Properties

Label 666.2.bs.a.611.4
Level $666$
Weight $2$
Character 666.611
Analytic conductor $5.318$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 611.4
Character \(\chi\) \(=\) 666.611
Dual form 666.2.bs.a.557.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0871557 + 0.996195i) q^{2} +(-0.984808 + 0.173648i) q^{4} +(-2.82596 + 1.31777i) q^{5} +(1.97276 + 0.718026i) q^{7} +(-0.258819 - 0.965926i) q^{8} +O(q^{10})\) \(q+(0.0871557 + 0.996195i) q^{2} +(-0.984808 + 0.173648i) q^{4} +(-2.82596 + 1.31777i) q^{5} +(1.97276 + 0.718026i) q^{7} +(-0.258819 - 0.965926i) q^{8} +(-1.55905 - 2.70036i) q^{10} +(-1.33922 + 2.31960i) q^{11} +(-0.527495 + 0.753341i) q^{13} +(-0.543357 + 2.02783i) q^{14} +(0.939693 - 0.342020i) q^{16} +(-2.87989 - 4.11292i) q^{17} +(-2.92670 - 0.256053i) q^{19} +(2.55420 - 1.78847i) q^{20} +(-2.42750 - 1.13196i) q^{22} +(-2.70753 - 0.725480i) q^{23} +(3.03561 - 3.61770i) q^{25} +(-0.796448 - 0.459830i) q^{26} +(-2.06747 - 0.364552i) q^{28} +(-4.95425 + 1.32749i) q^{29} +(-1.88370 + 1.88370i) q^{31} +(0.422618 + 0.906308i) q^{32} +(3.84627 - 3.22740i) q^{34} +(-6.52114 + 0.570526i) q^{35} +(-1.40496 - 5.91828i) q^{37} -2.93788i q^{38} +(2.00428 + 2.38861i) q^{40} +(-0.366974 - 2.08121i) q^{41} +(-6.00144 - 6.00144i) q^{43} +(0.916083 - 2.51692i) q^{44} +(0.486742 - 2.76045i) q^{46} +(5.03071 - 2.90448i) q^{47} +(-1.98609 - 1.66652i) q^{49} +(3.86850 + 2.70876i) q^{50} +(0.388665 - 0.833494i) q^{52} +(2.29375 + 6.30203i) q^{53} +(0.727896 - 8.31989i) q^{55} +(0.182972 - 2.09138i) q^{56} +(-1.75423 - 4.81970i) q^{58} +(-5.91334 + 12.6812i) q^{59} +(5.22818 + 3.66081i) q^{61} +(-2.04071 - 1.71236i) q^{62} +(-0.866025 + 0.500000i) q^{64} +(0.497952 - 2.82403i) q^{65} +(-2.91868 + 8.01901i) q^{67} +(3.55034 + 3.55034i) q^{68} +(-1.13671 - 6.44660i) q^{70} +(3.95008 + 4.70753i) q^{71} +9.01662i q^{73} +(5.77331 - 1.91543i) q^{74} +(2.92670 - 0.256053i) q^{76} +(-4.30750 + 3.61442i) q^{77} +(0.222674 + 0.477526i) q^{79} +(-2.20483 + 2.20483i) q^{80} +(2.04131 - 0.546967i) q^{82} +(-3.14123 - 0.553883i) q^{83} +(13.5583 + 7.82791i) q^{85} +(5.45554 - 6.50167i) q^{86} +(2.58718 + 0.693233i) q^{88} +(2.30861 + 1.07652i) q^{89} +(-1.58154 + 1.10741i) q^{91} +(2.79237 + 0.244301i) q^{92} +(3.33189 + 4.75842i) q^{94} +(8.60817 - 3.13312i) q^{95} +(-3.13983 + 11.7180i) q^{97} +(1.48708 - 2.12378i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 12 q^{13} - 24 q^{19} - 12 q^{22} + 72 q^{34} + 72 q^{37} + 24 q^{40} + 24 q^{43} + 36 q^{46} - 48 q^{49} - 12 q^{52} + 60 q^{55} + 120 q^{61} + 60 q^{67} - 60 q^{70} + 24 q^{76} - 12 q^{79} - 48 q^{82} + 108 q^{85} - 24 q^{88} - 168 q^{91} - 84 q^{94} - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{35}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0871557 + 0.996195i 0.0616284 + 0.704416i
\(3\) 0 0
\(4\) −0.984808 + 0.173648i −0.492404 + 0.0868241i
\(5\) −2.82596 + 1.31777i −1.26381 + 0.589324i −0.934857 0.355023i \(-0.884473\pi\)
−0.328951 + 0.944347i \(0.606695\pi\)
\(6\) 0 0
\(7\) 1.97276 + 0.718026i 0.745634 + 0.271388i 0.686767 0.726877i \(-0.259029\pi\)
0.0588664 + 0.998266i \(0.481251\pi\)
\(8\) −0.258819 0.965926i −0.0915064 0.341506i
\(9\) 0 0
\(10\) −1.55905 2.70036i −0.493015 0.853928i
\(11\) −1.33922 + 2.31960i −0.403791 + 0.699387i −0.994180 0.107732i \(-0.965641\pi\)
0.590389 + 0.807119i \(0.298974\pi\)
\(12\) 0 0
\(13\) −0.527495 + 0.753341i −0.146301 + 0.208939i −0.885613 0.464423i \(-0.846262\pi\)
0.739313 + 0.673362i \(0.235151\pi\)
\(14\) −0.543357 + 2.02783i −0.145218 + 0.541962i
\(15\) 0 0
\(16\) 0.939693 0.342020i 0.234923 0.0855050i
\(17\) −2.87989 4.11292i −0.698477 0.997528i −0.999042 0.0437671i \(-0.986064\pi\)
0.300565 0.953761i \(-0.402825\pi\)
\(18\) 0 0
\(19\) −2.92670 0.256053i −0.671432 0.0587427i −0.253658 0.967294i \(-0.581634\pi\)
−0.417773 + 0.908551i \(0.637189\pi\)
\(20\) 2.55420 1.78847i 0.571137 0.399914i
\(21\) 0 0
\(22\) −2.42750 1.13196i −0.517544 0.241335i
\(23\) −2.70753 0.725480i −0.564558 0.151273i −0.0347586 0.999396i \(-0.511066\pi\)
−0.529800 + 0.848123i \(0.677733\pi\)
\(24\) 0 0
\(25\) 3.03561 3.61770i 0.607122 0.723540i
\(26\) −0.796448 0.459830i −0.156196 0.0901800i
\(27\) 0 0
\(28\) −2.06747 0.364552i −0.390716 0.0688938i
\(29\) −4.95425 + 1.32749i −0.919981 + 0.246508i −0.687577 0.726111i \(-0.741326\pi\)
−0.232404 + 0.972619i \(0.574659\pi\)
\(30\) 0 0
\(31\) −1.88370 + 1.88370i −0.338323 + 0.338323i −0.855736 0.517413i \(-0.826895\pi\)
0.517413 + 0.855736i \(0.326895\pi\)
\(32\) 0.422618 + 0.906308i 0.0747091 + 0.160214i
\(33\) 0 0
\(34\) 3.84627 3.22740i 0.659629 0.553494i
\(35\) −6.52114 + 0.570526i −1.10227 + 0.0964365i
\(36\) 0 0
\(37\) −1.40496 5.91828i −0.230974 0.972960i
\(38\) 2.93788i 0.476587i
\(39\) 0 0
\(40\) 2.00428 + 2.38861i 0.316904 + 0.377672i
\(41\) −0.366974 2.08121i −0.0573117 0.325031i 0.942650 0.333783i \(-0.108325\pi\)
−0.999962 + 0.00875197i \(0.997214\pi\)
\(42\) 0 0
\(43\) −6.00144 6.00144i −0.915211 0.915211i 0.0814648 0.996676i \(-0.474040\pi\)
−0.996676 + 0.0814648i \(0.974040\pi\)
\(44\) 0.916083 2.51692i 0.138105 0.379439i
\(45\) 0 0
\(46\) 0.486742 2.76045i 0.0717662 0.407007i
\(47\) 5.03071 2.90448i 0.733805 0.423662i −0.0860078 0.996294i \(-0.527411\pi\)
0.819812 + 0.572632i \(0.194078\pi\)
\(48\) 0 0
\(49\) −1.98609 1.66652i −0.283727 0.238075i
\(50\) 3.86850 + 2.70876i 0.547089 + 0.383076i
\(51\) 0 0
\(52\) 0.388665 0.833494i 0.0538981 0.115585i
\(53\) 2.29375 + 6.30203i 0.315071 + 0.865650i 0.991613 + 0.129246i \(0.0412556\pi\)
−0.676542 + 0.736404i \(0.736522\pi\)
\(54\) 0 0
\(55\) 0.727896 8.31989i 0.0981495 1.12185i
\(56\) 0.182972 2.09138i 0.0244507 0.279472i
\(57\) 0 0
\(58\) −1.75423 4.81970i −0.230341 0.632857i
\(59\) −5.91334 + 12.6812i −0.769851 + 1.65095i −0.0107801 + 0.999942i \(0.503431\pi\)
−0.759071 + 0.651008i \(0.774346\pi\)
\(60\) 0 0
\(61\) 5.22818 + 3.66081i 0.669400 + 0.468719i 0.858213 0.513294i \(-0.171575\pi\)
−0.188813 + 0.982013i \(0.560464\pi\)
\(62\) −2.04071 1.71236i −0.259170 0.217470i
\(63\) 0 0
\(64\) −0.866025 + 0.500000i −0.108253 + 0.0625000i
\(65\) 0.497952 2.82403i 0.0617634 0.350278i
\(66\) 0 0
\(67\) −2.91868 + 8.01901i −0.356574 + 0.979678i 0.623636 + 0.781715i \(0.285655\pi\)
−0.980209 + 0.197963i \(0.936567\pi\)
\(68\) 3.55034 + 3.55034i 0.430542 + 0.430542i
\(69\) 0 0
\(70\) −1.13671 6.44660i −0.135863 0.770516i
\(71\) 3.95008 + 4.70753i 0.468789 + 0.558681i 0.947692 0.319187i \(-0.103410\pi\)
−0.478903 + 0.877868i \(0.658965\pi\)
\(72\) 0 0
\(73\) 9.01662i 1.05532i 0.849457 + 0.527658i \(0.176930\pi\)
−0.849457 + 0.527658i \(0.823070\pi\)
\(74\) 5.77331 1.91543i 0.671134 0.222664i
\(75\) 0 0
\(76\) 2.92670 0.256053i 0.335716 0.0293713i
\(77\) −4.30750 + 3.61442i −0.490886 + 0.411902i
\(78\) 0 0
\(79\) 0.222674 + 0.477526i 0.0250528 + 0.0537259i 0.918436 0.395570i \(-0.129453\pi\)
−0.893383 + 0.449296i \(0.851675\pi\)
\(80\) −2.20483 + 2.20483i −0.246508 + 0.246508i
\(81\) 0 0
\(82\) 2.04131 0.546967i 0.225425 0.0604024i
\(83\) −3.14123 0.553883i −0.344795 0.0607966i −0.00143059 0.999999i \(-0.500455\pi\)
−0.343364 + 0.939202i \(0.611566\pi\)
\(84\) 0 0
\(85\) 13.5583 + 7.82791i 1.47061 + 0.849056i
\(86\) 5.45554 6.50167i 0.588287 0.701093i
\(87\) 0 0
\(88\) 2.58718 + 0.693233i 0.275794 + 0.0738989i
\(89\) 2.30861 + 1.07652i 0.244712 + 0.114111i 0.541105 0.840955i \(-0.318006\pi\)
−0.296393 + 0.955066i \(0.595784\pi\)
\(90\) 0 0
\(91\) −1.58154 + 1.10741i −0.165790 + 0.116088i
\(92\) 2.79237 + 0.244301i 0.291125 + 0.0254701i
\(93\) 0 0
\(94\) 3.33189 + 4.75842i 0.343658 + 0.490794i
\(95\) 8.60817 3.13312i 0.883179 0.321451i
\(96\) 0 0
\(97\) −3.13983 + 11.7180i −0.318801 + 1.18978i 0.601597 + 0.798800i \(0.294531\pi\)
−0.920398 + 0.390982i \(0.872135\pi\)
\(98\) 1.48708 2.12378i 0.150218 0.214534i
\(99\) 0 0
\(100\) −2.36129 + 4.08987i −0.236129 + 0.408987i
\(101\) −8.25498 14.2980i −0.821401 1.42271i −0.904639 0.426179i \(-0.859860\pi\)
0.0832381 0.996530i \(-0.473474\pi\)
\(102\) 0 0
\(103\) −1.49274 5.57097i −0.147084 0.548924i −0.999654 0.0263109i \(-0.991624\pi\)
0.852570 0.522613i \(-0.175043\pi\)
\(104\) 0.864197 + 0.314542i 0.0847415 + 0.0308434i
\(105\) 0 0
\(106\) −6.07813 + 2.83428i −0.590360 + 0.275290i
\(107\) 19.4213 3.42449i 1.87752 0.331058i 0.886285 0.463141i \(-0.153278\pi\)
0.991239 + 0.132083i \(0.0421666\pi\)
\(108\) 0 0
\(109\) 0.366026 + 4.18369i 0.0350589 + 0.400725i 0.993367 + 0.114988i \(0.0366829\pi\)
−0.958308 + 0.285737i \(0.907762\pi\)
\(110\) 8.35167 0.796301
\(111\) 0 0
\(112\) 2.09937 0.198372
\(113\) 0.703066 + 8.03608i 0.0661389 + 0.755971i 0.954769 + 0.297347i \(0.0961019\pi\)
−0.888630 + 0.458624i \(0.848343\pi\)
\(114\) 0 0
\(115\) 8.60738 1.51771i 0.802642 0.141527i
\(116\) 4.64847 2.16762i 0.431599 0.201258i
\(117\) 0 0
\(118\) −13.1483 4.78560i −1.21040 0.440550i
\(119\) −2.72816 10.1816i −0.250090 0.933349i
\(120\) 0 0
\(121\) 1.91296 + 3.31335i 0.173906 + 0.301213i
\(122\) −3.19121 + 5.52735i −0.288919 + 0.500422i
\(123\) 0 0
\(124\) 1.52798 2.18219i 0.137217 0.195966i
\(125\) 0.223892 0.835578i 0.0200256 0.0747364i
\(126\) 0 0
\(127\) 2.16274 0.787173i 0.191912 0.0698503i −0.244276 0.969706i \(-0.578550\pi\)
0.436188 + 0.899855i \(0.356328\pi\)
\(128\) −0.573576 0.819152i −0.0506975 0.0724035i
\(129\) 0 0
\(130\) 2.85668 + 0.249927i 0.250547 + 0.0219201i
\(131\) 5.84384 4.09190i 0.510578 0.357511i −0.289721 0.957111i \(-0.593563\pi\)
0.800300 + 0.599600i \(0.204674\pi\)
\(132\) 0 0
\(133\) −5.58983 2.60658i −0.484700 0.226019i
\(134\) −8.24288 2.20867i −0.712076 0.190800i
\(135\) 0 0
\(136\) −3.22740 + 3.84627i −0.276747 + 0.329815i
\(137\) −9.65245 5.57285i −0.824665 0.476120i 0.0273576 0.999626i \(-0.491291\pi\)
−0.852022 + 0.523505i \(0.824624\pi\)
\(138\) 0 0
\(139\) −19.7613 3.48445i −1.67613 0.295547i −0.746870 0.664970i \(-0.768444\pi\)
−0.929261 + 0.369423i \(0.879555\pi\)
\(140\) 6.32300 1.69424i 0.534391 0.143190i
\(141\) 0 0
\(142\) −4.34534 + 4.34534i −0.364653 + 0.364653i
\(143\) −1.04102 2.23247i −0.0870543 0.186689i
\(144\) 0 0
\(145\) 12.2512 10.2800i 1.01741 0.853705i
\(146\) −8.98231 + 0.785850i −0.743381 + 0.0650374i
\(147\) 0 0
\(148\) 2.41132 + 5.58440i 0.198209 + 0.459035i
\(149\) 21.9435i 1.79768i 0.438274 + 0.898841i \(0.355590\pi\)
−0.438274 + 0.898841i \(0.644410\pi\)
\(150\) 0 0
\(151\) 7.27082 + 8.66503i 0.591691 + 0.705150i 0.975930 0.218084i \(-0.0699806\pi\)
−0.384239 + 0.923234i \(0.625536\pi\)
\(152\) 0.510158 + 2.89325i 0.0413793 + 0.234674i
\(153\) 0 0
\(154\) −3.97609 3.97609i −0.320403 0.320403i
\(155\) 2.84099 7.80555i 0.228194 0.626957i
\(156\) 0 0
\(157\) −3.86195 + 21.9022i −0.308217 + 1.74799i 0.299742 + 0.954020i \(0.403099\pi\)
−0.607960 + 0.793968i \(0.708012\pi\)
\(158\) −0.456302 + 0.263446i −0.0363014 + 0.0209586i
\(159\) 0 0
\(160\) −2.38861 2.00428i −0.188836 0.158452i
\(161\) −4.82039 3.37527i −0.379900 0.266009i
\(162\) 0 0
\(163\) −7.50039 + 16.0846i −0.587476 + 1.25985i 0.357868 + 0.933772i \(0.383504\pi\)
−0.945344 + 0.326074i \(0.894274\pi\)
\(164\) 0.722798 + 1.98587i 0.0564410 + 0.155070i
\(165\) 0 0
\(166\) 0.278000 3.17755i 0.0215770 0.246626i
\(167\) 1.26304 14.4366i 0.0977370 1.11714i −0.775997 0.630736i \(-0.782753\pi\)
0.873734 0.486403i \(-0.161691\pi\)
\(168\) 0 0
\(169\) 4.15699 + 11.4212i 0.319768 + 0.878557i
\(170\) −6.61643 + 14.1890i −0.507457 + 1.08825i
\(171\) 0 0
\(172\) 6.95241 + 4.86813i 0.530116 + 0.371191i
\(173\) −5.96864 5.00828i −0.453787 0.380773i 0.387052 0.922058i \(-0.373493\pi\)
−0.840839 + 0.541285i \(0.817938\pi\)
\(174\) 0 0
\(175\) 8.58614 4.95721i 0.649051 0.374730i
\(176\) −0.465107 + 2.63775i −0.0350588 + 0.198828i
\(177\) 0 0
\(178\) −0.871218 + 2.39365i −0.0653005 + 0.179412i
\(179\) 8.58212 + 8.58212i 0.641458 + 0.641458i 0.950914 0.309456i \(-0.100147\pi\)
−0.309456 + 0.950914i \(0.600147\pi\)
\(180\) 0 0
\(181\) −0.181925 1.03175i −0.0135224 0.0766892i 0.977300 0.211861i \(-0.0679524\pi\)
−0.990822 + 0.135172i \(0.956841\pi\)
\(182\) −1.24103 1.47900i −0.0919914 0.109631i
\(183\) 0 0
\(184\) 2.80304i 0.206643i
\(185\) 11.7693 + 14.8734i 0.865296 + 1.09352i
\(186\) 0 0
\(187\) 13.3972 1.17210i 0.979697 0.0857124i
\(188\) −4.44992 + 3.73393i −0.324544 + 0.272325i
\(189\) 0 0
\(190\) 3.87145 + 8.30234i 0.280864 + 0.602315i
\(191\) 16.2499 16.2499i 1.17580 1.17580i 0.194999 0.980803i \(-0.437530\pi\)
0.980803 0.194999i \(-0.0624705\pi\)
\(192\) 0 0
\(193\) 10.1485 2.71928i 0.730505 0.195738i 0.125651 0.992075i \(-0.459898\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(194\) −11.9471 2.10659i −0.857749 0.151244i
\(195\) 0 0
\(196\) 2.24530 + 1.29633i 0.160379 + 0.0925947i
\(197\) −16.0720 + 19.1539i −1.14508 + 1.36466i −0.224328 + 0.974514i \(0.572019\pi\)
−0.920755 + 0.390142i \(0.872426\pi\)
\(198\) 0 0
\(199\) −0.892139 0.239048i −0.0632421 0.0169457i 0.227059 0.973881i \(-0.427089\pi\)
−0.290301 + 0.956935i \(0.593756\pi\)
\(200\) −4.28010 1.99584i −0.302649 0.141128i
\(201\) 0 0
\(202\) 13.5242 9.46972i 0.951557 0.666287i
\(203\) −10.7267 0.938466i −0.752868 0.0658674i
\(204\) 0 0
\(205\) 3.77961 + 5.39784i 0.263979 + 0.377002i
\(206\) 5.41967 1.97260i 0.377606 0.137437i
\(207\) 0 0
\(208\) −0.238025 + 0.888323i −0.0165041 + 0.0615941i
\(209\) 4.51345 6.44588i 0.312202 0.445871i
\(210\) 0 0
\(211\) 8.85635 15.3396i 0.609696 1.05602i −0.381594 0.924330i \(-0.624625\pi\)
0.991290 0.131695i \(-0.0420419\pi\)
\(212\) −3.35324 5.80798i −0.230301 0.398894i
\(213\) 0 0
\(214\) 5.10413 + 19.0489i 0.348911 + 1.30215i
\(215\) 24.8684 + 9.05134i 1.69601 + 0.617296i
\(216\) 0 0
\(217\) −5.06864 + 2.36355i −0.344082 + 0.160448i
\(218\) −4.13587 + 0.729266i −0.280117 + 0.0493921i
\(219\) 0 0
\(220\) 0.727896 + 8.31989i 0.0490748 + 0.560927i
\(221\) 4.61756 0.310610
\(222\) 0 0
\(223\) 8.46993 0.567188 0.283594 0.958944i \(-0.408473\pi\)
0.283594 + 0.958944i \(0.408473\pi\)
\(224\) 0.182972 + 2.09138i 0.0122253 + 0.139736i
\(225\) 0 0
\(226\) −7.94423 + 1.40078i −0.528442 + 0.0931786i
\(227\) −7.92901 + 3.69736i −0.526267 + 0.245402i −0.667547 0.744567i \(-0.732656\pi\)
0.141281 + 0.989970i \(0.454878\pi\)
\(228\) 0 0
\(229\) −20.8633 7.59364i −1.37869 0.501802i −0.456908 0.889514i \(-0.651043\pi\)
−0.921780 + 0.387712i \(0.873265\pi\)
\(230\) 2.26212 + 8.44235i 0.149160 + 0.556672i
\(231\) 0 0
\(232\) 2.56451 + 4.44186i 0.168368 + 0.291622i
\(233\) −3.82433 + 6.62394i −0.250540 + 0.433949i −0.963675 0.267079i \(-0.913942\pi\)
0.713134 + 0.701027i \(0.247275\pi\)
\(234\) 0 0
\(235\) −10.3892 + 14.8373i −0.677714 + 0.967876i
\(236\) 3.62143 13.5154i 0.235735 0.879776i
\(237\) 0 0
\(238\) 9.90512 3.60517i 0.642054 0.233688i
\(239\) −8.37474 11.9604i −0.541717 0.773652i 0.451205 0.892420i \(-0.350994\pi\)
−0.992922 + 0.118768i \(0.962105\pi\)
\(240\) 0 0
\(241\) −26.4890 2.31749i −1.70631 0.149283i −0.808157 0.588967i \(-0.799535\pi\)
−0.898152 + 0.439684i \(0.855090\pi\)
\(242\) −3.13401 + 2.19446i −0.201462 + 0.141065i
\(243\) 0 0
\(244\) −5.78445 2.69733i −0.370311 0.172679i
\(245\) 7.80869 + 2.09233i 0.498879 + 0.133674i
\(246\) 0 0
\(247\) 1.73672 2.06974i 0.110505 0.131694i
\(248\) 2.30706 + 1.33198i 0.146498 + 0.0845808i
\(249\) 0 0
\(250\) 0.851912 + 0.150215i 0.0538796 + 0.00950044i
\(251\) 20.4793 5.48741i 1.29264 0.346363i 0.453979 0.891012i \(-0.350004\pi\)
0.838664 + 0.544650i \(0.183337\pi\)
\(252\) 0 0
\(253\) 5.30881 5.30881i 0.333762 0.333762i
\(254\) 0.972672 + 2.08590i 0.0610309 + 0.130881i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −9.77498 + 0.855200i −0.609747 + 0.0533459i −0.387847 0.921724i \(-0.626781\pi\)
−0.221899 + 0.975070i \(0.571226\pi\)
\(258\) 0 0
\(259\) 1.47783 12.6842i 0.0918278 0.788155i
\(260\) 2.86759i 0.177841i
\(261\) 0 0
\(262\) 4.58565 + 5.46497i 0.283303 + 0.337627i
\(263\) −2.26517 12.8464i −0.139676 0.792142i −0.971489 0.237086i \(-0.923808\pi\)
0.831813 0.555057i \(-0.187303\pi\)
\(264\) 0 0
\(265\) −14.7867 14.7867i −0.908337 0.908337i
\(266\) 2.10948 5.79574i 0.129340 0.355360i
\(267\) 0 0
\(268\) 1.48185 8.40401i 0.0905186 0.513357i
\(269\) −9.84514 + 5.68409i −0.600269 + 0.346565i −0.769147 0.639072i \(-0.779319\pi\)
0.168879 + 0.985637i \(0.445985\pi\)
\(270\) 0 0
\(271\) −18.5306 15.5490i −1.12566 0.944537i −0.126780 0.991931i \(-0.540464\pi\)
−0.998876 + 0.0473935i \(0.984909\pi\)
\(272\) −4.11292 2.87989i −0.249382 0.174619i
\(273\) 0 0
\(274\) 4.71037 10.1014i 0.284564 0.610250i
\(275\) 4.32626 + 11.8863i 0.260884 + 0.716772i
\(276\) 0 0
\(277\) −0.0302720 + 0.346010i −0.00181887 + 0.0207898i −0.997050 0.0767561i \(-0.975544\pi\)
0.995231 + 0.0975459i \(0.0310993\pi\)
\(278\) 1.74888 19.9898i 0.104891 1.19891i
\(279\) 0 0
\(280\) 2.23888 + 6.15127i 0.133799 + 0.367609i
\(281\) 0.395455 0.848057i 0.0235909 0.0505908i −0.894159 0.447749i \(-0.852226\pi\)
0.917750 + 0.397158i \(0.130004\pi\)
\(282\) 0 0
\(283\) −8.50619 5.95610i −0.505641 0.354053i 0.292754 0.956188i \(-0.405428\pi\)
−0.798395 + 0.602134i \(0.794317\pi\)
\(284\) −4.70753 3.95008i −0.279340 0.234394i
\(285\) 0 0
\(286\) 2.13324 1.23163i 0.126141 0.0728278i
\(287\) 0.770414 4.36923i 0.0454761 0.257908i
\(288\) 0 0
\(289\) −2.80794 + 7.71475i −0.165173 + 0.453809i
\(290\) 11.3086 + 11.3086i 0.664065 + 0.664065i
\(291\) 0 0
\(292\) −1.56572 8.87964i −0.0916268 0.519641i
\(293\) 10.9767 + 13.0815i 0.641266 + 0.764231i 0.984570 0.174993i \(-0.0559903\pi\)
−0.343303 + 0.939225i \(0.611546\pi\)
\(294\) 0 0
\(295\) 43.6290i 2.54018i
\(296\) −5.35299 + 2.88885i −0.311136 + 0.167911i
\(297\) 0 0
\(298\) −21.8600 + 1.91250i −1.26632 + 0.110788i
\(299\) 1.97474 1.65700i 0.114202 0.0958270i
\(300\) 0 0
\(301\) −7.53022 16.1486i −0.434035 0.930790i
\(302\) −7.99836 + 7.99836i −0.460254 + 0.460254i
\(303\) 0 0
\(304\) −2.83778 + 0.760380i −0.162758 + 0.0436108i
\(305\) −19.5987 3.45579i −1.12222 0.197878i
\(306\) 0 0
\(307\) 15.4922 + 8.94445i 0.884189 + 0.510487i 0.872037 0.489440i \(-0.162799\pi\)
0.0121515 + 0.999926i \(0.496132\pi\)
\(308\) 3.61442 4.30750i 0.205951 0.245443i
\(309\) 0 0
\(310\) 8.02346 + 2.14988i 0.455702 + 0.122105i
\(311\) −8.92073 4.15980i −0.505848 0.235881i 0.152904 0.988241i \(-0.451138\pi\)
−0.658752 + 0.752360i \(0.728915\pi\)
\(312\) 0 0
\(313\) −4.60506 + 3.22450i −0.260293 + 0.182259i −0.696437 0.717618i \(-0.745233\pi\)
0.436144 + 0.899877i \(0.356344\pi\)
\(314\) −22.1555 1.93835i −1.25031 0.109388i
\(315\) 0 0
\(316\) −0.302213 0.431605i −0.0170008 0.0242797i
\(317\) 30.0782 10.9476i 1.68936 0.614878i 0.694817 0.719186i \(-0.255485\pi\)
0.994545 + 0.104309i \(0.0332630\pi\)
\(318\) 0 0
\(319\) 3.55560 13.2697i 0.199076 0.742960i
\(320\) 1.78847 2.55420i 0.0999786 0.142784i
\(321\) 0 0
\(322\) 2.94230 5.09622i 0.163968 0.284001i
\(323\) 7.37547 + 12.7747i 0.410382 + 0.710803i
\(324\) 0 0
\(325\) 1.12409 + 4.19517i 0.0623534 + 0.232706i
\(326\) −16.6771 6.06998i −0.923661 0.336185i
\(327\) 0 0
\(328\) −1.91532 + 0.893127i −0.105756 + 0.0493147i
\(329\) 12.0099 2.11767i 0.662126 0.116751i
\(330\) 0 0
\(331\) 0.753073 + 8.60767i 0.0413926 + 0.473120i 0.988396 + 0.151897i \(0.0485383\pi\)
−0.947004 + 0.321223i \(0.895906\pi\)
\(332\) 3.18969 0.175057
\(333\) 0 0
\(334\) 14.4918 0.792954
\(335\) −2.31911 26.5076i −0.126707 1.44826i
\(336\) 0 0
\(337\) 33.5843 5.92181i 1.82945 0.322582i 0.850391 0.526151i \(-0.176366\pi\)
0.979060 + 0.203570i \(0.0652544\pi\)
\(338\) −11.0155 + 5.13660i −0.599163 + 0.279394i
\(339\) 0 0
\(340\) −14.7117 5.35461i −0.797852 0.290394i
\(341\) −1.84674 6.89214i −0.100007 0.373230i
\(342\) 0 0
\(343\) −10.0693 17.4405i −0.543689 0.941696i
\(344\) −4.24366 + 7.35024i −0.228803 + 0.396298i
\(345\) 0 0
\(346\) 4.46902 6.38243i 0.240256 0.343121i
\(347\) −0.541394 + 2.02051i −0.0290635 + 0.108467i −0.978934 0.204177i \(-0.934548\pi\)
0.949870 + 0.312644i \(0.101215\pi\)
\(348\) 0 0
\(349\) 2.20609 0.802950i 0.118089 0.0429809i −0.282300 0.959326i \(-0.591097\pi\)
0.400389 + 0.916345i \(0.368875\pi\)
\(350\) 5.68668 + 8.12141i 0.303966 + 0.434108i
\(351\) 0 0
\(352\) −2.66825 0.233442i −0.142218 0.0124425i
\(353\) −19.6609 + 13.7667i −1.04645 + 0.732729i −0.964547 0.263912i \(-0.914987\pi\)
−0.0818985 + 0.996641i \(0.526098\pi\)
\(354\) 0 0
\(355\) −17.3662 8.09800i −0.921703 0.429797i
\(356\) −2.46047 0.659282i −0.130405 0.0349419i
\(357\) 0 0
\(358\) −7.80148 + 9.29744i −0.412321 + 0.491385i
\(359\) −4.26996 2.46526i −0.225360 0.130111i 0.383070 0.923719i \(-0.374867\pi\)
−0.608430 + 0.793608i \(0.708200\pi\)
\(360\) 0 0
\(361\) −10.2113 1.80053i −0.537438 0.0947648i
\(362\) 1.01197 0.271156i 0.0531878 0.0142516i
\(363\) 0 0
\(364\) 1.36521 1.36521i 0.0715566 0.0715566i
\(365\) −11.8818 25.4806i −0.621922 1.33372i
\(366\) 0 0
\(367\) 12.7810 10.7245i 0.667164 0.559817i −0.245061 0.969508i \(-0.578808\pi\)
0.912224 + 0.409691i \(0.134363\pi\)
\(368\) −2.79237 + 0.244301i −0.145562 + 0.0127351i
\(369\) 0 0
\(370\) −13.7911 + 13.0208i −0.716964 + 0.676920i
\(371\) 14.0794i 0.730964i
\(372\) 0 0
\(373\) 4.09324 + 4.87814i 0.211940 + 0.252580i 0.861533 0.507702i \(-0.169505\pi\)
−0.649593 + 0.760283i \(0.725061\pi\)
\(374\) 2.33528 + 13.2440i 0.120754 + 0.684832i
\(375\) 0 0
\(376\) −4.10756 4.10756i −0.211831 0.211831i
\(377\) 1.61329 4.43248i 0.0830887 0.228284i
\(378\) 0 0
\(379\) 1.18223 6.70474i 0.0607269 0.344400i −0.939272 0.343173i \(-0.888498\pi\)
0.999999 0.00122683i \(-0.000390514\pi\)
\(380\) −7.93333 + 4.58031i −0.406971 + 0.234965i
\(381\) 0 0
\(382\) 17.6044 + 14.7718i 0.900717 + 0.755791i
\(383\) 15.6041 + 10.9261i 0.797335 + 0.558300i 0.899731 0.436444i \(-0.143762\pi\)
−0.102397 + 0.994744i \(0.532651\pi\)
\(384\) 0 0
\(385\) 7.40987 15.8905i 0.377642 0.809856i
\(386\) 3.59343 + 9.87288i 0.182901 + 0.502516i
\(387\) 0 0
\(388\) 1.05732 12.0852i 0.0536772 0.613533i
\(389\) 0.304271 3.47784i 0.0154272 0.176333i −0.984572 0.174980i \(-0.944014\pi\)
0.999999 0.00135294i \(-0.000430655\pi\)
\(390\) 0 0
\(391\) 4.81355 + 13.2251i 0.243432 + 0.668824i
\(392\) −1.09570 + 2.34974i −0.0553413 + 0.118680i
\(393\) 0 0
\(394\) −20.4817 14.3415i −1.03186 0.722513i
\(395\) −1.25854 1.05604i −0.0633239 0.0531351i
\(396\) 0 0
\(397\) 27.3753 15.8051i 1.37393 0.793237i 0.382507 0.923953i \(-0.375061\pi\)
0.991420 + 0.130716i \(0.0417275\pi\)
\(398\) 0.160383 0.909579i 0.00803929 0.0455931i
\(399\) 0 0
\(400\) 1.61521 4.43776i 0.0807607 0.221888i
\(401\) 9.88686 + 9.88686i 0.493726 + 0.493726i 0.909478 0.415752i \(-0.136482\pi\)
−0.415752 + 0.909478i \(0.636482\pi\)
\(402\) 0 0
\(403\) −0.425427 2.41271i −0.0211920 0.120186i
\(404\) 10.6124 + 12.6474i 0.527986 + 0.629230i
\(405\) 0 0
\(406\) 10.7677i 0.534392i
\(407\) 15.6096 + 4.66695i 0.773740 + 0.231332i
\(408\) 0 0
\(409\) −35.6100 + 3.11547i −1.76080 + 0.154050i −0.921184 0.389127i \(-0.872777\pi\)
−0.839618 + 0.543177i \(0.817221\pi\)
\(410\) −5.04789 + 4.23568i −0.249297 + 0.209185i
\(411\) 0 0
\(412\) 2.43745 + 5.22712i 0.120084 + 0.257522i
\(413\) −20.7710 + 20.7710i −1.02208 + 1.02208i
\(414\) 0 0
\(415\) 9.60688 2.57416i 0.471583 0.126360i
\(416\) −0.905688 0.159697i −0.0444050 0.00782980i
\(417\) 0 0
\(418\) 6.81472 + 3.93448i 0.333319 + 0.192442i
\(419\) −3.78686 + 4.51301i −0.185000 + 0.220475i −0.850571 0.525860i \(-0.823744\pi\)
0.665571 + 0.746335i \(0.268188\pi\)
\(420\) 0 0
\(421\) 10.7741 + 2.88690i 0.525096 + 0.140699i 0.511623 0.859210i \(-0.329045\pi\)
0.0134732 + 0.999909i \(0.495711\pi\)
\(422\) 16.0532 + 7.48571i 0.781455 + 0.364399i
\(423\) 0 0
\(424\) 5.49363 3.84668i 0.266794 0.186811i
\(425\) −23.6215 2.06662i −1.14581 0.100246i
\(426\) 0 0
\(427\) 7.68539 + 10.9759i 0.371922 + 0.531160i
\(428\) −18.5315 + 6.74493i −0.895756 + 0.326028i
\(429\) 0 0
\(430\) −6.84948 + 25.5626i −0.330311 + 1.23274i
\(431\) 2.44990 3.49882i 0.118007 0.168532i −0.755803 0.654800i \(-0.772753\pi\)
0.873810 + 0.486267i \(0.161642\pi\)
\(432\) 0 0
\(433\) 10.9074 18.8921i 0.524174 0.907896i −0.475430 0.879754i \(-0.657707\pi\)
0.999604 0.0281424i \(-0.00895918\pi\)
\(434\) −2.79632 4.84336i −0.134227 0.232489i
\(435\) 0 0
\(436\) −1.08696 4.05657i −0.0520557 0.194275i
\(437\) 7.73836 + 2.81653i 0.370176 + 0.134733i
\(438\) 0 0
\(439\) 7.84924 3.66016i 0.374624 0.174690i −0.226182 0.974085i \(-0.572624\pi\)
0.600806 + 0.799395i \(0.294847\pi\)
\(440\) −8.22479 + 1.45025i −0.392102 + 0.0691381i
\(441\) 0 0
\(442\) 0.402447 + 4.59998i 0.0191424 + 0.218799i
\(443\) −13.2524 −0.629642 −0.314821 0.949151i \(-0.601944\pi\)
−0.314821 + 0.949151i \(0.601944\pi\)
\(444\) 0 0
\(445\) −7.94265 −0.376518
\(446\) 0.738203 + 8.43770i 0.0349549 + 0.399536i
\(447\) 0 0
\(448\) −2.06747 + 0.364552i −0.0976790 + 0.0172234i
\(449\) −8.00777 + 3.73409i −0.377910 + 0.176222i −0.602286 0.798280i \(-0.705743\pi\)
0.224376 + 0.974503i \(0.427966\pi\)
\(450\) 0 0
\(451\) 5.31905 + 1.93598i 0.250464 + 0.0911615i
\(452\) −2.08784 7.79191i −0.0982036 0.366501i
\(453\) 0 0
\(454\) −4.37435 7.57659i −0.205298 0.355587i
\(455\) 3.01007 5.21359i 0.141114 0.244417i
\(456\) 0 0
\(457\) −8.62766 + 12.3216i −0.403585 + 0.576379i −0.968576 0.248718i \(-0.919991\pi\)
0.564991 + 0.825097i \(0.308880\pi\)
\(458\) 5.74638 21.4458i 0.268511 1.00210i
\(459\) 0 0
\(460\) −8.21307 + 2.98931i −0.382936 + 0.139377i
\(461\) −1.62400 2.31931i −0.0756372 0.108021i 0.779551 0.626339i \(-0.215447\pi\)
−0.855188 + 0.518318i \(0.826558\pi\)
\(462\) 0 0
\(463\) −36.1930 3.16648i −1.68203 0.147159i −0.794301 0.607524i \(-0.792163\pi\)
−0.887729 + 0.460366i \(0.847718\pi\)
\(464\) −4.20144 + 2.94188i −0.195047 + 0.136573i
\(465\) 0 0
\(466\) −6.93205 3.23247i −0.321121 0.149741i
\(467\) −34.6623 9.28773i −1.60398 0.429785i −0.657738 0.753247i \(-0.728487\pi\)
−0.946241 + 0.323462i \(0.895153\pi\)
\(468\) 0 0
\(469\) −11.5157 + 13.7239i −0.531747 + 0.633711i
\(470\) −15.6863 9.05648i −0.723554 0.417744i
\(471\) 0 0
\(472\) 13.7796 + 2.42971i 0.634256 + 0.111836i
\(473\) 21.9582 5.88369i 1.00964 0.270532i
\(474\) 0 0
\(475\) −9.81065 + 9.81065i −0.450144 + 0.450144i
\(476\) 4.45474 + 9.55322i 0.204183 + 0.437871i
\(477\) 0 0
\(478\) 11.1849 9.38529i 0.511588 0.429273i
\(479\) 26.0672 2.28058i 1.19104 0.104203i 0.525652 0.850700i \(-0.323821\pi\)
0.665388 + 0.746497i \(0.268266\pi\)
\(480\) 0 0
\(481\) 5.19959 + 2.06345i 0.237081 + 0.0940852i
\(482\) 26.5902i 1.21115i
\(483\) 0 0
\(484\) −2.45926 2.93083i −0.111784 0.133219i
\(485\) −6.56856 37.2522i −0.298263 1.69153i
\(486\) 0 0
\(487\) 0.689631 + 0.689631i 0.0312502 + 0.0312502i 0.722559 0.691309i \(-0.242966\pi\)
−0.691309 + 0.722559i \(0.742966\pi\)
\(488\) 2.18292 5.99752i 0.0988161 0.271495i
\(489\) 0 0
\(490\) −1.40380 + 7.96134i −0.0634172 + 0.359657i
\(491\) −37.2091 + 21.4827i −1.67922 + 0.969501i −0.717068 + 0.697003i \(0.754516\pi\)
−0.962157 + 0.272497i \(0.912150\pi\)
\(492\) 0 0
\(493\) 19.7276 + 16.5534i 0.888484 + 0.745527i
\(494\) 2.21323 + 1.54972i 0.0995778 + 0.0697251i
\(495\) 0 0
\(496\) −1.12584 + 2.41437i −0.0505516 + 0.108408i
\(497\) 4.41245 + 12.1231i 0.197925 + 0.543795i
\(498\) 0 0
\(499\) −1.11174 + 12.7072i −0.0497682 + 0.568854i 0.929844 + 0.367955i \(0.119942\pi\)
−0.979612 + 0.200899i \(0.935614\pi\)
\(500\) −0.0753944 + 0.861762i −0.00337174 + 0.0385392i
\(501\) 0 0
\(502\) 7.25142 + 19.9231i 0.323647 + 0.889212i
\(503\) −4.67196 + 10.0191i −0.208313 + 0.446728i −0.982508 0.186219i \(-0.940377\pi\)
0.774196 + 0.632946i \(0.218155\pi\)
\(504\) 0 0
\(505\) 42.1697 + 29.5276i 1.87653 + 1.31396i
\(506\) 5.75130 + 4.82591i 0.255676 + 0.214538i
\(507\) 0 0
\(508\) −1.99319 + 1.15077i −0.0884336 + 0.0510571i
\(509\) 3.73654 21.1910i 0.165619 0.939273i −0.782805 0.622268i \(-0.786212\pi\)
0.948424 0.317005i \(-0.102677\pi\)
\(510\) 0 0
\(511\) −6.47417 + 17.7876i −0.286400 + 0.786879i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −1.70389 9.66325i −0.0751554 0.426228i
\(515\) 11.5597 + 13.7763i 0.509379 + 0.607054i
\(516\) 0 0
\(517\) 15.5590i 0.684284i
\(518\) 12.7647 + 0.366707i 0.560848 + 0.0161122i
\(519\) 0 0
\(520\) −2.85668 + 0.249927i −0.125274 + 0.0109600i
\(521\) 0.350028 0.293708i 0.0153350 0.0128676i −0.635088 0.772440i \(-0.719036\pi\)
0.650423 + 0.759572i \(0.274592\pi\)
\(522\) 0 0
\(523\) −7.60898 16.3175i −0.332717 0.713515i 0.666779 0.745256i \(-0.267673\pi\)
−0.999496 + 0.0317411i \(0.989895\pi\)
\(524\) −5.04451 + 5.04451i −0.220370 + 0.220370i
\(525\) 0 0
\(526\) 12.6001 3.37618i 0.549390 0.147209i
\(527\) 13.1724 + 2.32265i 0.573798 + 0.101176i
\(528\) 0 0
\(529\) −13.1142 7.57149i −0.570183 0.329195i
\(530\) 13.4416 16.0191i 0.583868 0.695827i
\(531\) 0 0
\(532\) 5.95754 + 1.59632i 0.258292 + 0.0692092i
\(533\) 1.76144 + 0.821373i 0.0762964 + 0.0355776i
\(534\) 0 0
\(535\) −50.3710 + 35.2702i −2.17773 + 1.52486i
\(536\) 8.50118 + 0.743757i 0.367195 + 0.0321254i
\(537\) 0 0
\(538\) −6.52052 9.31227i −0.281120 0.401481i
\(539\) 6.52549 2.37508i 0.281073 0.102302i
\(540\) 0 0
\(541\) 8.95812 33.4321i 0.385139 1.43736i −0.452807 0.891608i \(-0.649577\pi\)
0.837947 0.545752i \(-0.183756\pi\)
\(542\) 13.8748 19.8153i 0.595975 0.851140i
\(543\) 0 0
\(544\) 2.51047 4.34826i 0.107636 0.186430i
\(545\) −6.54751 11.3406i −0.280465 0.485779i
\(546\) 0 0
\(547\) 7.37760 + 27.5336i 0.315444 + 1.17725i 0.923576 + 0.383416i \(0.125252\pi\)
−0.608132 + 0.793836i \(0.708081\pi\)
\(548\) 10.4735 + 3.81205i 0.447407 + 0.162843i
\(549\) 0 0
\(550\) −11.4640 + 5.34576i −0.488828 + 0.227944i
\(551\) 14.8395 2.61661i 0.632185 0.111471i
\(552\) 0 0
\(553\) 0.0964065 + 1.10193i 0.00409962 + 0.0468589i
\(554\) −0.347332 −0.0147567
\(555\) 0 0
\(556\) 20.0662 0.850994
\(557\) −1.56837 17.9266i −0.0664540 0.759573i −0.954186 0.299213i \(-0.903276\pi\)
0.887732 0.460360i \(-0.152280\pi\)
\(558\) 0 0
\(559\) 7.68686 1.35540i 0.325120 0.0573274i
\(560\) −5.93274 + 2.76648i −0.250704 + 0.116905i
\(561\) 0 0
\(562\) 0.879296 + 0.320037i 0.0370908 + 0.0135000i
\(563\) 4.39452 + 16.4006i 0.185207 + 0.691201i 0.994586 + 0.103915i \(0.0331370\pi\)
−0.809379 + 0.587286i \(0.800196\pi\)
\(564\) 0 0
\(565\) −12.5765 21.7832i −0.529099 0.916426i
\(566\) 5.19207 8.99293i 0.218239 0.378001i
\(567\) 0 0
\(568\) 3.52477 5.03389i 0.147896 0.211217i
\(569\) −0.0672038 + 0.250808i −0.00281733 + 0.0105144i −0.967320 0.253558i \(-0.918399\pi\)
0.964503 + 0.264072i \(0.0850658\pi\)
\(570\) 0 0
\(571\) −43.2375 + 15.7372i −1.80943 + 0.658579i −0.812271 + 0.583280i \(0.801769\pi\)
−0.997161 + 0.0752988i \(0.976009\pi\)
\(572\) 1.41287 + 2.01778i 0.0590749 + 0.0843677i
\(573\) 0 0
\(574\) 4.41975 + 0.386678i 0.184477 + 0.0161396i
\(575\) −10.8436 + 7.59274i −0.452208 + 0.316639i
\(576\) 0 0
\(577\) 37.8768 + 17.6623i 1.57683 + 0.735289i 0.996848 0.0793374i \(-0.0252804\pi\)
0.579985 + 0.814627i \(0.303058\pi\)
\(578\) −7.93012 2.12487i −0.329849 0.0883829i
\(579\) 0 0
\(580\) −10.2800 + 12.2512i −0.426853 + 0.508703i
\(581\) −5.79919 3.34817i −0.240591 0.138905i
\(582\) 0 0
\(583\) −17.6900 3.11923i −0.732647 0.129185i
\(584\) 8.70939 2.33367i 0.360397 0.0965681i
\(585\) 0 0
\(586\) −12.0751 + 12.0751i −0.498817 + 0.498817i
\(587\) −11.5283 24.7225i −0.475823 1.02041i −0.986969 0.160912i \(-0.948557\pi\)
0.511146 0.859494i \(-0.329221\pi\)
\(588\) 0 0
\(589\) 5.99537 5.03071i 0.247035 0.207287i
\(590\) 43.4629 3.80251i 1.78934 0.156547i
\(591\) 0 0
\(592\) −3.34441 5.08084i −0.137454 0.208821i
\(593\) 8.69991i 0.357263i 0.983916 + 0.178631i \(0.0571669\pi\)
−0.983916 + 0.178631i \(0.942833\pi\)
\(594\) 0 0
\(595\) 21.1267 + 25.1778i 0.866111 + 1.03219i
\(596\) −3.81045 21.6101i −0.156082 0.885186i
\(597\) 0 0
\(598\) 1.82281 + 1.82281i 0.0745402 + 0.0745402i
\(599\) −11.1752 + 30.7035i −0.456605 + 1.25451i 0.471391 + 0.881924i \(0.343752\pi\)
−0.927997 + 0.372589i \(0.878470\pi\)
\(600\) 0 0
\(601\) −5.74854 + 32.6016i −0.234488 + 1.32985i 0.609202 + 0.793015i \(0.291490\pi\)
−0.843690 + 0.536831i \(0.819621\pi\)
\(602\) 15.4309 8.90901i 0.628915 0.363104i
\(603\) 0 0
\(604\) −8.66503 7.27082i −0.352575 0.295845i
\(605\) −9.77218 6.84255i −0.397296 0.278189i
\(606\) 0 0
\(607\) 12.8041 27.4585i 0.519703 1.11451i −0.454895 0.890545i \(-0.650323\pi\)
0.974598 0.223962i \(-0.0718990\pi\)
\(608\) −1.00481 2.76071i −0.0407506 0.111961i
\(609\) 0 0
\(610\) 1.73449 19.8253i 0.0702276 0.802705i
\(611\) −0.465609 + 5.32194i −0.0188365 + 0.215303i
\(612\) 0 0
\(613\) 15.1841 + 41.7181i 0.613282 + 1.68498i 0.722856 + 0.690999i \(0.242829\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(614\) −7.56017 + 16.2128i −0.305104 + 0.654297i
\(615\) 0 0
\(616\) 4.60613 + 3.22525i 0.185586 + 0.129949i
\(617\) 27.7168 + 23.2571i 1.11583 + 0.936296i 0.998387 0.0567827i \(-0.0180842\pi\)
0.117448 + 0.993079i \(0.462529\pi\)
\(618\) 0 0
\(619\) 26.5570 15.3327i 1.06742 0.616274i 0.139943 0.990160i \(-0.455308\pi\)
0.927475 + 0.373886i \(0.121975\pi\)
\(620\) −1.44241 + 8.18030i −0.0579285 + 0.328529i
\(621\) 0 0
\(622\) 3.36648 9.24933i 0.134984 0.370864i
\(623\) 3.78137 + 3.78137i 0.151497 + 0.151497i
\(624\) 0 0
\(625\) 4.56871 + 25.9105i 0.182749 + 1.03642i
\(626\) −3.61358 4.30650i −0.144428 0.172122i
\(627\) 0 0
\(628\) 22.2401i 0.887477i
\(629\) −20.2953 + 22.8225i −0.809225 + 0.909994i
\(630\) 0 0
\(631\) 1.73147 0.151484i 0.0689289 0.00603049i −0.0526391 0.998614i \(-0.516763\pi\)
0.121568 + 0.992583i \(0.461208\pi\)
\(632\) 0.403623 0.338680i 0.0160553 0.0134720i
\(633\) 0 0
\(634\) 13.5274 + 29.0096i 0.537242 + 1.15212i
\(635\) −5.07451 + 5.07451i −0.201376 + 0.201376i
\(636\) 0 0
\(637\) 2.30311 0.617117i 0.0912526 0.0244511i
\(638\) 13.5291 + 2.38554i 0.535622 + 0.0944445i
\(639\) 0 0
\(640\) 2.70036 + 1.55905i 0.106741 + 0.0616269i
\(641\) −6.24611 + 7.44382i −0.246706 + 0.294013i −0.875160 0.483834i \(-0.839244\pi\)
0.628453 + 0.777847i \(0.283688\pi\)
\(642\) 0 0
\(643\) 32.9105 + 8.81835i 1.29786 + 0.347762i 0.840642 0.541591i \(-0.182178\pi\)
0.457222 + 0.889352i \(0.348844\pi\)
\(644\) 5.33327 + 2.48694i 0.210160 + 0.0979993i
\(645\) 0 0
\(646\) −12.0833 + 8.46079i −0.475410 + 0.332885i
\(647\) 31.7137 + 2.77459i 1.24679 + 0.109080i 0.691378 0.722493i \(-0.257004\pi\)
0.555415 + 0.831573i \(0.312559\pi\)
\(648\) 0 0
\(649\) −21.4960 30.6995i −0.843794 1.20506i
\(650\) −4.08123 + 1.48545i −0.160079 + 0.0582640i
\(651\) 0 0
\(652\) 4.59337 17.1427i 0.179890 0.671360i
\(653\) 2.69304 3.84606i 0.105387 0.150508i −0.762995 0.646405i \(-0.776272\pi\)
0.868381 + 0.495897i \(0.165161\pi\)
\(654\) 0 0
\(655\) −11.1223 + 19.2644i −0.434584 + 0.752721i
\(656\) −1.05666 1.83019i −0.0412556 0.0714568i
\(657\) 0 0
\(658\) 3.15634 + 11.7796i 0.123047 + 0.459217i
\(659\) −27.0882 9.85932i −1.05521 0.384064i −0.244582 0.969629i \(-0.578651\pi\)
−0.810626 + 0.585564i \(0.800873\pi\)
\(660\) 0 0
\(661\) −27.7552 + 12.9425i −1.07955 + 0.503403i −0.879265 0.476334i \(-0.841965\pi\)
−0.200288 + 0.979737i \(0.564188\pi\)
\(662\) −8.50928 + 1.50041i −0.330722 + 0.0583153i
\(663\) 0 0
\(664\) 0.278000 + 3.17755i 0.0107885 + 0.123313i
\(665\) 19.2315 0.745766
\(666\) 0 0
\(667\) 14.3768 0.556673
\(668\) 1.26304 + 14.4366i 0.0488685 + 0.558570i
\(669\) 0 0
\(670\) 26.2046 4.62057i 1.01237 0.178508i
\(671\) −15.4933 + 7.22466i −0.598113 + 0.278905i
\(672\) 0 0
\(673\) 13.9137 + 5.06416i 0.536332 + 0.195209i 0.595963 0.803012i \(-0.296770\pi\)
−0.0596314 + 0.998220i \(0.518993\pi\)
\(674\) 8.82634 + 32.9403i 0.339978 + 1.26881i
\(675\) 0 0
\(676\) −6.07711 10.5259i −0.233735 0.404841i
\(677\) −16.1053 + 27.8952i −0.618977 + 1.07210i 0.370696 + 0.928754i \(0.379119\pi\)
−0.989673 + 0.143345i \(0.954214\pi\)
\(678\) 0 0
\(679\) −14.6080 + 20.8623i −0.560602 + 0.800622i
\(680\) 4.05202 15.1224i 0.155388 0.579916i
\(681\) 0 0
\(682\) 6.70496 2.44041i 0.256746 0.0934480i
\(683\) −5.46876 7.81020i −0.209256 0.298849i 0.700780 0.713377i \(-0.252835\pi\)
−0.910036 + 0.414528i \(0.863947\pi\)
\(684\) 0 0
\(685\) 34.6212 + 3.02896i 1.32281 + 0.115731i
\(686\) 16.4965 11.5510i 0.629839 0.441018i
\(687\) 0 0
\(688\) −7.69213 3.58690i −0.293260 0.136749i
\(689\) −5.95752 1.59631i −0.226963 0.0608146i
\(690\) 0 0
\(691\) 22.0361 26.2616i 0.838292 0.999037i −0.161634 0.986851i \(-0.551676\pi\)
0.999926 0.0121863i \(-0.00387911\pi\)
\(692\) 6.74764 + 3.89575i 0.256507 + 0.148094i
\(693\) 0 0
\(694\) −2.06001 0.363234i −0.0781967 0.0137882i
\(695\) 60.4364 16.1939i 2.29248 0.614269i
\(696\) 0 0
\(697\) −7.50301 + 7.50301i −0.284197 + 0.284197i
\(698\) 0.992168 + 2.12771i 0.0375541 + 0.0805350i
\(699\) 0 0
\(700\) −7.59488 + 6.37286i −0.287060 + 0.240872i
\(701\) 46.0964 4.03291i 1.74104 0.152321i 0.828143 0.560517i \(-0.189397\pi\)
0.912894 + 0.408196i \(0.133842\pi\)
\(702\) 0 0
\(703\) 2.59651 + 17.6808i 0.0979293 + 0.666844i
\(704\) 2.67845i 0.100948i
\(705\) 0 0
\(706\) −15.4279 18.3863i −0.580637 0.691976i
\(707\) −6.01873 34.1339i −0.226358 1.28374i
\(708\) 0 0
\(709\) −11.3364 11.3364i −0.425749 0.425749i 0.461428 0.887177i \(-0.347337\pi\)
−0.887177 + 0.461428i \(0.847337\pi\)
\(710\) 6.55362 18.0059i 0.245953 0.675750i
\(711\) 0 0
\(712\) 0.442329 2.50857i 0.0165770 0.0940127i
\(713\) 6.46676 3.73359i 0.242182 0.139824i
\(714\) 0 0
\(715\) 5.88375 + 4.93705i 0.220040 + 0.184635i
\(716\) −9.94200 6.96147i −0.371550 0.260162i
\(717\) 0 0
\(718\) 2.08373 4.46857i 0.0777641 0.166766i
\(719\) −5.95733 16.3676i −0.222171 0.610409i 0.777662 0.628682i \(-0.216405\pi\)
−0.999833 + 0.0182729i \(0.994183\pi\)
\(720\) 0 0
\(721\) 1.05529 12.0620i 0.0393010 0.449213i
\(722\) 0.903705 10.3294i 0.0336324 0.384420i
\(723\) 0 0
\(724\) 0.358322 + 0.984483i 0.0133169 + 0.0365880i
\(725\) −10.2367 + 21.9527i −0.380182 + 0.815303i
\(726\) 0 0
\(727\) 0.525227 + 0.367768i 0.0194796 + 0.0136398i 0.583276 0.812274i \(-0.301771\pi\)
−0.563796 + 0.825914i \(0.690660\pi\)
\(728\) 1.47900 + 1.24103i 0.0548156 + 0.0459957i
\(729\) 0 0
\(730\) 24.3481 14.0574i 0.901163 0.520287i
\(731\) −7.39990 + 41.9669i −0.273695 + 1.55220i
\(732\) 0 0
\(733\) −5.99689 + 16.4763i −0.221500 + 0.608567i −0.999814 0.0193090i \(-0.993853\pi\)
0.778313 + 0.627876i \(0.216076\pi\)
\(734\) 11.7977 + 11.7977i 0.435460 + 0.435460i
\(735\) 0 0
\(736\) −0.486742 2.76045i −0.0179416 0.101752i
\(737\) −14.6922 17.5094i −0.541193 0.644968i
\(738\) 0 0
\(739\) 40.3640i 1.48482i −0.669949 0.742408i \(-0.733684\pi\)
0.669949 0.742408i \(-0.266316\pi\)
\(740\) −14.1732 12.6038i −0.521018 0.463323i
\(741\) 0 0
\(742\) −14.0258 + 1.22710i −0.514903 + 0.0450482i
\(743\) −5.88578 + 4.93876i −0.215928 + 0.181185i −0.744336 0.667805i \(-0.767234\pi\)
0.528407 + 0.848991i \(0.322789\pi\)
\(744\) 0 0
\(745\) −28.9165 62.0115i −1.05942 2.27193i
\(746\) −4.50283 + 4.50283i −0.164860 + 0.164860i
\(747\) 0 0
\(748\) −12.9901 + 3.48068i −0.474965 + 0.127266i
\(749\) 40.7724 + 7.18927i 1.48979 + 0.262690i
\(750\) 0 0
\(751\) 2.63599 + 1.52189i 0.0961885 + 0.0555345i 0.547323 0.836922i \(-0.315647\pi\)
−0.451134 + 0.892456i \(0.648980\pi\)
\(752\) 3.73393 4.44992i 0.136162 0.162272i
\(753\) 0 0
\(754\) 4.55622 + 1.22084i 0.165928 + 0.0444602i
\(755\) −31.9656 14.9058i −1.16335 0.542477i
\(756\) 0 0
\(757\) −21.5392 + 15.0819i −0.782857 + 0.548162i −0.895283 0.445498i \(-0.853027\pi\)
0.112426 + 0.993660i \(0.464138\pi\)
\(758\) 6.78227 + 0.593372i 0.246343 + 0.0215522i
\(759\) 0 0
\(760\) −5.25432 7.50394i −0.190594 0.272197i
\(761\) 3.54295 1.28953i 0.128432 0.0467453i −0.277005 0.960869i \(-0.589342\pi\)
0.405436 + 0.914123i \(0.367120\pi\)
\(762\) 0 0
\(763\) −2.28192 + 8.51624i −0.0826111 + 0.308309i
\(764\) −13.1813 + 18.8248i −0.476882 + 0.681058i
\(765\) 0 0
\(766\) −9.52457 + 16.4970i −0.344137 + 0.596062i
\(767\) −6.43400 11.1440i −0.232318 0.402387i
\(768\) 0 0
\(769\) 4.44019 + 16.5710i 0.160117 + 0.597566i 0.998613 + 0.0526572i \(0.0167691\pi\)
−0.838495 + 0.544909i \(0.816564\pi\)
\(770\) 16.4759 + 5.99672i 0.593749 + 0.216107i
\(771\) 0 0
\(772\) −9.52212 + 4.44024i −0.342709 + 0.159808i
\(773\) 29.9348 5.27830i 1.07668 0.189847i 0.392932 0.919567i \(-0.371461\pi\)
0.683746 + 0.729720i \(0.260350\pi\)
\(774\) 0 0
\(775\) 1.09648 + 12.5329i 0.0393868 + 0.450193i
\(776\) 12.1314 0.435490
\(777\) 0 0
\(778\) 3.49112 0.125163
\(779\) 0.541122 + 6.18506i 0.0193877 + 0.221603i
\(780\) 0 0
\(781\) −16.2096 + 2.85820i −0.580027 + 0.102274i
\(782\) −12.7553 + 5.94788i −0.456128 + 0.212696i
\(783\) 0 0
\(784\) −2.43630 0.886739i −0.0870105 0.0316692i