Properties

Label 666.2.bs.b.17.3
Level $666$
Weight $2$
Character 666.17
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 666.17
Dual form 666.2.bs.b.431.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.573576 + 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(1.31281 - 0.114856i) q^{5} +(-1.79970 - 1.51012i) q^{7} +(0.965926 + 0.258819i) q^{8} +O(q^{10})\) \(q+(-0.573576 + 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(1.31281 - 0.114856i) q^{5} +(-1.79970 - 1.51012i) q^{7} +(0.965926 + 0.258819i) q^{8} +(-0.658910 + 1.14127i) q^{10} +(-1.26790 - 2.19607i) q^{11} +(-5.68512 - 2.65102i) q^{13} +(2.26929 - 0.608053i) q^{14} +(-0.766044 + 0.642788i) q^{16} +(-2.17248 + 1.01304i) q^{17} +(-5.10508 + 3.57462i) q^{19} +(-0.556935 - 1.19435i) q^{20} +(2.52616 + 0.221010i) q^{22} +(1.95836 + 7.30871i) q^{23} +(-3.21377 + 0.566675i) q^{25} +(5.43244 - 3.13642i) q^{26} +(-0.803520 + 2.20765i) q^{28} +(2.27295 - 8.48275i) q^{29} +(1.77815 - 1.77815i) q^{31} +(-0.0871557 - 0.996195i) q^{32} +(0.416246 - 2.36065i) q^{34} +(-2.53610 - 1.77580i) q^{35} +(-6.02076 + 0.866319i) q^{37} -6.23215i q^{38} +(1.29780 + 0.228837i) q^{40} +(-10.3026 + 3.74984i) q^{41} +(-0.789016 - 0.789016i) q^{43} +(-1.62998 + 1.94254i) q^{44} +(-7.11021 - 2.58791i) q^{46} +(9.67161 + 5.58391i) q^{47} +(-0.257106 - 1.45812i) q^{49} +(1.37915 - 2.95760i) q^{50} +(-0.546714 + 6.24897i) q^{52} +(-1.18964 - 1.41776i) q^{53} +(-1.91674 - 2.73739i) q^{55} +(-1.34752 - 1.92446i) q^{56} +(5.64495 + 6.72739i) q^{58} +(0.761646 - 8.70565i) q^{59} +(4.69196 - 10.0620i) q^{61} +(0.436671 + 2.47649i) q^{62} +(0.866025 + 0.500000i) q^{64} +(-7.76795 - 2.82730i) q^{65} +(5.02896 - 5.99328i) q^{67} +(1.69498 + 1.69498i) q^{68} +(2.90929 - 1.05890i) q^{70} +(-4.03601 - 0.711657i) q^{71} -10.8547i q^{73} +(2.74372 - 5.42881i) q^{74} +(5.10508 + 3.57462i) q^{76} +(-1.03450 + 5.86695i) q^{77} +(0.818534 + 9.35588i) q^{79} +(-0.931840 + 0.931840i) q^{80} +(2.83764 - 10.5902i) q^{82} +(0.388056 - 1.06617i) q^{83} +(-2.73569 + 1.57945i) q^{85} +(1.09888 - 0.193763i) q^{86} +(-0.656315 - 2.44940i) q^{88} +(0.317556 + 0.0277825i) q^{89} +(6.22813 + 13.3563i) q^{91} +(6.19814 - 4.33998i) q^{92} +(-10.1215 + 4.71972i) q^{94} +(-6.29142 + 5.27913i) q^{95} +(12.8298 - 3.43773i) q^{97} +(1.34189 + 0.625736i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82} - 108 q^{85} - 24 q^{88} + 216 q^{91} - 60 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.573576 + 0.819152i −0.405580 + 0.579228i
\(3\) 0 0
\(4\) −0.342020 0.939693i −0.171010 0.469846i
\(5\) 1.31281 0.114856i 0.587105 0.0513650i 0.210267 0.977644i \(-0.432567\pi\)
0.376838 + 0.926279i \(0.377011\pi\)
\(6\) 0 0
\(7\) −1.79970 1.51012i −0.680221 0.570773i 0.235850 0.971790i \(-0.424213\pi\)
−0.916071 + 0.401016i \(0.868657\pi\)
\(8\) 0.965926 + 0.258819i 0.341506 + 0.0915064i
\(9\) 0 0
\(10\) −0.658910 + 1.14127i −0.208366 + 0.360900i
\(11\) −1.26790 2.19607i −0.382287 0.662141i 0.609102 0.793092i \(-0.291530\pi\)
−0.991389 + 0.130951i \(0.958197\pi\)
\(12\) 0 0
\(13\) −5.68512 2.65102i −1.57677 0.735260i −0.579928 0.814668i \(-0.696919\pi\)
−0.996842 + 0.0794083i \(0.974697\pi\)
\(14\) 2.26929 0.608053i 0.606492 0.162509i
\(15\) 0 0
\(16\) −0.766044 + 0.642788i −0.191511 + 0.160697i
\(17\) −2.17248 + 1.01304i −0.526903 + 0.245699i −0.667820 0.744322i \(-0.732773\pi\)
0.140917 + 0.990021i \(0.454995\pi\)
\(18\) 0 0
\(19\) −5.10508 + 3.57462i −1.17119 + 0.820073i −0.986666 0.162755i \(-0.947962\pi\)
−0.184520 + 0.982829i \(0.559073\pi\)
\(20\) −0.556935 1.19435i −0.124534 0.267065i
\(21\) 0 0
\(22\) 2.52616 + 0.221010i 0.538578 + 0.0471195i
\(23\) 1.95836 + 7.30871i 0.408347 + 1.52397i 0.797799 + 0.602924i \(0.205998\pi\)
−0.389452 + 0.921047i \(0.627335\pi\)
\(24\) 0 0
\(25\) −3.21377 + 0.566675i −0.642754 + 0.113335i
\(26\) 5.43244 3.13642i 1.06539 0.615103i
\(27\) 0 0
\(28\) −0.803520 + 2.20765i −0.151851 + 0.417207i
\(29\) 2.27295 8.48275i 0.422075 1.57521i −0.348152 0.937438i \(-0.613191\pi\)
0.770228 0.637769i \(-0.220143\pi\)
\(30\) 0 0
\(31\) 1.77815 1.77815i 0.319366 0.319366i −0.529158 0.848524i \(-0.677492\pi\)
0.848524 + 0.529158i \(0.177492\pi\)
\(32\) −0.0871557 0.996195i −0.0154071 0.176104i
\(33\) 0 0
\(34\) 0.416246 2.36065i 0.0713856 0.404848i
\(35\) −2.53610 1.77580i −0.428679 0.300164i
\(36\) 0 0
\(37\) −6.02076 + 0.866319i −0.989806 + 0.142422i
\(38\) 6.23215i 1.01099i
\(39\) 0 0
\(40\) 1.29780 + 0.228837i 0.205200 + 0.0361823i
\(41\) −10.3026 + 3.74984i −1.60899 + 0.585626i −0.981241 0.192787i \(-0.938247\pi\)
−0.627753 + 0.778412i \(0.716025\pi\)
\(42\) 0 0
\(43\) −0.789016 0.789016i −0.120324 0.120324i 0.644381 0.764705i \(-0.277115\pi\)
−0.764705 + 0.644381i \(0.777115\pi\)
\(44\) −1.62998 + 1.94254i −0.245729 + 0.292849i
\(45\) 0 0
\(46\) −7.11021 2.58791i −1.04834 0.381566i
\(47\) 9.67161 + 5.58391i 1.41075 + 0.814496i 0.995459 0.0951926i \(-0.0303467\pi\)
0.415290 + 0.909689i \(0.363680\pi\)
\(48\) 0 0
\(49\) −0.257106 1.45812i −0.0367295 0.208303i
\(50\) 1.37915 2.95760i 0.195041 0.418268i
\(51\) 0 0
\(52\) −0.546714 + 6.24897i −0.0758156 + 0.866576i
\(53\) −1.18964 1.41776i −0.163409 0.194744i 0.678126 0.734946i \(-0.262792\pi\)
−0.841536 + 0.540202i \(0.818348\pi\)
\(54\) 0 0
\(55\) −1.91674 2.73739i −0.258453 0.369110i
\(56\) −1.34752 1.92446i −0.180070 0.257167i
\(57\) 0 0
\(58\) 5.64495 + 6.72739i 0.741219 + 0.883350i
\(59\) 0.761646 8.70565i 0.0991579 1.13338i −0.769730 0.638370i \(-0.779609\pi\)
0.868887 0.495010i \(-0.164835\pi\)
\(60\) 0 0
\(61\) 4.69196 10.0620i 0.600745 1.28830i −0.337173 0.941443i \(-0.609471\pi\)
0.937918 0.346858i \(-0.112751\pi\)
\(62\) 0.436671 + 2.47649i 0.0554573 + 0.314514i
\(63\) 0 0
\(64\) 0.866025 + 0.500000i 0.108253 + 0.0625000i
\(65\) −7.76795 2.82730i −0.963496 0.350684i
\(66\) 0 0
\(67\) 5.02896 5.99328i 0.614385 0.732196i −0.365709 0.930729i \(-0.619173\pi\)
0.980094 + 0.198534i \(0.0636179\pi\)
\(68\) 1.69498 + 1.69498i 0.205547 + 0.205547i
\(69\) 0 0
\(70\) 2.90929 1.05890i 0.347727 0.126562i
\(71\) −4.03601 0.711657i −0.478986 0.0844582i −0.0710580 0.997472i \(-0.522638\pi\)
−0.407928 + 0.913014i \(0.633749\pi\)
\(72\) 0 0
\(73\) 10.8547i 1.27044i −0.772330 0.635222i \(-0.780909\pi\)
0.772330 0.635222i \(-0.219091\pi\)
\(74\) 2.74372 5.42881i 0.318951 0.631087i
\(75\) 0 0
\(76\) 5.10508 + 3.57462i 0.585593 + 0.410037i
\(77\) −1.03450 + 5.86695i −0.117892 + 0.668601i
\(78\) 0 0
\(79\) 0.818534 + 9.35588i 0.0920922 + 1.05262i 0.891861 + 0.452310i \(0.149400\pi\)
−0.799768 + 0.600309i \(0.795044\pi\)
\(80\) −0.931840 + 0.931840i −0.104183 + 0.104183i
\(81\) 0 0
\(82\) 2.83764 10.5902i 0.313365 1.16949i
\(83\) 0.388056 1.06617i 0.0425947 0.117028i −0.916572 0.399870i \(-0.869055\pi\)
0.959166 + 0.282842i \(0.0912774\pi\)
\(84\) 0 0
\(85\) −2.73569 + 1.57945i −0.296727 + 0.171315i
\(86\) 1.09888 0.193763i 0.118496 0.0208940i
\(87\) 0 0
\(88\) −0.656315 2.44940i −0.0699634 0.261107i
\(89\) 0.317556 + 0.0277825i 0.0336609 + 0.00294494i 0.103974 0.994580i \(-0.466844\pi\)
−0.0703129 + 0.997525i \(0.522400\pi\)
\(90\) 0 0
\(91\) 6.22813 + 13.3563i 0.652886 + 1.40012i
\(92\) 6.19814 4.33998i 0.646201 0.452475i
\(93\) 0 0
\(94\) −10.1215 + 4.71972i −1.04395 + 0.486802i
\(95\) −6.29142 + 5.27913i −0.645486 + 0.541627i
\(96\) 0 0
\(97\) 12.8298 3.43773i 1.30267 0.349049i 0.460209 0.887811i \(-0.347774\pi\)
0.842458 + 0.538762i \(0.181108\pi\)
\(98\) 1.34189 + 0.625736i 0.135552 + 0.0632088i
\(99\) 0 0
\(100\) 1.63167 + 2.82614i 0.163167 + 0.282614i
\(101\) 0.0476198 0.0824799i 0.00473834 0.00820705i −0.863647 0.504098i \(-0.831825\pi\)
0.868385 + 0.495891i \(0.165158\pi\)
\(102\) 0 0
\(103\) −6.75270 1.80938i −0.665364 0.178284i −0.0896982 0.995969i \(-0.528590\pi\)
−0.575665 + 0.817685i \(0.695257\pi\)
\(104\) −4.80527 4.03210i −0.471196 0.395380i
\(105\) 0 0
\(106\) 1.84371 0.161303i 0.179077 0.0156672i
\(107\) 3.41452 + 9.38130i 0.330094 + 0.906925i 0.988086 + 0.153901i \(0.0491835\pi\)
−0.657993 + 0.753024i \(0.728594\pi\)
\(108\) 0 0
\(109\) −1.53963 + 2.19883i −0.147470 + 0.210609i −0.886090 0.463513i \(-0.846589\pi\)
0.738620 + 0.674122i \(0.235478\pi\)
\(110\) 3.34174 0.318622
\(111\) 0 0
\(112\) 2.34934 0.221991
\(113\) 4.72723 6.75118i 0.444700 0.635098i −0.532748 0.846274i \(-0.678841\pi\)
0.977448 + 0.211176i \(0.0677295\pi\)
\(114\) 0 0
\(115\) 3.41040 + 9.36999i 0.318021 + 0.873756i
\(116\) −8.74857 + 0.765401i −0.812284 + 0.0710657i
\(117\) 0 0
\(118\) 6.69439 + 5.61726i 0.616269 + 0.517111i
\(119\) 5.43962 + 1.45754i 0.498649 + 0.133613i
\(120\) 0 0
\(121\) 2.28485 3.95747i 0.207713 0.359770i
\(122\) 5.55107 + 9.61473i 0.502570 + 0.870477i
\(123\) 0 0
\(124\) −2.27908 1.06275i −0.204668 0.0954381i
\(125\) −10.5186 + 2.81844i −0.940808 + 0.252089i
\(126\) 0 0
\(127\) −10.4018 + 8.72817i −0.923013 + 0.774500i −0.974550 0.224171i \(-0.928033\pi\)
0.0515366 + 0.998671i \(0.483588\pi\)
\(128\) −0.906308 + 0.422618i −0.0801070 + 0.0373545i
\(129\) 0 0
\(130\) 6.77150 4.74146i 0.593900 0.415853i
\(131\) −0.343220 0.736037i −0.0299873 0.0643079i 0.890744 0.454506i \(-0.150184\pi\)
−0.920731 + 0.390198i \(0.872406\pi\)
\(132\) 0 0
\(133\) 14.5857 + 1.27608i 1.26474 + 0.110651i
\(134\) 2.02492 + 7.55709i 0.174926 + 0.652833i
\(135\) 0 0
\(136\) −2.36065 + 0.416246i −0.202424 + 0.0356928i
\(137\) −8.62186 + 4.97783i −0.736615 + 0.425285i −0.820837 0.571162i \(-0.806493\pi\)
0.0842223 + 0.996447i \(0.473159\pi\)
\(138\) 0 0
\(139\) 4.48900 12.3334i 0.380752 1.04611i −0.590289 0.807192i \(-0.700986\pi\)
0.971041 0.238915i \(-0.0767916\pi\)
\(140\) −0.801305 + 2.99051i −0.0677226 + 0.252744i
\(141\) 0 0
\(142\) 2.89792 2.89792i 0.243188 0.243188i
\(143\) 1.38636 + 15.8462i 0.115933 + 1.32512i
\(144\) 0 0
\(145\) 2.00965 11.3973i 0.166892 0.946491i
\(146\) 8.89163 + 6.22599i 0.735877 + 0.515266i
\(147\) 0 0
\(148\) 2.87329 + 5.36136i 0.236183 + 0.440701i
\(149\) 16.9610i 1.38950i 0.719252 + 0.694749i \(0.244484\pi\)
−0.719252 + 0.694749i \(0.755516\pi\)
\(150\) 0 0
\(151\) −11.5457 2.03582i −0.939579 0.165673i −0.317173 0.948368i \(-0.602734\pi\)
−0.622406 + 0.782695i \(0.713845\pi\)
\(152\) −5.85631 + 2.13152i −0.475009 + 0.172889i
\(153\) 0 0
\(154\) −4.21256 4.21256i −0.339458 0.339458i
\(155\) 2.13014 2.53860i 0.171097 0.203905i
\(156\) 0 0
\(157\) 12.3075 + 4.47958i 0.982248 + 0.357509i 0.782714 0.622382i \(-0.213835\pi\)
0.199534 + 0.979891i \(0.436057\pi\)
\(158\) −8.13338 4.69581i −0.647057 0.373579i
\(159\) 0 0
\(160\) −0.228837 1.29780i −0.0180912 0.102600i
\(161\) 7.51260 16.1108i 0.592076 1.26971i
\(162\) 0 0
\(163\) −1.11467 + 12.7407i −0.0873078 + 0.997932i 0.818574 + 0.574401i \(0.194765\pi\)
−0.905882 + 0.423531i \(0.860790\pi\)
\(164\) 7.04739 + 8.39875i 0.550308 + 0.655832i
\(165\) 0 0
\(166\) 0.650780 + 0.929409i 0.0505103 + 0.0721362i
\(167\) 7.01571 + 10.0195i 0.542892 + 0.775330i 0.993059 0.117614i \(-0.0375246\pi\)
−0.450167 + 0.892944i \(0.648636\pi\)
\(168\) 0 0
\(169\) 16.9365 + 20.1841i 1.30281 + 1.55263i
\(170\) 0.275316 3.14688i 0.0211158 0.241355i
\(171\) 0 0
\(172\) −0.471573 + 1.01129i −0.0359571 + 0.0771102i
\(173\) −0.949307 5.38379i −0.0721745 0.409322i −0.999394 0.0348039i \(-0.988919\pi\)
0.927220 0.374518i \(-0.122192\pi\)
\(174\) 0 0
\(175\) 6.63956 + 3.83335i 0.501904 + 0.289774i
\(176\) 2.38288 + 0.867297i 0.179616 + 0.0653749i
\(177\) 0 0
\(178\) −0.204901 + 0.244191i −0.0153580 + 0.0183029i
\(179\) 6.08023 + 6.08023i 0.454458 + 0.454458i 0.896831 0.442373i \(-0.145863\pi\)
−0.442373 + 0.896831i \(0.645863\pi\)
\(180\) 0 0
\(181\) −6.05881 + 2.20523i −0.450348 + 0.163913i −0.557230 0.830358i \(-0.688136\pi\)
0.106881 + 0.994272i \(0.465913\pi\)
\(182\) −14.5131 2.55906i −1.07578 0.189690i
\(183\) 0 0
\(184\) 7.56653i 0.557812i
\(185\) −7.80458 + 1.82883i −0.573804 + 0.134458i
\(186\) 0 0
\(187\) 4.97921 + 3.48648i 0.364116 + 0.254956i
\(188\) 1.93927 10.9981i 0.141436 0.802122i
\(189\) 0 0
\(190\) −0.715798 8.18161i −0.0519295 0.593556i
\(191\) 12.4651 12.4651i 0.901944 0.901944i −0.0936599 0.995604i \(-0.529857\pi\)
0.995604 + 0.0936599i \(0.0298566\pi\)
\(192\) 0 0
\(193\) −5.29840 + 19.7739i −0.381387 + 1.42336i 0.462396 + 0.886673i \(0.346990\pi\)
−0.843783 + 0.536684i \(0.819677\pi\)
\(194\) −4.54284 + 12.4813i −0.326157 + 0.896108i
\(195\) 0 0
\(196\) −1.28225 + 0.740308i −0.0915894 + 0.0528792i
\(197\) −14.9921 + 2.64352i −1.06815 + 0.188343i −0.679968 0.733242i \(-0.738006\pi\)
−0.388177 + 0.921585i \(0.626895\pi\)
\(198\) 0 0
\(199\) −6.16077 22.9923i −0.436726 1.62988i −0.736903 0.675999i \(-0.763712\pi\)
0.300177 0.953883i \(-0.402954\pi\)
\(200\) −3.25093 0.284420i −0.229875 0.0201115i
\(201\) 0 0
\(202\) 0.0402500 + 0.0863163i 0.00283198 + 0.00607320i
\(203\) −16.9006 + 11.8339i −1.18619 + 0.830580i
\(204\) 0 0
\(205\) −13.0946 + 6.10612i −0.914567 + 0.426470i
\(206\) 5.35535 4.49367i 0.373125 0.313089i
\(207\) 0 0
\(208\) 6.05910 1.62353i 0.420123 0.112572i
\(209\) 14.3229 + 6.67886i 0.990733 + 0.461987i
\(210\) 0 0
\(211\) −10.9534 18.9719i −0.754065 1.30608i −0.945838 0.324639i \(-0.894757\pi\)
0.191773 0.981439i \(-0.438576\pi\)
\(212\) −0.925375 + 1.60280i −0.0635550 + 0.110080i
\(213\) 0 0
\(214\) −9.64320 2.58389i −0.659196 0.176631i
\(215\) −1.12645 0.945201i −0.0768231 0.0644622i
\(216\) 0 0
\(217\) −5.88537 + 0.514903i −0.399525 + 0.0349539i
\(218\) −0.918075 2.52239i −0.0621799 0.170838i
\(219\) 0 0
\(220\) −1.91674 + 2.73739i −0.129227 + 0.184555i
\(221\) 15.0364 1.01146
\(222\) 0 0
\(223\) −16.7142 −1.11926 −0.559632 0.828741i \(-0.689057\pi\)
−0.559632 + 0.828741i \(0.689057\pi\)
\(224\) −1.34752 + 1.92446i −0.0900352 + 0.128584i
\(225\) 0 0
\(226\) 2.81882 + 7.74464i 0.187505 + 0.515165i
\(227\) 15.3613 1.34394i 1.01956 0.0892003i 0.434902 0.900478i \(-0.356783\pi\)
0.584662 + 0.811277i \(0.301227\pi\)
\(228\) 0 0
\(229\) −8.27385 6.94259i −0.546751 0.458779i 0.327088 0.944994i \(-0.393933\pi\)
−0.873839 + 0.486215i \(0.838377\pi\)
\(230\) −9.63157 2.58077i −0.635087 0.170171i
\(231\) 0 0
\(232\) 4.39099 7.60542i 0.288283 0.499321i
\(233\) −11.0002 19.0529i −0.720647 1.24820i −0.960741 0.277448i \(-0.910511\pi\)
0.240093 0.970750i \(-0.422822\pi\)
\(234\) 0 0
\(235\) 13.3383 + 6.21975i 0.870094 + 0.405732i
\(236\) −8.44114 + 2.26180i −0.549471 + 0.147230i
\(237\) 0 0
\(238\) −4.31399 + 3.61987i −0.279634 + 0.234641i
\(239\) −10.9181 + 5.09118i −0.706232 + 0.329321i −0.742337 0.670027i \(-0.766283\pi\)
0.0361053 + 0.999348i \(0.488505\pi\)
\(240\) 0 0
\(241\) 12.3898 8.67541i 0.798095 0.558832i −0.101868 0.994798i \(-0.532482\pi\)
0.899963 + 0.435966i \(0.143593\pi\)
\(242\) 1.93123 + 4.14155i 0.124144 + 0.266229i
\(243\) 0 0
\(244\) −11.0599 0.967615i −0.708037 0.0619452i
\(245\) −0.505004 1.88470i −0.0322636 0.120409i
\(246\) 0 0
\(247\) 38.4994 6.78848i 2.44966 0.431941i
\(248\) 2.17778 1.25734i 0.138289 0.0798415i
\(249\) 0 0
\(250\) 3.72447 10.2329i 0.235556 0.647185i
\(251\) 3.19993 11.9423i 0.201977 0.753790i −0.788372 0.615199i \(-0.789076\pi\)
0.990350 0.138592i \(-0.0442575\pi\)
\(252\) 0 0
\(253\) 13.5674 13.5674i 0.852977 0.852977i
\(254\) −1.18346 13.5270i −0.0742566 0.848757i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) 6.29396 + 4.40708i 0.392606 + 0.274906i 0.753166 0.657830i \(-0.228526\pi\)
−0.360560 + 0.932736i \(0.617414\pi\)
\(258\) 0 0
\(259\) 12.1438 + 7.53298i 0.754578 + 0.468077i
\(260\) 8.26648i 0.512665i
\(261\) 0 0
\(262\) 0.799789 + 0.141024i 0.0494111 + 0.00871252i
\(263\) 4.23067 1.53984i 0.260874 0.0949504i −0.208272 0.978071i \(-0.566784\pi\)
0.469146 + 0.883120i \(0.344562\pi\)
\(264\) 0 0
\(265\) −1.72460 1.72460i −0.105941 0.105941i
\(266\) −9.41133 + 11.2160i −0.577046 + 0.687696i
\(267\) 0 0
\(268\) −7.35185 2.67585i −0.449086 0.163454i
\(269\) 3.71281 + 2.14359i 0.226374 + 0.130697i 0.608898 0.793248i \(-0.291612\pi\)
−0.382524 + 0.923946i \(0.624945\pi\)
\(270\) 0 0
\(271\) 3.01658 + 17.1079i 0.183244 + 1.03923i 0.928191 + 0.372105i \(0.121364\pi\)
−0.744947 + 0.667124i \(0.767525\pi\)
\(272\) 1.01304 2.17248i 0.0614248 0.131726i
\(273\) 0 0
\(274\) 0.867693 9.91778i 0.0524193 0.599155i
\(275\) 5.31921 + 6.33918i 0.320760 + 0.382267i
\(276\) 0 0
\(277\) −0.592556 0.846257i −0.0356032 0.0508467i 0.800956 0.598723i \(-0.204325\pi\)
−0.836559 + 0.547877i \(0.815436\pi\)
\(278\) 7.52816 + 10.7513i 0.451509 + 0.644822i
\(279\) 0 0
\(280\) −1.99007 2.37168i −0.118930 0.141735i
\(281\) 1.51781 17.3487i 0.0905451 1.03494i −0.805980 0.591943i \(-0.798361\pi\)
0.896525 0.442993i \(-0.146083\pi\)
\(282\) 0 0
\(283\) −8.61652 + 18.4782i −0.512199 + 1.09841i 0.464848 + 0.885390i \(0.346109\pi\)
−0.977047 + 0.213024i \(0.931669\pi\)
\(284\) 0.711657 + 4.03601i 0.0422291 + 0.239493i
\(285\) 0 0
\(286\) −13.7756 7.95335i −0.814569 0.470292i
\(287\) 24.2042 + 8.80963i 1.42873 + 0.520016i
\(288\) 0 0
\(289\) −7.23399 + 8.62113i −0.425529 + 0.507125i
\(290\) 8.18341 + 8.18341i 0.480546 + 0.480546i
\(291\) 0 0
\(292\) −10.2001 + 3.71252i −0.596914 + 0.217259i
\(293\) −5.22200 0.920779i −0.305072 0.0537925i 0.0190163 0.999819i \(-0.493947\pi\)
−0.324089 + 0.946027i \(0.605058\pi\)
\(294\) 0 0
\(295\) 11.5163i 0.670506i
\(296\) −6.03982 0.721486i −0.351058 0.0419355i
\(297\) 0 0
\(298\) −13.8936 9.72842i −0.804836 0.563552i
\(299\) 8.24198 46.7426i 0.476646 2.70319i
\(300\) 0 0
\(301\) 0.228477 + 2.61150i 0.0131692 + 0.150524i
\(302\) 8.29001 8.29001i 0.477037 0.477037i
\(303\) 0 0
\(304\) 1.61300 6.01980i 0.0925119 0.345259i
\(305\) 5.00397 13.7483i 0.286526 0.787225i
\(306\) 0 0
\(307\) −14.5787 + 8.41700i −0.832049 + 0.480384i −0.854554 0.519363i \(-0.826169\pi\)
0.0225047 + 0.999747i \(0.492836\pi\)
\(308\) 5.86695 1.03450i 0.334301 0.0589462i
\(309\) 0 0
\(310\) 0.857703 + 3.20099i 0.0487143 + 0.181804i
\(311\) −18.3471 1.60516i −1.04037 0.0910202i −0.445853 0.895106i \(-0.647100\pi\)
−0.594513 + 0.804086i \(0.702655\pi\)
\(312\) 0 0
\(313\) −10.8404 23.2473i −0.612734 1.31401i −0.930656 0.365896i \(-0.880763\pi\)
0.317921 0.948117i \(-0.397015\pi\)
\(314\) −10.7288 + 7.51236i −0.605459 + 0.423947i
\(315\) 0 0
\(316\) 8.51170 3.96907i 0.478820 0.223278i
\(317\) 7.32092 6.14298i 0.411184 0.345024i −0.413614 0.910452i \(-0.635734\pi\)
0.824797 + 0.565428i \(0.191289\pi\)
\(318\) 0 0
\(319\) −21.5106 + 5.76375i −1.20436 + 0.322708i
\(320\) 1.19435 + 0.556935i 0.0667663 + 0.0311336i
\(321\) 0 0
\(322\) 8.88817 + 15.3948i 0.495318 + 0.857916i
\(323\) 7.46944 12.9374i 0.415611 0.719859i
\(324\) 0 0
\(325\) 19.7729 + 5.29815i 1.09681 + 0.293888i
\(326\) −9.79726 8.22088i −0.542620 0.455312i
\(327\) 0 0
\(328\) −10.9221 + 0.955557i −0.603070 + 0.0527618i
\(329\) −8.97357 24.6547i −0.494729 1.35926i
\(330\) 0 0
\(331\) −4.54433 + 6.48997i −0.249779 + 0.356721i −0.924388 0.381454i \(-0.875423\pi\)
0.674609 + 0.738175i \(0.264312\pi\)
\(332\) −1.13460 −0.0622692
\(333\) 0 0
\(334\) −12.2315 −0.669279
\(335\) 5.91369 8.44562i 0.323099 0.461433i
\(336\) 0 0
\(337\) −2.09974 5.76900i −0.114380 0.314257i 0.869272 0.494333i \(-0.164588\pi\)
−0.983653 + 0.180076i \(0.942366\pi\)
\(338\) −26.2483 + 2.29643i −1.42772 + 0.124909i
\(339\) 0 0
\(340\) 2.41986 + 2.03050i 0.131235 + 0.110119i
\(341\) −6.15948 1.65043i −0.333555 0.0893757i
\(342\) 0 0
\(343\) −9.96191 + 17.2545i −0.537893 + 0.931658i
\(344\) −0.557918 0.966343i −0.0300809 0.0521017i
\(345\) 0 0
\(346\) 4.95464 + 2.31039i 0.266363 + 0.124207i
\(347\) 25.1023 6.72615i 1.34756 0.361078i 0.488328 0.872660i \(-0.337607\pi\)
0.859235 + 0.511582i \(0.170940\pi\)
\(348\) 0 0
\(349\) 10.7419 9.01354i 0.575002 0.482484i −0.308300 0.951289i \(-0.599760\pi\)
0.883301 + 0.468806i \(0.155316\pi\)
\(350\) −6.94839 + 3.24009i −0.371407 + 0.173190i
\(351\) 0 0
\(352\) −2.07721 + 1.45448i −0.110716 + 0.0775240i
\(353\) −2.25571 4.83739i −0.120059 0.257468i 0.837089 0.547067i \(-0.184256\pi\)
−0.957148 + 0.289599i \(0.906478\pi\)
\(354\) 0 0
\(355\) −5.38024 0.470710i −0.285553 0.0249827i
\(356\) −0.0825035 0.307907i −0.00437268 0.0163190i
\(357\) 0 0
\(358\) −8.46811 + 1.49316i −0.447553 + 0.0789157i
\(359\) 2.61646 1.51062i 0.138092 0.0797273i −0.429363 0.903132i \(-0.641262\pi\)
0.567454 + 0.823405i \(0.307928\pi\)
\(360\) 0 0
\(361\) 6.78560 18.6433i 0.357137 0.981225i
\(362\) 1.66878 6.22796i 0.0877089 0.327334i
\(363\) 0 0
\(364\) 10.4206 10.4206i 0.546190 0.546190i
\(365\) −1.24672 14.2501i −0.0652564 0.745884i
\(366\) 0 0
\(367\) −1.08395 + 6.14738i −0.0565817 + 0.320891i −0.999941 0.0108828i \(-0.996536\pi\)
0.943359 + 0.331773i \(0.107647\pi\)
\(368\) −6.19814 4.33998i −0.323100 0.226237i
\(369\) 0 0
\(370\) 2.97844 7.44211i 0.154842 0.386897i
\(371\) 4.34803i 0.225739i
\(372\) 0 0
\(373\) −36.7948 6.48792i −1.90516 0.335932i −0.908522 0.417836i \(-0.862789\pi\)
−0.996640 + 0.0819046i \(0.973900\pi\)
\(374\) −5.71191 + 2.07897i −0.295356 + 0.107501i
\(375\) 0 0
\(376\) 7.89684 + 7.89684i 0.407248 + 0.407248i
\(377\) −35.4099 + 42.1999i −1.82370 + 2.17340i
\(378\) 0 0
\(379\) −3.73631 1.35990i −0.191921 0.0698536i 0.244272 0.969707i \(-0.421451\pi\)
−0.436193 + 0.899853i \(0.643673\pi\)
\(380\) 7.11255 + 4.10643i 0.364866 + 0.210655i
\(381\) 0 0
\(382\) 3.06113 + 17.3605i 0.156621 + 0.888242i
\(383\) 2.84516 6.10146i 0.145381 0.311770i −0.820111 0.572205i \(-0.806088\pi\)
0.965491 + 0.260435i \(0.0838659\pi\)
\(384\) 0 0
\(385\) −0.684248 + 7.82099i −0.0348725 + 0.398595i
\(386\) −13.1588 15.6820i −0.669765 0.798195i
\(387\) 0 0
\(388\) −7.61845 10.8803i −0.386768 0.552362i
\(389\) −12.2696 17.5228i −0.622095 0.888443i 0.377195 0.926134i \(-0.376889\pi\)
−0.999289 + 0.0376907i \(0.988000\pi\)
\(390\) 0 0
\(391\) −11.6585 13.8941i −0.589597 0.702655i
\(392\) 0.129044 1.47498i 0.00651772 0.0744979i
\(393\) 0 0
\(394\) 6.43369 13.7971i 0.324125 0.695088i
\(395\) 2.14915 + 12.1884i 0.108136 + 0.613267i
\(396\) 0 0
\(397\) 20.4209 + 11.7900i 1.02490 + 0.591724i 0.915518 0.402276i \(-0.131781\pi\)
0.109378 + 0.994000i \(0.465114\pi\)
\(398\) 22.3679 + 8.14124i 1.12120 + 0.408084i
\(399\) 0 0
\(400\) 2.09764 2.49987i 0.104882 0.124993i
\(401\) −2.98281 2.98281i −0.148954 0.148954i 0.628697 0.777651i \(-0.283589\pi\)
−0.777651 + 0.628697i \(0.783589\pi\)
\(402\) 0 0
\(403\) −14.8229 + 5.39511i −0.738383 + 0.268750i
\(404\) −0.0937926 0.0165382i −0.00466636 0.000822805i
\(405\) 0 0
\(406\) 20.6318i 1.02394i
\(407\) 9.53623 + 12.1236i 0.472693 + 0.600945i
\(408\) 0 0
\(409\) −6.82901 4.78172i −0.337673 0.236441i 0.392425 0.919784i \(-0.371636\pi\)
−0.730097 + 0.683343i \(0.760525\pi\)
\(410\) 2.50892 14.2288i 0.123907 0.702710i
\(411\) 0 0
\(412\) 0.609298 + 6.96431i 0.0300180 + 0.343107i
\(413\) −14.5174 + 14.5174i −0.714352 + 0.714352i
\(414\) 0 0
\(415\) 0.386986 1.44425i 0.0189964 0.0708955i
\(416\) −2.14544 + 5.89454i −0.105189 + 0.289004i
\(417\) 0 0
\(418\) −13.6863 + 7.90177i −0.669417 + 0.386488i
\(419\) 15.3211 2.70153i 0.748487 0.131978i 0.213622 0.976916i \(-0.431474\pi\)
0.534864 + 0.844938i \(0.320363\pi\)
\(420\) 0 0
\(421\) −4.33319 16.1717i −0.211187 0.788160i −0.987474 0.157781i \(-0.949566\pi\)
0.776287 0.630379i \(-0.217101\pi\)
\(422\) 21.8235 + 1.90931i 1.06235 + 0.0929436i
\(423\) 0 0
\(424\) −0.782161 1.67735i −0.0379851 0.0814593i
\(425\) 6.40778 4.48678i 0.310823 0.217641i
\(426\) 0 0
\(427\) −23.6389 + 11.0230i −1.14397 + 0.533441i
\(428\) 7.64771 6.41719i 0.369666 0.310187i
\(429\) 0 0
\(430\) 1.42037 0.380586i 0.0684962 0.0183535i
\(431\) 13.9763 + 6.51724i 0.673214 + 0.313925i 0.728996 0.684518i \(-0.239987\pi\)
−0.0557821 + 0.998443i \(0.517765\pi\)
\(432\) 0 0
\(433\) −1.08383 1.87724i −0.0520854 0.0902145i 0.838807 0.544429i \(-0.183253\pi\)
−0.890893 + 0.454214i \(0.849920\pi\)
\(434\) 2.95393 5.11635i 0.141793 0.245593i
\(435\) 0 0
\(436\) 2.59281 + 0.694740i 0.124173 + 0.0332720i
\(437\) −36.1234 30.3112i −1.72802 1.44998i
\(438\) 0 0
\(439\) −12.0667 + 1.05570i −0.575910 + 0.0503856i −0.371390 0.928477i \(-0.621119\pi\)
−0.204520 + 0.978862i \(0.565563\pi\)
\(440\) −1.14294 3.14021i −0.0544876 0.149703i
\(441\) 0 0
\(442\) −8.62452 + 12.3171i −0.410227 + 0.585865i
\(443\) −11.5779 −0.550081 −0.275040 0.961433i \(-0.588691\pi\)
−0.275040 + 0.961433i \(0.588691\pi\)
\(444\) 0 0
\(445\) 0.420080 0.0199137
\(446\) 9.58686 13.6915i 0.453951 0.648309i
\(447\) 0 0
\(448\) −0.803520 2.20765i −0.0379628 0.104302i
\(449\) 32.9131 2.87952i 1.55327 0.135893i 0.722049 0.691842i \(-0.243201\pi\)
0.831216 + 0.555949i \(0.187645\pi\)
\(450\) 0 0
\(451\) 21.2976 + 17.8708i 1.00286 + 0.841503i
\(452\) −7.96084 2.13310i −0.374446 0.100333i
\(453\) 0 0
\(454\) −7.70998 + 13.3541i −0.361847 + 0.626738i
\(455\) 9.71037 + 16.8189i 0.455229 + 0.788480i
\(456\) 0 0
\(457\) −22.9391 10.6967i −1.07304 0.500369i −0.195914 0.980621i \(-0.562767\pi\)
−0.877130 + 0.480252i \(0.840545\pi\)
\(458\) 10.4327 2.79544i 0.487489 0.130622i
\(459\) 0 0
\(460\) 7.63848 6.40945i 0.356146 0.298842i
\(461\) −18.7010 + 8.72044i −0.870995 + 0.406152i −0.806127 0.591742i \(-0.798440\pi\)
−0.0648676 + 0.997894i \(0.520663\pi\)
\(462\) 0 0
\(463\) 24.4192 17.0985i 1.13486 0.794635i 0.153751 0.988110i \(-0.450865\pi\)
0.981105 + 0.193475i \(0.0619757\pi\)
\(464\) 3.71143 + 7.95918i 0.172299 + 0.369496i
\(465\) 0 0
\(466\) 21.9167 + 1.91746i 1.01527 + 0.0888247i
\(467\) 9.83159 + 36.6920i 0.454952 + 1.69790i 0.688229 + 0.725493i \(0.258388\pi\)
−0.233278 + 0.972410i \(0.574945\pi\)
\(468\) 0 0
\(469\) −18.1012 + 3.19173i −0.835836 + 0.147380i
\(470\) −12.7454 + 7.35859i −0.587904 + 0.339426i
\(471\) 0 0
\(472\) 2.98888 8.21189i 0.137574 0.377983i
\(473\) −0.732340 + 2.73313i −0.0336730 + 0.125669i
\(474\) 0 0
\(475\) 14.3809 14.3809i 0.659842 0.659842i
\(476\) −0.490818 5.61008i −0.0224966 0.257138i
\(477\) 0 0
\(478\) 2.09190 11.8637i 0.0956812 0.542635i
\(479\) −29.9858 20.9963i −1.37009 0.959345i −0.999534 0.0305337i \(-0.990279\pi\)
−0.370553 0.928811i \(-0.620832\pi\)
\(480\) 0 0
\(481\) 36.5254 + 11.0360i 1.66541 + 0.503198i
\(482\) 15.1251i 0.688930i
\(483\) 0 0
\(484\) −4.50027 0.793518i −0.204558 0.0360690i
\(485\) 16.4482 5.98664i 0.746873 0.271840i
\(486\) 0 0
\(487\) 17.6239 + 17.6239i 0.798617 + 0.798617i 0.982877 0.184261i \(-0.0589890\pi\)
−0.184261 + 0.982877i \(0.558989\pi\)
\(488\) 7.13631 8.50473i 0.323046 0.384991i
\(489\) 0 0
\(490\) 1.83352 + 0.667345i 0.0828298 + 0.0301476i
\(491\) 21.0419 + 12.1486i 0.949609 + 0.548257i 0.892960 0.450137i \(-0.148625\pi\)
0.0566498 + 0.998394i \(0.481958\pi\)
\(492\) 0 0
\(493\) 3.65547 + 20.7312i 0.164634 + 0.933685i
\(494\) −16.5215 + 35.4306i −0.743340 + 1.59410i
\(495\) 0 0
\(496\) −0.219170 + 2.50512i −0.00984101 + 0.112483i
\(497\) 6.18890 + 7.37564i 0.277610 + 0.330843i
\(498\) 0 0
\(499\) −1.85420 2.64808i −0.0830056 0.118544i 0.775502 0.631345i \(-0.217497\pi\)
−0.858508 + 0.512801i \(0.828608\pi\)
\(500\) 6.24602 + 8.92025i 0.279331 + 0.398926i
\(501\) 0 0
\(502\) 7.94714 + 9.47104i 0.354698 + 0.422713i
\(503\) 0.942043 10.7676i 0.0420036 0.480104i −0.945838 0.324639i \(-0.894757\pi\)
0.987842 0.155464i \(-0.0496874\pi\)
\(504\) 0 0
\(505\) 0.0530422 0.113749i 0.00236035 0.00506178i
\(506\) 3.33183 + 18.8958i 0.148118 + 0.840019i
\(507\) 0 0
\(508\) 11.7594 + 6.78931i 0.521741 + 0.301227i
\(509\) 0.0209050 + 0.00760879i 0.000926597 + 0.000337254i 0.342483 0.939524i \(-0.388732\pi\)
−0.341557 + 0.939861i \(0.610954\pi\)
\(510\) 0 0
\(511\) −16.3919 + 19.5351i −0.725136 + 0.864183i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −7.22013 + 2.62791i −0.318466 + 0.115912i
\(515\) −9.07281 1.59978i −0.399796 0.0704948i
\(516\) 0 0
\(517\) 28.3194i 1.24549i
\(518\) −13.1360 + 5.62686i −0.577165 + 0.247230i
\(519\) 0 0
\(520\) −6.77150 4.74146i −0.296950 0.207927i
\(521\) −6.13550 + 34.7961i −0.268801 + 1.52445i 0.489188 + 0.872179i \(0.337293\pi\)
−0.757989 + 0.652268i \(0.773818\pi\)
\(522\) 0 0
\(523\) −1.20573 13.7815i −0.0527227 0.602623i −0.975896 0.218238i \(-0.929969\pi\)
0.923173 0.384385i \(-0.125586\pi\)
\(524\) −0.574261 + 0.574261i −0.0250867 + 0.0250867i
\(525\) 0 0
\(526\) −1.16525 + 4.34878i −0.0508074 + 0.189616i
\(527\) −2.06165 + 5.66435i −0.0898070 + 0.246743i
\(528\) 0 0
\(529\) −29.6634 + 17.1262i −1.28972 + 0.744617i
\(530\) 2.40190 0.423520i 0.104332 0.0183965i
\(531\) 0 0
\(532\) −3.78948 14.1425i −0.164295 0.613157i
\(533\) 68.5124 + 5.99406i 2.96760 + 0.259631i
\(534\) 0 0
\(535\) 5.56009 + 11.9237i 0.240384 + 0.515505i
\(536\) 6.40878 4.48747i 0.276817 0.193829i
\(537\) 0 0
\(538\) −3.88551 + 1.81184i −0.167516 + 0.0781141i
\(539\) −2.87616 + 2.41338i −0.123885 + 0.103952i
\(540\) 0 0
\(541\) 23.2053 6.21785i 0.997675 0.267326i 0.277204 0.960811i \(-0.410592\pi\)
0.720471 + 0.693485i \(0.243926\pi\)
\(542\) −15.7442 7.34163i −0.676271 0.315350i
\(543\) 0 0
\(544\) 1.19853 + 2.07592i 0.0513866 + 0.0890043i
\(545\) −1.76869 + 3.06347i −0.0757625 + 0.131225i
\(546\) 0 0
\(547\) 12.1411 + 3.25320i 0.519116 + 0.139097i 0.508858 0.860851i \(-0.330068\pi\)
0.0102585 + 0.999947i \(0.496735\pi\)
\(548\) 7.62648 + 6.39938i 0.325787 + 0.273368i
\(549\) 0 0
\(550\) −8.24373 + 0.721233i −0.351514 + 0.0307535i
\(551\) 18.7190 + 51.4300i 0.797456 + 2.19099i
\(552\) 0 0
\(553\) 12.6554 18.0738i 0.538164 0.768578i
\(554\) 1.03309 0.0438917
\(555\) 0 0
\(556\) −13.1249 −0.556622
\(557\) −13.3197 + 19.0225i −0.564372 + 0.806007i −0.995347 0.0963569i \(-0.969281\pi\)
0.430975 + 0.902364i \(0.358170\pi\)
\(558\) 0 0
\(559\) 2.39396 + 6.57734i 0.101254 + 0.278192i
\(560\) 3.08422 0.269835i 0.130332 0.0114026i
\(561\) 0 0
\(562\) 13.3406 + 11.1941i 0.562740 + 0.472195i
\(563\) −33.9900 9.10760i −1.43251 0.383840i −0.542605 0.839988i \(-0.682562\pi\)
−0.889904 + 0.456148i \(0.849229\pi\)
\(564\) 0 0
\(565\) 5.43052 9.40594i 0.228464 0.395711i
\(566\) −10.1942 17.6569i −0.428495 0.742175i
\(567\) 0 0
\(568\) −3.71430 1.73200i −0.155848 0.0726733i
\(569\) −1.45924 + 0.391001i −0.0611744 + 0.0163916i −0.289276 0.957246i \(-0.593415\pi\)
0.228102 + 0.973637i \(0.426748\pi\)
\(570\) 0 0
\(571\) 22.7016 19.0489i 0.950034 0.797173i −0.0292690 0.999572i \(-0.509318\pi\)
0.979303 + 0.202398i \(0.0648735\pi\)
\(572\) 14.4164 6.72246i 0.602779 0.281080i
\(573\) 0 0
\(574\) −21.0994 + 14.7740i −0.880672 + 0.616653i
\(575\) −10.4354 22.3788i −0.435186 0.933259i
\(576\) 0 0
\(577\) −2.35290 0.205852i −0.0979525 0.00856973i 0.0380741 0.999275i \(-0.487878\pi\)
−0.136027 + 0.990705i \(0.543433\pi\)
\(578\) −2.91277 10.8706i −0.121155 0.452158i
\(579\) 0 0
\(580\) −11.3973 + 2.00965i −0.473246 + 0.0834460i
\(581\) −2.30844 + 1.33278i −0.0957702 + 0.0552930i
\(582\) 0 0
\(583\) −1.60515 + 4.41011i −0.0664785 + 0.182648i
\(584\) 2.80940 10.4848i 0.116254 0.433865i
\(585\) 0 0
\(586\) 3.74947 3.74947i 0.154889 0.154889i
\(587\) −0.987670 11.2891i −0.0407655 0.465952i −0.988952 0.148237i \(-0.952640\pi\)
0.948186 0.317715i \(-0.102915\pi\)
\(588\) 0 0
\(589\) −2.72140 + 15.4338i −0.112133 + 0.635940i
\(590\) 9.43361 + 6.60549i 0.388376 + 0.271944i
\(591\) 0 0
\(592\) 4.05531 4.53371i 0.166672 0.186334i
\(593\) 2.74452i 0.112704i 0.998411 + 0.0563519i \(0.0179469\pi\)
−0.998411 + 0.0563519i \(0.982053\pi\)
\(594\) 0 0
\(595\) 7.30857 + 1.28870i 0.299622 + 0.0528315i
\(596\) 15.9381 5.80100i 0.652850 0.237618i
\(597\) 0 0
\(598\) 33.5619 + 33.5619i 1.37245 + 1.37245i
\(599\) −27.4401 + 32.7018i −1.12117 + 1.33616i −0.185763 + 0.982595i \(0.559476\pi\)
−0.935409 + 0.353567i \(0.884969\pi\)
\(600\) 0 0
\(601\) −5.25901 1.91412i −0.214519 0.0780787i 0.232525 0.972590i \(-0.425301\pi\)
−0.447044 + 0.894512i \(0.647523\pi\)
\(602\) −2.27026 1.31074i −0.0925291 0.0534217i
\(603\) 0 0
\(604\) 2.03582 + 11.5457i 0.0828365 + 0.469789i
\(605\) 2.54502 5.45782i 0.103470 0.221892i
\(606\) 0 0
\(607\) 1.05141 12.0177i 0.0426754 0.487782i −0.944541 0.328394i \(-0.893493\pi\)
0.987216 0.159388i \(-0.0509519\pi\)
\(608\) 4.00595 + 4.77411i 0.162463 + 0.193616i
\(609\) 0 0
\(610\) 8.39178 + 11.9847i 0.339773 + 0.485247i
\(611\) −40.1813 57.3848i −1.62556 2.32154i
\(612\) 0 0
\(613\) 27.0267 + 32.2092i 1.09160 + 1.30092i 0.950433 + 0.310930i \(0.100641\pi\)
0.141166 + 0.989986i \(0.454915\pi\)
\(614\) 1.46718 16.7699i 0.0592106 0.676780i
\(615\) 0 0
\(616\) −2.51773 + 5.39929i −0.101442 + 0.217544i
\(617\) 5.74253 + 32.5675i 0.231186 + 1.31112i 0.850500 + 0.525976i \(0.176300\pi\)
−0.619314 + 0.785143i \(0.712589\pi\)
\(618\) 0 0
\(619\) 5.29830 + 3.05897i 0.212957 + 0.122951i 0.602685 0.797979i \(-0.294098\pi\)
−0.389728 + 0.920930i \(0.627431\pi\)
\(620\) −3.11406 1.13342i −0.125064 0.0455194i
\(621\) 0 0
\(622\) 11.8383 14.1083i 0.474673 0.565693i
\(623\) −0.529549 0.529549i −0.0212159 0.0212159i
\(624\) 0 0
\(625\) 1.84761 0.672475i 0.0739044 0.0268990i
\(626\) 25.2608 + 4.45417i 1.00963 + 0.178024i
\(627\) 0 0
\(628\) 13.0974i 0.522643i
\(629\) 12.2023 7.98134i 0.486539 0.318237i
\(630\) 0 0
\(631\) −35.6483 24.9612i −1.41914 0.993690i −0.996160 0.0875491i \(-0.972097\pi\)
−0.422976 0.906141i \(-0.639015\pi\)
\(632\) −1.63084 + 9.24894i −0.0648712 + 0.367903i
\(633\) 0 0
\(634\) 0.832928 + 9.52041i 0.0330798 + 0.378104i
\(635\) −12.6531 + 12.6531i −0.502123 + 0.502123i
\(636\) 0 0
\(637\) −2.40383 + 8.97120i −0.0952431 + 0.355452i
\(638\) 7.61659 20.9264i 0.301544 0.828484i
\(639\) 0 0
\(640\) −1.14127 + 0.658910i −0.0451125 + 0.0260457i
\(641\) −38.4935 + 6.78745i −1.52040 + 0.268088i −0.870591 0.492007i \(-0.836264\pi\)
−0.649812 + 0.760095i \(0.725152\pi\)
\(642\) 0 0
\(643\) −10.4218 38.8946i −0.410995 1.53385i −0.792725 0.609579i \(-0.791338\pi\)
0.381731 0.924274i \(-0.375328\pi\)
\(644\) −17.7087 1.54931i −0.697820 0.0610513i
\(645\) 0 0
\(646\) 6.31344 + 13.5392i 0.248399 + 0.532693i
\(647\) −40.6484 + 28.4623i −1.59805 + 1.11897i −0.672666 + 0.739946i \(0.734851\pi\)
−0.925387 + 0.379022i \(0.876260\pi\)
\(648\) 0 0
\(649\) −20.0839 + 9.36529i −0.788364 + 0.367620i
\(650\) −15.6813 + 13.1582i −0.615071 + 0.516106i
\(651\) 0 0
\(652\) 12.3536 3.31014i 0.483805 0.129635i
\(653\) 16.9635 + 7.91019i 0.663831 + 0.309550i 0.725172 0.688567i \(-0.241760\pi\)
−0.0613413 + 0.998117i \(0.519538\pi\)
\(654\) 0 0
\(655\) −0.535119 0.926853i −0.0209088 0.0362152i
\(656\) 5.48189 9.49492i 0.214032 0.370714i
\(657\) 0 0
\(658\) 25.3429 + 6.79062i 0.987971 + 0.264726i
\(659\) −0.893583 0.749805i −0.0348090 0.0292083i 0.625217 0.780451i \(-0.285010\pi\)
−0.660026 + 0.751243i \(0.729455\pi\)
\(660\) 0 0
\(661\) −22.2984 + 1.95086i −0.867309 + 0.0758797i −0.512119 0.858915i \(-0.671139\pi\)
−0.355190 + 0.934794i \(0.615584\pi\)
\(662\) −2.70976 7.44499i −0.105318 0.289358i
\(663\) 0 0
\(664\) 0.650780 0.929409i 0.0252551 0.0360681i
\(665\) 19.2948 0.748220
\(666\) 0 0
\(667\) 66.4492 2.57292
\(668\) 7.01571 10.0195i 0.271446 0.387665i
\(669\) 0 0
\(670\) 3.52630 + 9.68842i 0.136233 + 0.374296i
\(671\) −28.0457 + 2.45368i −1.08269 + 0.0947234i
\(672\) 0 0
\(673\) 14.2359 + 11.9454i 0.548755 + 0.460460i 0.874519 0.484991i \(-0.161177\pi\)
−0.325764 + 0.945451i \(0.605621\pi\)
\(674\) 5.93005 + 1.58895i 0.228417 + 0.0612042i
\(675\) 0 0
\(676\) 13.1743 22.8185i 0.506702 0.877634i
\(677\) −9.05630 15.6860i −0.348062 0.602861i 0.637843 0.770166i \(-0.279827\pi\)
−0.985905 + 0.167305i \(0.946493\pi\)
\(678\) 0 0
\(679\) −28.2811 13.1877i −1.08533 0.506097i
\(680\) −3.05126 + 0.817584i −0.117011 + 0.0313529i
\(681\) 0 0
\(682\) 4.88488 4.09890i 0.187052 0.156955i
\(683\) 2.02560 0.944551i 0.0775073 0.0361422i −0.383478 0.923550i \(-0.625274\pi\)
0.460985 + 0.887408i \(0.347496\pi\)
\(684\) 0 0
\(685\) −10.7471 + 7.52520i −0.410625 + 0.287523i
\(686\) −8.42017 18.0571i −0.321484 0.689424i
\(687\) 0 0
\(688\) 1.11159 + 0.0972516i 0.0423790 + 0.00370768i
\(689\) 3.00475 + 11.2139i 0.114472 + 0.427215i
\(690\) 0 0
\(691\) 43.5634 7.68141i 1.65723 0.292215i 0.734774 0.678312i \(-0.237288\pi\)
0.922458 + 0.386098i \(0.126177\pi\)
\(692\) −4.73442 + 2.73342i −0.179976 + 0.103909i
\(693\) 0 0
\(694\) −8.88836 + 24.4206i −0.337398 + 0.926992i
\(695\) 4.47662 16.7070i 0.169808 0.633732i
\(696\) 0 0
\(697\) 18.5834 18.5834i 0.703896 0.703896i
\(698\) 1.22215 + 13.9692i 0.0462590 + 0.528743i
\(699\) 0 0
\(700\) 1.33131 7.55023i 0.0503188 0.285372i
\(701\) −5.74480 4.02255i −0.216978 0.151930i 0.460035 0.887901i \(-0.347837\pi\)
−0.677013 + 0.735971i \(0.736726\pi\)
\(702\) 0 0
\(703\) 27.6397 25.9445i 1.04245 0.978516i
\(704\) 2.53581i 0.0955718i
\(705\) 0 0
\(706\) 5.25638 + 0.926842i 0.197827 + 0.0348822i
\(707\) −0.210256 + 0.0765269i −0.00790749 + 0.00287809i
\(708\) 0 0
\(709\) −12.1883 12.1883i −0.457742 0.457742i 0.440172 0.897914i \(-0.354918\pi\)
−0.897914 + 0.440172i \(0.854918\pi\)
\(710\) 3.47156 4.13724i 0.130285 0.155268i
\(711\) 0 0
\(712\) 0.299545 + 0.109025i 0.0112259 + 0.00408590i
\(713\) 16.4783 + 9.51374i 0.617116 + 0.356292i
\(714\) 0 0
\(715\) 3.64005 + 20.6437i 0.136130 + 0.772031i
\(716\) 3.63398 7.79310i 0.135808 0.291242i
\(717\) 0 0
\(718\) −0.263318 + 3.00974i −0.00982693 + 0.112322i
\(719\) 23.0445 + 27.4634i 0.859416 + 1.02421i 0.999420 + 0.0340616i \(0.0108443\pi\)
−0.140003 + 0.990151i \(0.544711\pi\)
\(720\) 0 0
\(721\) 9.42043 + 13.4538i 0.350835 + 0.501044i
\(722\) 11.3796 + 16.2518i 0.423505 + 0.604828i
\(723\) 0 0
\(724\) 4.14447 + 4.93919i 0.154028 + 0.183564i
\(725\) −2.49777 + 28.5496i −0.0927648 + 1.06031i
\(726\) 0 0
\(727\) 0.923111 1.97962i 0.0342363 0.0734200i −0.888446 0.458981i \(-0.848214\pi\)
0.922682 + 0.385561i \(0.125992\pi\)
\(728\) 2.55906 + 14.5131i 0.0948449 + 0.537892i
\(729\) 0 0
\(730\) 12.3881 + 7.15226i 0.458503 + 0.264717i
\(731\) 2.51343 + 0.914812i 0.0929624 + 0.0338355i
\(732\) 0 0
\(733\) 23.1990 27.6475i 0.856873 1.02118i −0.142633 0.989776i \(-0.545557\pi\)
0.999507 0.0314064i \(-0.00999862\pi\)
\(734\) −4.41391 4.41391i −0.162920 0.162920i
\(735\) 0 0
\(736\) 7.11021 2.58791i 0.262086 0.0953915i
\(737\) −19.5379 3.44506i −0.719688 0.126900i
\(738\) 0 0
\(739\) 20.3972i 0.750324i 0.926959 + 0.375162i \(0.122413\pi\)
−0.926959 + 0.375162i \(0.877587\pi\)
\(740\) 4.38786 + 6.70841i 0.161301 + 0.246606i
\(741\) 0 0
\(742\) −3.56170 2.49393i −0.130754 0.0915550i
\(743\) −3.57765 + 20.2899i −0.131251 + 0.744363i 0.846146 + 0.532951i \(0.178917\pi\)
−0.977397 + 0.211412i \(0.932194\pi\)
\(744\) 0 0
\(745\) 1.94806 + 22.2665i 0.0713716 + 0.815781i
\(746\) 26.4192 26.4192i 0.967276 0.967276i
\(747\) 0 0
\(748\) 1.57323 5.87137i 0.0575229 0.214678i
\(749\) 8.02185 22.0398i 0.293112 0.805318i
\(750\) 0 0
\(751\) 1.33664 0.771711i 0.0487748 0.0281601i −0.475414 0.879762i \(-0.657702\pi\)
0.524189 + 0.851602i \(0.324369\pi\)
\(752\) −10.9981 + 1.93927i −0.401061 + 0.0707179i
\(753\) 0 0
\(754\) −14.2578 53.2109i −0.519239 1.93783i
\(755\) −15.3911 1.34655i −0.560141 0.0490060i
\(756\) 0 0
\(757\) 11.1804 + 23.9764i 0.406358 + 0.871438i 0.997876 + 0.0651456i \(0.0207512\pi\)
−0.591518 + 0.806292i \(0.701471\pi\)
\(758\) 3.25703 2.28059i 0.118300 0.0828349i
\(759\) 0 0
\(760\) −7.44338 + 3.47091i −0.270000 + 0.125903i
\(761\) 11.0793 9.29662i 0.401624 0.337002i −0.419497 0.907757i \(-0.637794\pi\)
0.821121 + 0.570754i \(0.193349\pi\)
\(762\) 0 0
\(763\) 6.09137 1.63218i 0.220523 0.0590888i
\(764\) −15.9767 7.45006i −0.578017 0.269534i
\(765\) 0 0
\(766\) 3.36611 + 5.83027i 0.121622 + 0.210656i
\(767\) −27.4089 + 47.4736i −0.989678 + 1.71417i
\(768\) 0 0
\(769\) −17.0925 4.57993i −0.616373 0.165157i −0.0628946 0.998020i \(-0.520033\pi\)
−0.553478 + 0.832864i \(0.686700\pi\)
\(770\) −6.01411 5.04644i −0.216734 0.181861i
\(771\) 0 0
\(772\) 20.3936 1.78421i 0.733980 0.0642149i
\(773\) −11.1070 30.5161i −0.399489 1.09759i −0.962534 0.271161i \(-0.912592\pi\)
0.563045 0.826427i \(-0.309630\pi\)
\(774\) 0 0
\(775\) −4.70694 + 6.72221i −0.169078 + 0.241469i
\(776\) 13.2824 0.476809
\(777\) 0 0
\(778\) 21.3914 0.766920
\(779\) 39.1913 55.9710i 1.40418 2.00537i
\(780\) 0 0
\(781\) 3.55442 + 9.76568i 0.127187 + 0.349444i
\(782\) 18.0684 1.58078i 0.646126 0.0565287i
\(783\) 0 0
\(784\) 1.13422 + 0.951722i 0.0405078 + 0.0339901i