\) 23.0030i 1.88448i −0.334937 0.942241i \(-0.608715\pi\)
0.334937 0.942241i \(-0.391285\pi\)
\(150\) 0 0
\(151\) −9.17838 1.61840i −0.746926 0.131703i −0.212786 0.977099i \(-0.568254\pi\)
−0.534141 + 0.845396i \(0.679365\pi\)
\(152\) −6.20524 + 2.25852i −0.503311 + 0.183190i
\(153\) 0 0
\(154\) 0.00969187 + 0.00969187i 0.000780993 + 0.000780993i
\(155\) 20.5620 24.5048i 1.65158 1.96827i
\(156\) 0 0
\(157\) −16.4279 5.97928i −1.31109 0.477198i −0.410498 0.911861i \(-0.634645\pi\)
−0.900593 + 0.434663i \(0.856867\pi\)
\(158\) 4.79726 + 2.76970i 0.381649 + 0.220345i
\(159\) 0 0
\(160\) −0.619134 3.51129i −0.0489469 0.277591i
\(161\) −12.4695 + 26.7409i −0.982733 + 2.10748i
\(162\) 0 0
\(163\) 0.0228049 0.260661i 0.00178622 0.0204166i −0.995249 0.0973595i \(-0.968960\pi\)
0.997036 + 0.0769429i \(0.0245159\pi\)
\(164\) −5.53801 6.59994i −0.432446 0.515369i
\(165\) 0 0
\(166\) −1.04599 1.49383i −0.0811845 0.115943i
\(167\) −2.85957 4.08389i −0.221280 0.316021i 0.693128 0.720815i \(-0.256232\pi\)
−0.914408 + 0.404794i \(0.867343\pi\)
\(168\) 0 0
\(169\) −6.63102 7.90254i −0.510079 0.607888i
\(170\) −2.30423 + 26.3375i −0.176727 + 2.01999i
\(171\) 0 0
\(172\) −2.34730 + 5.03380i −0.178980 + 0.383823i
\(173\) 0.740764 + 4.20108i 0.0563192 + 0.319402i 0.999932 0.0116486i \(-0.00370793\pi\)
−0.943613 + 0.331051i \(0.892597\pi\)
\(174\) 0 0
\(175\) 27.1509 + 15.6756i 2.05241 + 1.18496i
\(176\) −0.00316846 0.00115322i −0.000238831 8.69275e-5i
\(177\) 0 0
\(178\) −2.37874 + 2.83488i −0.178294 + 0.212483i
\(179\) 1.93041 + 1.93041i 0.144286 + 0.144286i 0.775560 0.631274i \(-0.217468\pi\)
−0.631274 + 0.775560i \(0.717468\pi\)
\(180\) 0 0
\(181\) −7.04931 + 2.56574i −0.523971 + 0.190710i −0.590444 0.807078i \(-0.701047\pi\)
0.0664735 + 0.997788i \(0.478825\pi\)
\(182\) 6.55844 + 1.15643i 0.486144 + 0.0857203i
\(183\) 0 0
\(184\) 7.25838i 0.535095i
\(185\) −20.8314 + 6.03427i −1.53156 + 0.443648i
\(186\) 0 0
\(187\) 0.0204806 + 0.0143407i 0.00149769 + 0.00104869i
\(188\) −0.166587 + 0.944760i −0.0121496 + 0.0689037i
\(189\) 0 0
\(190\) 2.05203 + 23.4548i 0.148870 + 1.70159i
\(191\) 11.6275 11.6275i 0.841335 0.841335i −0.147697 0.989033i \(-0.547186\pi\)
0.989033 + 0.147697i \(0.0471861\pi\)
\(192\) 0 0
\(193\) −0.356593 + 1.33082i −0.0256681 + 0.0957946i −0.977572 0.210603i \(-0.932457\pi\)
0.951904 + 0.306398i \(0.0991238\pi\)
\(194\) −1.56291 + 4.29406i −0.112211 + 0.308296i
\(195\) 0 0
\(196\) 8.24823 4.76212i 0.589160 0.340151i
\(197\) −11.8613 + 2.09147i −0.845084 + 0.149011i −0.579394 0.815047i \(-0.696711\pi\)
−0.265690 + 0.964059i \(0.585600\pi\)
\(198\) 0 0
\(199\) −3.62271 13.5201i −0.256807 0.958418i −0.967076 0.254487i \(-0.918093\pi\)
0.710269 0.703931i \(-0.248573\pi\)
\(200\) −7.68310 0.672184i −0.543277 0.0475306i
\(201\) 0 0
\(202\) −0.0389828 0.0835990i −0.00274282 0.00588200i
\(203\) −5.81057 + 4.06860i −0.407822 + 0.285560i
\(204\) 0 0
\(205\) −27.8405 + 12.9822i −1.94446 + 0.906717i
\(206\) −4.51162 + 3.78570i −0.314339 + 0.263762i
\(207\) 0 0
\(208\) −1.58246 + 0.424018i −0.109724 + 0.0294004i
\(209\) 0.0201795 + 0.00940985i 0.00139584 + 0.000650893i
\(210\) 0 0
\(211\) −10.0144 17.3454i −0.689418 1.19411i −0.972026 0.234871i \(-0.924533\pi\)
0.282609 0.959235i \(-0.408800\pi\)
\(212\) −5.74802 + 9.95586i −0.394776 + 0.683771i
\(213\) 0 0
\(214\) 3.82084 + 1.02379i 0.261187 + 0.0699850i
\(215\) 15.1701 + 12.7292i 1.03459 + 0.868126i
\(216\) 0 0
\(217\) −36.3318 + 3.17862i −2.46636 + 0.215779i
\(218\) −2.81653 7.73835i −0.190759 0.524107i
\(219\) 0 0
\(220\) −0.00689553 + 0.00984784i −0.000464897 + 0.000663941i
\(221\) 12.1480 0.817162
\(222\) 0 0
\(223\) 4.17196 0.279375 0.139688 0.990196i \(-0.455390\pi\)
0.139688 + 0.990196i \(0.455390\pi\)
\(224\) −2.33159 + 3.32985i −0.155786 + 0.222485i
\(225\) 0 0
\(226\) 2.37186 + 6.51662i 0.157774 + 0.433479i
\(227\) −1.71222 + 0.149800i −0.113644 + 0.00994255i −0.143836 0.989602i \(-0.545944\pi\)
0.0301919 + 0.999544i \(0.490388\pi\)
\(228\) 0 0
\(229\) 1.07852 + 0.904984i 0.0712705 + 0.0598030i 0.677727 0.735314i \(-0.262965\pi\)
−0.606457 + 0.795117i \(0.707410\pi\)
\(230\) −24.9976 6.69808i −1.64829 0.441659i
\(231\) 0 0
\(232\) 0.872496 1.51121i 0.0572821 0.0992156i
\(233\) 8.03419 + 13.9156i 0.526337 + 0.911643i 0.999529 + 0.0306833i \(0.00976832\pi\)
−0.473192 + 0.880959i \(0.656898\pi\)
\(234\) 0 0
\(235\) 3.09999 + 1.44555i 0.202221 + 0.0942973i
\(236\) 10.1779 2.72715i 0.662523 0.177522i
\(237\) 0 0
\(238\) 23.0904 19.3751i 1.49673 1.25590i
\(239\) 15.8497 7.39083i 1.02523 0.478073i 0.164093 0.986445i \(-0.447530\pi\)
0.861138 + 0.508372i \(0.169752\pi\)
\(240\) 0 0
\(241\) −21.6237 + 15.1410i −1.39290 + 0.975321i −0.394495 + 0.918898i \(0.629081\pi\)
−0.998407 + 0.0564229i \(0.982030\pi\)
\(242\) −4.64880 9.96938i −0.298836 0.640856i
\(243\) 0 0
\(244\) 10.9945 + 0.961894i 0.703850 + 0.0615789i
\(245\) −8.78904 32.8011i −0.561511 2.09559i
\(246\) 0 0
\(247\) 10.6540 1.87859i 0.677897 0.119532i
\(248\) 7.76985 4.48593i 0.493386 0.284857i
\(249\) 0 0
\(250\) −3.30772 + 9.08788i −0.209198 + 0.574768i
\(251\) −3.07617 + 11.4804i −0.194166 + 0.724639i 0.798315 + 0.602240i \(0.205725\pi\)
−0.992481 + 0.122398i \(0.960942\pi\)
\(252\) 0 0
\(253\) −0.0173056 + 0.0173056i −0.00108799 + 0.00108799i
\(254\) −0.233823 2.67260i −0.0146713 0.167694i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 10.8686 + 7.61028i 0.677965 + 0.474716i 0.861142 0.508364i \(-0.169749\pi\)
−0.183178 + 0.983080i \(0.558638\pi\)
\(258\) 0 0
\(259\) 21.6585 + 11.9291i 1.34580 + 0.741241i
\(260\) 5.84121i 0.362257i
\(261\) 0 0
\(262\) 7.88578 + 1.39048i 0.487185 + 0.0859039i
\(263\) 15.0672 5.48401i 0.929084 0.338159i 0.167237 0.985917i \(-0.446515\pi\)
0.761846 + 0.647758i \(0.224293\pi\)
\(264\) 0 0
\(265\) 28.9833 + 28.9833i 1.78043 + 1.78043i
\(266\) 17.2544 20.5630i 1.05794 1.26080i
\(267\) 0 0
\(268\) −10.0040 3.64115i −0.611090 0.222419i
\(269\) −14.7079 8.49160i −0.896755 0.517742i −0.0206093 0.999788i \(-0.506561\pi\)
−0.876146 + 0.482046i \(0.839894\pi\)
\(270\) 0 0
\(271\) 5.31338 + 30.1337i 0.322765 + 1.83049i 0.524938 + 0.851141i \(0.324089\pi\)
−0.202173 + 0.979350i \(0.564800\pi\)
\(272\) −3.13375 + 6.72035i −0.190011 + 0.407481i
\(273\) 0 0
\(274\) −1.07612 + 12.3001i −0.0650106 + 0.743074i
\(275\) 0.0167156 + 0.0199209i 0.00100799 + 0.00120127i
\(276\) 0 0
\(277\) −5.89228 8.41505i −0.354033 0.505611i 0.602149 0.798383i \(-0.294311\pi\)
−0.956182 + 0.292772i \(0.905422\pi\)
\(278\) −0.147828 0.211120i −0.00886613 0.0126622i
\(279\) 0 0
\(280\) 9.31629 + 11.1027i 0.556755 + 0.663514i
\(281\) 1.42594 16.2985i 0.0850643 0.972289i −0.826989 0.562218i \(-0.809948\pi\)
0.912053 0.410071i \(-0.134496\pi\)
\(282\) 0 0
\(283\) 12.0051 25.7450i 0.713629 1.53038i −0.128856 0.991663i \(-0.541131\pi\)
0.842485 0.538719i \(-0.181092\pi\)
\(284\) −1.15732 6.56350i −0.0686745 0.389472i
\(285\) 0 0
\(286\) 0.00478389 + 0.00276198i 0.000282877 + 0.000163319i
\(287\) 32.9104 + 11.9784i 1.94264 + 0.707062i
\(288\) 0 0
\(289\) 24.4153 29.0970i 1.43619 1.71159i
\(290\) −4.39939 4.39939i −0.258341 0.258341i
\(291\) 0 0
\(292\) 0.977871 0.355916i 0.0572256 0.0208284i
\(293\) 10.9385 + 1.92874i 0.639031 + 0.112678i 0.483770 0.875195i \(-0.339267\pi\)
0.155261 + 0.987873i \(0.450378\pi\)
\(294\) 0 0
\(295\) 37.5688i 2.18734i
\(296\) −6.06907 0.407916i −0.352757 0.0237097i
\(297\) 0 0
\(298\) −18.8430 13.1940i −1.09154 0.764307i
\(299\) −2.06490 + 11.7106i −0.119416 + 0.677242i
\(300\) 0 0
\(301\) −1.96778 22.4918i −0.113421 1.29641i
\(302\) −6.59022 + 6.59022i −0.379224 + 0.379224i
\(303\) 0 0
\(304\) −1.70910 + 6.37847i −0.0980239 + 0.365830i
\(305\) 13.4585 36.9770i 0.770633 2.11730i
\(306\) 0 0
\(307\) −11.3461 + 6.55069i −0.647558 + 0.373868i −0.787520 0.616289i \(-0.788635\pi\)
0.139962 + 0.990157i \(0.455302\pi\)
\(308\) 0.0134981 0.00238009i 0.000769128 0.000135618i
\(309\) 0 0
\(310\) −8.27929 30.8987i −0.470232 1.75493i
\(311\) −27.8046 2.43259i −1.57665 0.137939i −0.735041 0.678022i \(-0.762837\pi\)
−0.841612 + 0.540083i \(0.818393\pi\)
\(312\) 0 0
\(313\) 2.37961 + 5.10310i 0.134504 + 0.288444i 0.962011 0.273011i \(-0.0880195\pi\)
−0.827507 + 0.561455i \(0.810242\pi\)
\(314\) −14.3206 + 10.0274i −0.808159 + 0.565879i
\(315\) 0 0
\(316\) 5.02040 2.34105i 0.282419 0.131694i
\(317\) 5.45144 4.57430i 0.306183 0.256918i −0.476729 0.879050i \(-0.658178\pi\)
0.782912 + 0.622132i \(0.213733\pi\)
\(318\) 0 0
\(319\) −0.00568328 + 0.00152283i −0.000318202 + 8.52621e-5i
\(320\) −3.23140 1.50683i −0.180641 0.0842341i
\(321\) 0 0
\(322\) 14.7527 + 25.5524i 0.822134 + 1.42398i
\(323\) 24.4826 42.4052i 1.36225 2.35949i
\(324\) 0 0
\(325\) 12.2046 + 3.27022i 0.676991 + 0.181399i
\(326\) −0.200441 0.168190i −0.0111014 0.00931518i
\(327\) 0 0
\(328\) −8.58282 + 0.750900i −0.473907 + 0.0414615i
\(329\) −1.33378 3.66452i −0.0735334 0.202031i
\(330\) 0 0
\(331\) −2.76390 + 3.94725i −0.151917 + 0.216961i −0.887896 0.460044i \(-0.847834\pi\)
0.735979 + 0.677005i \(0.236722\pi\)
\(332\) −1.82363 −0.100084
\(333\) 0 0
\(334\) −4.98551 −0.272795
\(335\) −21.7717 + 31.0933i −1.18952 + 1.69881i
\(336\) 0 0
\(337\) 8.14958 + 22.3908i 0.443936 + 1.21970i 0.936883 + 0.349644i \(0.113697\pi\)
−0.492947 + 0.870059i \(0.664080\pi\)
\(338\) −10.2768 + 0.899102i −0.558983 + 0.0489047i
\(339\) 0 0
\(340\) 20.2528 + 16.9941i 1.09836 + 0.921634i
\(341\) −0.0292205 0.00782961i −0.00158238 0.000423997i
\(342\) 0 0
\(343\) −5.13052 + 8.88633i −0.277022 + 0.479817i
\(344\) 2.77709 + 4.81006i 0.149731 + 0.259341i
\(345\) 0 0
\(346\) 3.86621 + 1.80284i 0.207849 + 0.0969214i
\(347\) −3.72691 + 0.998623i −0.200071 + 0.0536089i −0.357463 0.933927i \(-0.616358\pi\)
0.157392 + 0.987536i \(0.449691\pi\)
\(348\) 0 0
\(349\) −19.7307 + 16.5560i −1.05616 + 0.886222i −0.993728 0.111828i \(-0.964330\pi\)
−0.0624303 + 0.998049i \(0.519885\pi\)
\(350\) 28.4138 13.2496i 1.51878 0.708219i
\(351\) 0 0
\(352\) −0.00276202 + 0.00193399i −0.000147216 + 0.000103082i
\(353\) −7.25723 15.5632i −0.386263 0.828344i −0.999268 0.0382648i \(-0.987817\pi\)
0.613004 0.790080i \(-0.289961\pi\)
\(354\) 0 0
\(355\) −23.6724 2.07107i −1.25640 0.109921i
\(356\) 0.957804 + 3.57457i 0.0507635 + 0.189452i
\(357\) 0 0
\(358\) 2.68854 0.474062i 0.142094 0.0250550i
\(359\) 2.17060 1.25319i 0.114560 0.0661411i −0.441625 0.897200i \(-0.645598\pi\)
0.556185 + 0.831059i \(0.312265\pi\)
\(360\) 0 0
\(361\) 8.41570 23.1219i 0.442932 1.21694i
\(362\) −1.94159 + 7.24610i −0.102048 + 0.380847i
\(363\) 0 0
\(364\) 4.70906 4.70906i 0.246822 0.246822i
\(365\) −0.323375 3.69619i −0.0169262 0.193468i
\(366\) 0 0
\(367\) 3.37470 19.1389i 0.176158 0.999042i −0.760641 0.649173i \(-0.775115\pi\)
0.936799 0.349869i \(-0.113774\pi\)
\(368\) −5.94572 4.16324i −0.309942 0.217024i
\(369\) 0 0
\(370\) −7.00543 + 20.5252i −0.364195 + 1.06706i
\(371\) 46.7314i 2.42617i
\(372\) 0 0
\(373\) 29.8587 + 5.26489i 1.54602 + 0.272606i 0.880600 0.473860i \(-0.157140\pi\)
0.665424 + 0.746466i \(0.268251\pi\)
\(374\) 0.0234944 0.00855125i 0.00121486 0.000442174i
\(375\) 0 0
\(376\) 0.678352 + 0.678352i 0.0349833 + 0.0349833i
\(377\) −1.83759 + 2.18996i −0.0946408 + 0.112788i
\(378\) 0 0
\(379\) 15.8713 + 5.77669i 0.815256 + 0.296729i 0.715793 0.698312i \(-0.246065\pi\)
0.0994628 + 0.995041i \(0.468288\pi\)
\(380\) 20.3900 + 11.7722i 1.04599 + 0.603900i
\(381\) 0 0
\(382\) −2.85543 16.1939i −0.146096 0.828554i
\(383\) −7.62907 + 16.3606i −0.389827 + 0.835987i 0.609248 + 0.792980i \(0.291472\pi\)
−0.999075 + 0.0430070i \(0.986306\pi\)
\(384\) 0 0
\(385\) 0.00425925 0.0486835i 0.000217072 0.00248114i
\(386\) 0.885612 + 1.05543i 0.0450765 + 0.0537200i
\(387\) 0 0
\(388\) 2.62104 + 3.74324i 0.133063 + 0.190034i
\(389\) −0.139444 0.199146i −0.00707008 0.0100971i 0.815601 0.578614i \(-0.196406\pi\)
−0.822672 + 0.568517i \(0.807517\pi\)
\(390\) 0 0
\(391\) 34.5958 + 41.2296i 1.74958 + 2.08507i
\(392\) 0.830092 9.48800i 0.0419260 0.479216i
\(393\) 0 0
\(394\) −5.09014 + 10.9158i −0.256438 + 0.549932i
\(395\) −3.42963 19.4504i −0.172563 0.978656i
\(396\) 0 0
\(397\) −23.1979 13.3933i −1.16427 0.672192i −0.211947 0.977281i \(-0.567980\pi\)
−0.952324 + 0.305089i \(0.901314\pi\)
\(398\) −13.1530 4.78729i −0.659298 0.239965i
\(399\) 0 0
\(400\) −4.95747 + 5.90808i −0.247873 + 0.295404i
\(401\) −17.9021 17.9021i −0.893988 0.893988i 0.100907 0.994896i \(-0.467825\pi\)
−0.994896 + 0.100907i \(0.967825\pi\)
\(402\) 0 0
\(403\) −13.8120 + 5.02715i −0.688024 + 0.250420i
\(404\) −0.0908399 0.0160175i −0.00451945 0.000796902i
\(405\) 0 0
\(406\) 7.09339i 0.352039i
\(407\) 0.0134974 + 0.0154426i 0.000669044 + 0.000765460i
\(408\) 0 0
\(409\) −2.61293 1.82960i −0.129201 0.0904677i 0.507189 0.861835i \(-0.330684\pi\)
−0.636391 + 0.771367i \(0.719573\pi\)
\(410\) −5.33422 + 30.2519i −0.263438 + 1.49403i
\(411\) 0 0
\(412\) 0.513303 + 5.86708i 0.0252886 + 0.289051i
\(413\) −30.2872 + 30.2872i −1.49034 + 1.49034i
\(414\) 0 0
\(415\) −1.68285 + 6.28050i −0.0826081 + 0.308298i
\(416\) −0.560325 + 1.53948i −0.0274722 + 0.0754792i
\(417\) 0 0
\(418\) 0.0192826 0.0111328i 0.000943141 0.000544523i
\(419\) 18.2736 3.22213i 0.892724 0.157411i 0.291575 0.956548i \(-0.405821\pi\)
0.601149 + 0.799137i \(0.294710\pi\)
\(420\) 0 0
\(421\) −4.33743 16.1875i −0.211393 0.788931i −0.987405 0.158213i \(-0.949427\pi\)
0.776012 0.630719i \(-0.217240\pi\)
\(422\) −19.9525 1.74562i −0.971274 0.0849755i
\(423\) 0 0
\(424\) 4.85844 + 10.4189i 0.235947 + 0.505989i
\(425\) 46.8460 32.8019i 2.27237 1.59113i
\(426\) 0 0
\(427\) −40.6600 + 18.9601i −1.96768 + 0.917542i
\(428\) 3.03019 2.54263i 0.146470 0.122903i
\(429\) 0 0
\(430\) 19.1284 5.12544i 0.922453 0.247170i
\(431\) −33.5757 15.6566i −1.61728 0.754151i −0.617801 0.786335i \(-0.711976\pi\)
−0.999482 + 0.0321834i \(0.989754\pi\)
\(432\) 0 0
\(433\) −0.479628 0.830741i −0.0230495 0.0399228i 0.854271 0.519829i \(-0.174004\pi\)
−0.877320 + 0.479906i \(0.840671\pi\)
\(434\) −18.2353 + 31.5845i −0.875322 + 1.51610i
\(435\) 0 0
\(436\) −7.95438 2.13137i −0.380946 0.102074i
\(437\) 36.7169 + 30.8091i 1.75641 + 1.47380i
\(438\) 0 0
\(439\) 39.3504 3.44272i 1.87809 0.164312i 0.909952 0.414714i \(-0.136118\pi\)
0.968142 + 0.250402i \(0.0805627\pi\)
\(440\) 0.00411176 + 0.0112970i 0.000196021 + 0.000538562i
\(441\) 0 0
\(442\) 6.96780 9.95104i 0.331424 0.473323i
\(443\) −3.29403 −0.156504 −0.0782521 0.996934i \(-0.524934\pi\)
−0.0782521 + 0.996934i \(0.524934\pi\)
\(444\) 0 0
\(445\) 13.1946 0.625482
\(446\) 2.39294 3.41747i 0.113309 0.161822i
\(447\) 0 0
\(448\) 1.39031 + 3.81985i 0.0656861 + 0.180471i
\(449\) −0.829579 + 0.0725787i −0.0391502 + 0.00342520i −0.106714 0.994290i \(-0.534033\pi\)
0.0675638 + 0.997715i \(0.478477\pi\)
\(450\) 0 0
\(451\) 0.0222537 + 0.0186731i 0.00104788 + 0.000879280i
\(452\) 6.69855 + 1.79487i 0.315073 + 0.0844236i
\(453\) 0 0
\(454\) −0.859379 + 1.48849i −0.0403326 + 0.0698582i
\(455\) −11.8723 20.5634i −0.556581 0.964026i
\(456\) 0 0
\(457\) −17.4986 8.15973i −0.818550 0.381696i −0.0322033 0.999481i \(-0.510252\pi\)
−0.786347 + 0.617785i \(0.788030\pi\)
\(458\) 1.35993 0.364393i 0.0635454 0.0170269i
\(459\) 0 0
\(460\) −19.8248 + 16.6350i −0.924335 + 0.775609i
\(461\) −3.95034 + 1.84208i −0.183986 + 0.0857940i −0.512428 0.858730i \(-0.671254\pi\)
0.328443 + 0.944524i \(0.393476\pi\)
\(462\) 0 0
\(463\) −2.22242 + 1.55616i −0.103285 + 0.0723207i −0.624078 0.781362i \(-0.714525\pi\)
0.520793 + 0.853683i \(0.325636\pi\)
\(464\) −0.737465 1.58150i −0.0342360 0.0734192i
\(465\) 0 0
\(466\) 16.0072 + 1.40045i 0.741521 + 0.0648746i
\(467\) 3.57825 + 13.3542i 0.165582 + 0.617960i 0.997965 + 0.0637597i \(0.0203091\pi\)
−0.832383 + 0.554200i \(0.813024\pi\)
\(468\) 0 0
\(469\) 42.6186 7.51481i 1.96794 0.347002i
\(470\) 2.96221 1.71023i 0.136636 0.0788871i
\(471\) 0 0
\(472\) 3.60383 9.90145i 0.165880 0.455751i
\(473\) 0.00484705 0.0180895i 0.000222868 0.000831754i
\(474\) 0 0
\(475\) 36.0122 36.0122i 1.65235 1.65235i
\(476\) −2.62708 30.0276i −0.120412 1.37631i
\(477\) 0 0
\(478\) 3.03679 17.2225i 0.138900 0.787739i
\(479\) 10.1001 + 7.07219i 0.461487 + 0.323137i 0.781094 0.624414i \(-0.214662\pi\)
−0.319607 + 0.947550i \(0.603551\pi\)
\(480\) 0 0
\(481\) 9.67574 + 2.38468i 0.441176 + 0.108732i
\(482\) 26.3976i 1.20238i
\(483\) 0 0
\(484\) −10.8329 1.91013i −0.492403 0.0868240i
\(485\) 15.3103 5.57249i 0.695204 0.253034i
\(486\) 0 0
\(487\) −15.8450 15.8450i −0.718004 0.718004i 0.250192 0.968196i \(-0.419506\pi\)
−0.968196 + 0.250192i \(0.919506\pi\)
\(488\) 7.09412 8.45444i 0.321136 0.382715i
\(489\) 0 0
\(490\) −31.9103 11.6144i −1.44156 0.524685i
\(491\) −8.29151 4.78711i −0.374191 0.216039i 0.301097 0.953594i \(-0.402647\pi\)
−0.675288 + 0.737554i \(0.735981\pi\)
\(492\) 0 0
\(493\) 2.24688 + 12.7427i 0.101194 + 0.573901i
\(494\) 4.57203 9.80475i 0.205705 0.441136i
\(495\) 0 0
\(496\) 0.781949 8.93771i 0.0351105 0.401315i
\(497\) 17.4146 + 20.7539i 0.781150 + 0.930938i
\(498\) 0 0
\(499\) 0.406534 + 0.580591i 0.0181990 + 0.0259908i 0.828148 0.560509i \(-0.189394\pi\)
−0.809949 + 0.586500i \(0.800506\pi\)
\(500\) 5.54713 + 7.92212i 0.248075 + 0.354288i
\(501\) 0 0
\(502\) 7.63980 + 9.10476i 0.340981 + 0.406365i
\(503\) −3.83320 + 43.8137i −0.170914 + 1.95356i 0.110265 + 0.993902i \(0.464830\pi\)
−0.281180 + 0.959655i \(0.590726\pi\)
\(504\) 0 0
\(505\) −0.138991 + 0.298068i −0.00618504 + 0.0132639i
\(506\) 0.00424983 + 0.0241020i 0.000188928 + 0.00107146i
\(507\) 0 0
\(508\) −2.32338 1.34141i −0.103084 0.0595153i
\(509\) −17.9519 6.53396i −0.795704 0.289613i −0.0879988 0.996121i \(-0.528047\pi\)
−0.707705 + 0.706508i \(0.750269\pi\)
\(510\) 0 0
\(511\) −2.71909 + 3.24049i −0.120286 + 0.143351i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 12.4679 4.53796i 0.549938 0.200161i
\(515\) 20.6797 + 3.64639i 0.911257 + 0.160679i
\(516\) 0 0
\(517\) 0.00323469i 0.000142261i
\(518\) 22.1946 10.8994i 0.975175 0.478891i
\(519\) 0 0
\(520\) 4.78484 + 3.35038i 0.209829 + 0.146924i
\(521\) 0.512479 2.90642i 0.0224521 0.127332i −0.971522 0.236951i \(-0.923852\pi\)
0.993974 + 0.109619i \(0.0349630\pi\)
\(522\) 0 0
\(523\) −0.994982 11.3727i −0.0435075 0.497293i −0.986419 0.164249i \(-0.947480\pi\)
0.942911 0.333044i \(-0.108076\pi\)
\(524\) 5.66211 5.66211i 0.247350 0.247350i
\(525\) 0 0
\(526\) 4.14995 15.4878i 0.180947 0.675302i
\(527\) −22.7536 + 62.5149i −0.991161 + 2.72319i
\(528\) 0 0
\(529\) −25.7072 + 14.8420i −1.11770 + 0.645306i
\(530\) 40.3659 7.11759i 1.75338 0.309168i
\(531\) 0 0
\(532\) −6.94751 25.9285i −0.301213 1.12414i
\(533\) 14.0611 + 1.23018i 0.609053 + 0.0532852i
\(534\) 0 0
\(535\) −5.96044 12.7822i −0.257692 0.552623i
\(536\) −8.72071 + 6.10630i −0.376677 + 0.263752i
\(537\) 0 0
\(538\) −15.3920 + 7.17741i −0.663596 + 0.309440i
\(539\) −0.0246006 + 0.0206424i −0.00105962 + 0.000889130i
\(540\) 0 0
\(541\) −3.33999 + 0.894949i −0.143598 + 0.0384769i −0.329902 0.944015i \(-0.607016\pi\)
0.186304 + 0.982492i \(0.440349\pi\)
\(542\) 27.7317 + 12.9315i 1.19118 + 0.555456i
\(543\) 0 0
\(544\) 3.70754 + 6.42165i 0.158959 + 0.275326i
\(545\) −14.6807 + 25.4277i −0.628853 + 1.08920i
\(546\) 0 0
\(547\) 7.10060 + 1.90260i 0.303600 + 0.0813493i 0.407403 0.913249i \(-0.366434\pi\)
−0.103803 + 0.994598i \(0.533101\pi\)
\(548\) 9.45839 + 7.93653i 0.404042 + 0.339032i
\(549\) 0 0
\(550\) 0.0259059 0.00226647i 0.00110463 9.66427e-5i
\(551\) 3.94110 + 10.8281i 0.167896 + 0.461292i
\(552\) 0 0
\(553\) −12.9156 + 18.4454i −0.549227 + 0.784377i
\(554\) −10.2729 −0.436453
\(555\) 0 0
\(556\) −0.257730 −0.0109302
\(557\) −19.5545 + 27.9267i −0.828551 + 1.18329i 0.152261 + 0.988340i \(0.451344\pi\)
−0.980813 + 0.194953i \(0.937544\pi\)
\(558\) 0 0
\(559\) −3.11215 8.55055i −0.131630 0.361650i
\(560\) 14.4384 1.26320i 0.610135 0.0533799i
\(561\) 0 0
\(562\) −12.5331 10.5165i −0.528677 0.443612i
\(563\) −10.2691 2.75160i −0.432792 0.115966i 0.0358445 0.999357i \(-0.488588\pi\)
−0.468636 + 0.883391i \(0.655255\pi\)
\(564\) 0 0
\(565\) 12.3629 21.4132i 0.520113 0.900861i
\(566\) −14.2032 24.6007i −0.597007 1.03405i
\(567\) 0 0
\(568\) −6.04032 2.81665i −0.253446 0.118184i
\(569\) 0.332333 0.0890483i 0.0139321 0.00373310i −0.251846 0.967767i \(-0.581038\pi\)
0.265778 + 0.964034i \(0.414371\pi\)
\(570\) 0 0
\(571\) −10.2614 + 8.61031i −0.429425 + 0.360330i −0.831735 0.555173i \(-0.812652\pi\)
0.402310 + 0.915504i \(0.368207\pi\)
\(572\) 0.00500640 0.00233452i 0.000209328 9.76114e-5i
\(573\) 0 0
\(574\) 28.6887 20.0881i 1.19744 0.838460i
\(575\) 23.6581 + 50.7350i 0.986612 + 2.11580i
\(576\) 0 0
\(577\) −40.7621 3.56622i −1.69695 0.148464i −0.802803 0.596244i \(-0.796659\pi\)
−0.894144 + 0.447780i \(0.852215\pi\)
\(578\) −9.83083 36.6892i −0.408909 1.52607i
\(579\) 0 0
\(580\) −6.12716 + 1.08038i −0.254417 + 0.0448605i
\(581\) 6.41988 3.70652i 0.266342 0.153772i
\(582\) 0 0
\(583\) 0.0132575 0.0364247i 0.000549070 0.00150856i
\(584\) 0.269335 1.00517i 0.0111451 0.0415942i
\(585\) 0 0
\(586\) 7.85398 7.85398i 0.324445 0.324445i
\(587\) 2.45733 + 28.0875i 0.101425 + 1.15929i 0.860906 + 0.508764i \(0.169897\pi\)
−0.759481 + 0.650529i \(0.774547\pi\)
\(588\) 0 0
\(589\) −10.2879 + 58.3453i −0.423904 + 2.40408i
\(590\) −30.7746 21.5486i −1.26697 0.887142i
\(591\) 0 0
\(592\) −3.81522 + 4.73752i −0.156805 + 0.194711i
\(593\) 0.186078i 0.00764129i 0.999993 + 0.00382064i \(0.00121615\pi\)
−0.999993 + 0.00382064i \(0.998784\pi\)
\(594\) 0 0
\(595\) −105.838 18.6621i −4.33895 0.765073i
\(596\) −21.6158 + 7.86750i −0.885416 + 0.322265i
\(597\) 0 0
\(598\) 8.40839 + 8.40839i 0.343845 + 0.343845i
\(599\) 11.0025 13.1122i 0.449549 0.535752i −0.492907 0.870082i \(-0.664066\pi\)
0.942456 + 0.334330i \(0.108510\pi\)
\(600\) 0 0
\(601\) 36.9239 + 13.4392i 1.50616 + 0.548196i 0.957646 0.287948i \(-0.0929732\pi\)
0.548510 + 0.836144i \(0.315195\pi\)
\(602\) −19.5529 11.2889i −0.796917 0.460100i
\(603\) 0 0
\(604\) 1.61840 + 9.17838i 0.0658516 + 0.373463i
\(605\) −16.5751 + 35.5453i −0.673872 + 1.44512i
\(606\) 0 0
\(607\) −2.23605 + 25.5581i −0.0907583 + 1.03737i 0.805132 + 0.593096i \(0.202095\pi\)
−0.895890 + 0.444276i \(0.853461\pi\)
\(608\) 4.24463 + 5.05855i 0.172143 + 0.205151i
\(609\) 0 0
\(610\) −22.5703 32.2337i −0.913844 1.30510i
\(611\) −0.901467 1.28743i −0.0364695 0.0520838i
\(612\) 0 0
\(613\) 25.5060 + 30.3968i 1.03018 + 1.22772i 0.973348 + 0.229333i \(0.0736543\pi\)
0.0568284 + 0.998384i \(0.481901\pi\)
\(614\) −1.14186 + 13.0515i −0.0460818 + 0.526717i
\(615\) 0 0
\(616\) 0.00579256 0.0124222i 0.000233389 0.000500504i
\(617\) −5.43974 30.8503i −0.218996 1.24199i −0.873836 0.486220i \(-0.838375\pi\)
0.654841 0.755767i \(-0.272736\pi\)
\(618\) 0 0
\(619\) −1.93017 1.11439i −0.0775803 0.0447910i 0.460708 0.887552i \(-0.347596\pi\)
−0.538288 + 0.842761i \(0.680929\pi\)
\(620\) −30.0596 10.9408i −1.20722 0.439393i
\(621\) 0 0
\(622\) −17.9407 + 21.3809i −0.719357 + 0.857296i
\(623\) −10.6372 10.6372i −0.426169 0.426169i
\(624\) 0 0
\(625\) −3.83427 + 1.39556i −0.153371 + 0.0558224i
\(626\) 5.54510 + 0.977751i 0.221627 + 0.0390788i
\(627\) 0 0
\(628\) 17.4822i 0.697617i
\(629\) 36.4183 26.6101i 1.45209 1.06101i
\(630\) 0 0
\(631\) 7.89783 + 5.53012i 0.314407 + 0.220150i 0.720119 0.693851i \(-0.244087\pi\)
−0.405711 + 0.914001i \(0.632976\pi\)
\(632\) 0.961906 5.45524i 0.0382626 0.216998i
\(633\) 0 0
\(634\) −0.620230 7.08927i −0.0246325 0.281551i
\(635\) −6.76379 + 6.76379i −0.268413 + 0.268413i
\(636\) 0 0
\(637\) −4.03845 + 15.0717i −0.160009 + 0.597163i
\(638\) −0.00201236 + 0.00552893i −7.96703e−5 + 0.000218892i
\(639\) 0 0
\(640\) −3.08777 + 1.78273i −0.122055 + 0.0704684i
\(641\) −17.6505 + 3.11225i −0.697152 + 0.122927i −0.510983 0.859591i \(-0.670718\pi\)
−0.186169 + 0.982518i \(0.559607\pi\)
\(642\) 0 0
\(643\) 0.609877 + 2.27609i 0.0240512 + 0.0897603i 0.976908 0.213659i \(-0.0685383\pi\)
−0.952857 + 0.303420i \(0.901872\pi\)
\(644\) 29.3930 + 2.57156i 1.15825 + 0.101334i
\(645\) 0 0
\(646\) −20.6936 44.3776i −0.814180 1.74601i
\(647\) −0.151597 + 0.106150i −0.00595990 + 0.00417317i −0.576553 0.817060i \(-0.695602\pi\)
0.570593 + 0.821233i \(0.306714\pi\)
\(648\) 0 0
\(649\) −0.0321996 + 0.0150149i −0.00126395 + 0.000589387i
\(650\) 9.67909 8.12172i 0.379645 0.318560i
\(651\) 0 0
\(652\) −0.252741 + 0.0677219i −0.00989812 + 0.00265219i
\(653\) −10.5738 4.93064i −0.413784 0.192951i 0.204567 0.978853i \(-0.434421\pi\)
−0.618351 + 0.785902i \(0.712199\pi\)
\(654\) 0 0
\(655\) −14.2751 24.7251i −0.557773 0.966091i
\(656\) −4.30780 + 7.46134i −0.168192 + 0.291316i
\(657\) 0 0
\(658\) −3.76682 1.00932i −0.146846 0.0393472i
\(659\) −27.0265 22.6779i −1.05280 0.883406i −0.0594169 0.998233i \(-0.518924\pi\)
−0.993385 + 0.114827i \(0.963369\pi\)
\(660\) 0 0
\(661\) −24.1453 + 2.11244i −0.939143 + 0.0821644i −0.546438 0.837500i \(-0.684016\pi\)
−0.392706 + 0.919664i \(0.628461\pi\)
\(662\) 1.64809 + 4.52810i 0.0640550 + 0.175990i
\(663\) 0 0
\(664\) −1.04599 + 1.49383i −0.0405922 + 0.0579717i
\(665\) −95.7079 −3.71139
\(666\) 0 0
\(667\) −12.6658 −0.490422
\(668\) −2.85957 + 4.08389i −0.110640 + 0.158010i
\(669\) 0 0
\(670\) 12.9824 + 35.6687i 0.501552 + 1.37800i
\(671\) −0.0370712 + 0.00324331i −0.00143112 + 0.000125207i
\(672\) 0 0
\(673\) −11.7508 9.86011i −0.452961 0.380079i 0.387572 0.921839i \(-0.373314\pi\)
−0.840533 + 0.541760i \(0.817758\pi\)
\(674\) 23.0159 + 6.16708i 0.886538 + 0.237547i
\(675\) 0 0
\(676\) −5.15802 + 8.93395i −0.198385 + 0.343613i
\(677\) −0.585639 1.01436i −0.0225079 0.0389849i 0.854552 0.519366i \(-0.173832\pi\)
−0.877060 + 0.480381i \(0.840498\pi\)
\(678\) 0 0
\(679\) −16.8352 7.85040i −0.646077 0.301271i
\(680\) 25.5373 6.84269i 0.979309 0.262405i
\(681\) 0 0
\(682\) −0.0231738 + 0.0194452i −0.000887372 + 0.000744594i
\(683\) −13.0458 + 6.08336i −0.499184 + 0.232773i −0.655868 0.754876i \(-0.727697\pi\)
0.156684 + 0.987649i \(0.449919\pi\)
\(684\) 0 0
\(685\) 36.0614 25.2505i 1.37783 0.964770i
\(686\) 4.33651 + 9.29967i 0.165569 + 0.355063i
\(687\) 0 0
\(688\) 5.53304 + 0.484079i 0.210945 + 0.0184553i
\(689\) −4.87453 18.1920i −0.185705 0.693060i
\(690\) 0 0
\(691\) 10.9165 1.92487i 0.415283 0.0732257i 0.0378972 0.999282i \(-0.487934\pi\)
0.377386 + 0.926056i \(0.376823\pi\)
\(692\) 3.69437 2.13295i 0.140439 0.0810824i
\(693\) 0 0
\(694\) −1.31964 + 3.62569i −0.0500930 + 0.137629i
\(695\) −0.237835 + 0.887613i −0.00902161 + 0.0336691i
\(696\) 0 0
\(697\) 45.1738 45.1738i 1.71108 1.71108i
\(698\) 2.24483 + 25.6585i 0.0849681 + 0.971190i
\(699\) 0 0
\(700\) 5.44407 30.8748i 0.205766 1.16696i
\(701\) 34.4672 + 24.1342i 1.30181 + 0.911536i 0.999136 0.0415592i \(-0.0132325\pi\)
0.302672 + 0.953095i \(0.402121\pi\)
\(702\) 0 0
\(703\) 27.8244 28.9693i 1.04942 1.09260i
\(704\) 0.00337180i 0.000127079i
\(705\) 0 0
\(706\) −16.9112 2.98190i −0.636461 0.112225i
\(707\) 0.352348 0.128244i 0.0132514 0.00482312i
\(708\) 0 0
\(709\) −27.3983 27.3983i −1.02896 1.02896i −0.999568 0.0293967i \(-0.990641\pi\)
−0.0293967 0.999568i \(-0.509359\pi\)
\(710\) −15.2745 + 18.2034i −0.573241 + 0.683162i
\(711\) 0 0
\(712\) 3.47749 + 1.26570i 0.130325 + 0.0474343i
\(713\) −56.3965 32.5606i −2.11207 1.21940i
\(714\) 0 0
\(715\) −0.00342007 0.0193962i −0.000127903 0.000725376i
\(716\) 1.15375 2.47424i 0.0431178 0.0924665i
\(717\) 0 0
\(718\) 0.218446 2.49685i 0.00815234 0.0931817i
\(719\) −10.4060 12.4014i −0.388079 0.462495i 0.536268 0.844048i \(-0.319834\pi\)
−0.924347 + 0.381553i \(0.875389\pi\)
\(720\) 0 0
\(721\) −13.7319 19.6112i −0.511402 0.730358i
\(722\) −14.1133 20.1559i −0.525244 0.750126i
\(723\) 0 0
\(724\) 4.82201 + 5.74665i 0.179209 + 0.213572i
\(725\) −1.17296 + 13.4069i −0.0435625 + 0.497921i
\(726\) 0 0
\(727\) −4.15492 + 8.91025i −0.154097 + 0.330463i −0.968167 0.250304i \(-0.919469\pi\)
0.814070 + 0.580767i \(0.197247\pi\)
\(728\) −1.15643 6.55844i −0.0428601 0.243072i
\(729\) 0 0
\(730\) −3.21323 1.85516i −0.118927 0.0686624i
\(731\) −38.7009 14.0860i −1.43141 0.520989i
\(732\) 0 0
\(733\) −20.1387 + 24.0004i −0.743840 + 0.886474i −0.996712 0.0810257i \(-0.974180\pi\)
0.252872 + 0.967500i \(0.418625\pi\)
\(734\) −13.7420 13.7420i −0.507227 0.507227i
\(735\) 0 0
\(736\) −6.82065 + 2.48251i −0.251412 + 0.0915066i
\(737\) 0.0353509 + 0.00623332i 0.00130217 + 0.000229607i
\(738\) 0 0
\(739\) 2.78918i 0.102602i −0.998683 0.0513008i \(-0.983663\pi\)
0.998683 0.0513008i \(-0.0163367\pi\)
\(740\) 12.7951 + 17.5113i 0.470358 + 0.643728i
\(741\) 0 0
\(742\) −38.2801 26.8040i −1.40531 0.984007i
\(743\) 1.20114 6.81200i 0.0440655 0.249908i −0.954816 0.297199i \(-0.903948\pi\)
0.998881 + 0.0472908i \(0.0150587\pi\)
\(744\) 0 0
\(745\) 7.14818 + 81.7041i 0.261889 + 2.99341i
\(746\) 21.4390 21.4390i 0.784937 0.784937i
\(747\) 0 0
\(748\) 0.00647104 0.0241502i 0.000236605 0.000883020i
\(749\) −5.49956 + 15.1099i −0.200950 + 0.552104i
\(750\) 0 0
\(751\) 21.0539 12.1555i 0.768267 0.443559i −0.0639889 0.997951i \(-0.520382\pi\)
0.832256 + 0.554391i \(0.187049\pi\)
\(752\) 0.944760 0.166587i 0.0344519 0.00607479i
\(753\) 0 0
\(754\) 0.739908 + 2.76137i 0.0269459 + 0.100563i
\(755\) 33.1035 + 2.89618i 1.20476 + 0.105403i
\(756\) 0 0
\(757\) 18.0944 + 38.8035i 0.657651 + 1.41034i 0.898151 + 0.439687i \(0.144911\pi\)
−0.240500 + 0.970649i \(0.577311\pi\)
\(758\) 13.8354 9.68766i 0.502525 0.351872i
\(759\) 0 0
\(760\) 21.3384 9.95028i 0.774027 0.360935i
\(761\) 37.5989 31.5493i 1.36296 1.14366i 0.387905 0.921700i \(-0.373199\pi\)
0.975056 0.221960i \(-0.0712454\pi\)
\(762\) 0 0
\(763\) 32.3346 8.66402i 1.17059 0.313659i
\(764\) −14.9031 6.94943i −0.539175 0.251422i
\(765\) 0 0
\(766\) 9.02596 + 15.6334i 0.326121 + 0.564858i
\(767\) −8.63121 + 14.9497i −0.311655 + 0.539802i
\(768\) 0 0
\(769\) −4.95709 1.32825i −0.178757 0.0478979i 0.168330 0.985731i \(-0.446163\pi\)
−0.347087 + 0.937833i \(0.612829\pi\)
\(770\) −0.0374362 0.0314127i −0.00134911 0.00113203i
\(771\) 0 0
\(772\) 1.37253 0.120080i 0.0493983 0.00432179i
\(773\) −9.91545 27.2425i −0.356634 0.979844i −0.980189 0.198064i \(-0.936534\pi\)
0.623555 0.781779i \(-0.285688\pi\)
\(774\) 0 0
\(775\) −39.6886 + 56.6812i −1.42566 + 2.03605i
\(776\) 4.56965 0.164041
\(777\) 0 0
\(778\) −0.243113 −0.00871601
\(779\) 32.6325 46.6040i 1.16918 1.66976i
\(780\) 0 0
\(781\) 0.00768595 + 0.0211170i 0.000275025 + 0.000755625i
\(782\) 53.6167 4.69085i 1.91733 0.167744i
\(783\) 0 0
\(784\) −7.29599