Properties

Label 666.2.bs.a.17.6
Level $666$
Weight $2$
Character 666.17
Analytic conductor $5.318$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 666.17
Dual form 666.2.bs.a.431.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.573576 - 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(0.980582 - 0.0857898i) q^{5} +(1.16963 + 0.981439i) q^{7} +(-0.965926 - 0.258819i) q^{8} +O(q^{10})\) \(q+(0.573576 - 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(0.980582 - 0.0857898i) q^{5} +(1.16963 + 0.981439i) q^{7} +(-0.965926 - 0.258819i) q^{8} +(0.492164 - 0.852453i) q^{10} +(3.02784 + 5.24438i) q^{11} +(-1.58099 - 0.737228i) q^{13} +(1.47482 - 0.395177i) q^{14} +(-0.766044 + 0.642788i) q^{16} +(7.17231 - 3.34450i) q^{17} +(2.99110 - 2.09439i) q^{19} +(-0.415995 - 0.892104i) q^{20} +(6.03265 + 0.527788i) q^{22} +(-0.211307 - 0.788610i) q^{23} +(-3.96986 + 0.699993i) q^{25} +(-1.51072 + 0.872215i) q^{26} +(0.522213 - 1.43477i) q^{28} +(-0.314145 + 1.17240i) q^{29} +(0.312140 - 0.312140i) q^{31} +(0.0871557 + 0.996195i) q^{32} +(1.37421 - 7.79354i) q^{34} +(1.23112 + 0.862038i) q^{35} +(-1.29697 - 5.94288i) q^{37} -3.65146i q^{38} +(-0.969373 - 0.170927i) q^{40} +(-8.84597 + 3.21967i) q^{41} +(-4.57591 - 4.57591i) q^{43} +(3.89252 - 4.63893i) q^{44} +(-0.767192 - 0.279235i) q^{46} +(11.5245 + 6.65366i) q^{47} +(-0.810718 - 4.59781i) q^{49} +(-1.70362 + 3.65342i) q^{50} +(-0.152037 + 1.73779i) q^{52} +(7.93317 + 9.45438i) q^{53} +(3.41896 + 4.88279i) q^{55} +(-0.875764 - 1.25072i) q^{56} +(0.780191 + 0.929796i) q^{58} +(0.977451 - 11.1723i) q^{59} +(3.22828 - 6.92307i) q^{61} +(-0.0766540 - 0.434726i) q^{62} +(0.866025 + 0.500000i) q^{64} +(-1.61354 - 0.587280i) q^{65} +(-3.99253 + 4.75812i) q^{67} +(-5.59588 - 5.59588i) q^{68} +(1.41228 - 0.514028i) q^{70} +(-7.37567 - 1.30053i) q^{71} +8.51548i q^{73} +(-5.61204 - 2.34629i) q^{74} +(-2.99110 - 2.09439i) q^{76} +(-1.60557 + 9.10565i) q^{77} +(-0.00716907 - 0.0819428i) q^{79} +(-0.696025 + 0.696025i) q^{80} +(-2.43644 + 9.09293i) q^{82} +(-0.0951748 + 0.261491i) q^{83} +(6.74611 - 3.89487i) q^{85} +(-6.37299 + 1.12373i) q^{86} +(-1.56733 - 5.84935i) q^{88} +(-9.92117 - 0.867990i) q^{89} +(-1.12564 - 2.41393i) q^{91} +(-0.668779 + 0.468284i) q^{92} +(12.0605 - 5.62392i) q^{94} +(2.75334 - 2.31033i) q^{95} +(-7.26572 + 1.94684i) q^{97} +(-4.23131 - 1.97309i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 12 q^{13} - 24 q^{19} - 12 q^{22} + 72 q^{34} + 72 q^{37} + 24 q^{40} + 24 q^{43} + 36 q^{46} - 48 q^{49} - 12 q^{52} + 60 q^{55} + 120 q^{61} + 60 q^{67} - 60 q^{70} + 24 q^{76} - 12 q^{79} - 48 q^{82} + 108 q^{85} - 24 q^{88} - 168 q^{91} - 84 q^{94} - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.573576 0.819152i 0.405580 0.579228i
\(3\) 0 0
\(4\) −0.342020 0.939693i −0.171010 0.469846i
\(5\) 0.980582 0.0857898i 0.438529 0.0383664i 0.134246 0.990948i \(-0.457139\pi\)
0.304283 + 0.952582i \(0.401583\pi\)
\(6\) 0 0
\(7\) 1.16963 + 0.981439i 0.442080 + 0.370949i 0.836487 0.547987i \(-0.184606\pi\)
−0.394407 + 0.918936i \(0.629050\pi\)
\(8\) −0.965926 0.258819i −0.341506 0.0915064i
\(9\) 0 0
\(10\) 0.492164 0.852453i 0.155636 0.269569i
\(11\) 3.02784 + 5.24438i 0.912930 + 1.58124i 0.809905 + 0.586562i \(0.199519\pi\)
0.103025 + 0.994679i \(0.467148\pi\)
\(12\) 0 0
\(13\) −1.58099 0.737228i −0.438488 0.204470i 0.190822 0.981625i \(-0.438885\pi\)
−0.629310 + 0.777154i \(0.716662\pi\)
\(14\) 1.47482 0.395177i 0.394163 0.105616i
\(15\) 0 0
\(16\) −0.766044 + 0.642788i −0.191511 + 0.160697i
\(17\) 7.17231 3.34450i 1.73954 0.811161i 0.750982 0.660323i \(-0.229581\pi\)
0.988559 0.150838i \(-0.0481971\pi\)
\(18\) 0 0
\(19\) 2.99110 2.09439i 0.686205 0.480486i −0.177736 0.984078i \(-0.556877\pi\)
0.863942 + 0.503592i \(0.167988\pi\)
\(20\) −0.415995 0.892104i −0.0930193 0.199480i
\(21\) 0 0
\(22\) 6.03265 + 0.527788i 1.28616 + 0.112525i
\(23\) −0.211307 0.788610i −0.0440606 0.164436i 0.940390 0.340098i \(-0.110460\pi\)
−0.984451 + 0.175662i \(0.943794\pi\)
\(24\) 0 0
\(25\) −3.96986 + 0.699993i −0.793972 + 0.139999i
\(26\) −1.51072 + 0.872215i −0.296277 + 0.171055i
\(27\) 0 0
\(28\) 0.522213 1.43477i 0.0986889 0.271146i
\(29\) −0.314145 + 1.17240i −0.0583352 + 0.217710i −0.988940 0.148315i \(-0.952615\pi\)
0.930605 + 0.366025i \(0.119282\pi\)
\(30\) 0 0
\(31\) 0.312140 0.312140i 0.0560620 0.0560620i −0.678520 0.734582i \(-0.737378\pi\)
0.734582 + 0.678520i \(0.237378\pi\)
\(32\) 0.0871557 + 0.996195i 0.0154071 + 0.176104i
\(33\) 0 0
\(34\) 1.37421 7.79354i 0.235675 1.33658i
\(35\) 1.23112 + 0.862038i 0.208097 + 0.145711i
\(36\) 0 0
\(37\) −1.29697 5.94288i −0.213220 0.977004i
\(38\) 3.65146i 0.592345i
\(39\) 0 0
\(40\) −0.969373 0.170927i −0.153271 0.0270259i
\(41\) −8.84597 + 3.21967i −1.38151 + 0.502828i −0.922635 0.385673i \(-0.873969\pi\)
−0.458874 + 0.888501i \(0.651747\pi\)
\(42\) 0 0
\(43\) −4.57591 4.57591i −0.697819 0.697819i 0.266121 0.963940i \(-0.414258\pi\)
−0.963940 + 0.266121i \(0.914258\pi\)
\(44\) 3.89252 4.63893i 0.586820 0.699345i
\(45\) 0 0
\(46\) −0.767192 0.279235i −0.113116 0.0411710i
\(47\) 11.5245 + 6.65366i 1.68102 + 0.970536i 0.960987 + 0.276594i \(0.0892056\pi\)
0.720031 + 0.693942i \(0.244128\pi\)
\(48\) 0 0
\(49\) −0.810718 4.59781i −0.115817 0.656830i
\(50\) −1.70362 + 3.65342i −0.240928 + 0.516671i
\(51\) 0 0
\(52\) −0.152037 + 1.73779i −0.0210838 + 0.240988i
\(53\) 7.93317 + 9.45438i 1.08970 + 1.29866i 0.951294 + 0.308285i \(0.0997549\pi\)
0.138411 + 0.990375i \(0.455801\pi\)
\(54\) 0 0
\(55\) 3.41896 + 4.88279i 0.461013 + 0.658395i
\(56\) −0.875764 1.25072i −0.117029 0.167135i
\(57\) 0 0
\(58\) 0.780191 + 0.929796i 0.102444 + 0.122088i
\(59\) 0.977451 11.1723i 0.127253 1.45451i −0.617183 0.786819i \(-0.711726\pi\)
0.744437 0.667693i \(-0.232718\pi\)
\(60\) 0 0
\(61\) 3.22828 6.92307i 0.413339 0.886408i −0.583877 0.811842i \(-0.698465\pi\)
0.997216 0.0745661i \(-0.0237572\pi\)
\(62\) −0.0766540 0.434726i −0.00973506 0.0552103i
\(63\) 0 0
\(64\) 0.866025 + 0.500000i 0.108253 + 0.0625000i
\(65\) −1.61354 0.587280i −0.200135 0.0728431i
\(66\) 0 0
\(67\) −3.99253 + 4.75812i −0.487765 + 0.581296i −0.952648 0.304076i \(-0.901652\pi\)
0.464882 + 0.885373i \(0.346097\pi\)
\(68\) −5.59588 5.59588i −0.678600 0.678600i
\(69\) 0 0
\(70\) 1.41228 0.514028i 0.168800 0.0614381i
\(71\) −7.37567 1.30053i −0.875331 0.154344i −0.282108 0.959383i \(-0.591034\pi\)
−0.593223 + 0.805038i \(0.702145\pi\)
\(72\) 0 0
\(73\) 8.51548i 0.996662i 0.866987 + 0.498331i \(0.166054\pi\)
−0.866987 + 0.498331i \(0.833946\pi\)
\(74\) −5.61204 2.34629i −0.652386 0.272750i
\(75\) 0 0
\(76\) −2.99110 2.09439i −0.343103 0.240243i
\(77\) −1.60557 + 9.10565i −0.182972 + 1.03768i
\(78\) 0 0
\(79\) −0.00716907 0.0819428i −0.000806583 0.00921929i 0.995781 0.0917645i \(-0.0292507\pi\)
−0.996587 + 0.0825452i \(0.973695\pi\)
\(80\) −0.696025 + 0.696025i −0.0778179 + 0.0778179i
\(81\) 0 0
\(82\) −2.43644 + 9.09293i −0.269060 + 1.00415i
\(83\) −0.0951748 + 0.261491i −0.0104468 + 0.0287023i −0.944806 0.327629i \(-0.893750\pi\)
0.934360 + 0.356331i \(0.115973\pi\)
\(84\) 0 0
\(85\) 6.74611 3.89487i 0.731718 0.422458i
\(86\) −6.37299 + 1.12373i −0.687218 + 0.121175i
\(87\) 0 0
\(88\) −1.56733 5.84935i −0.167078 0.623542i
\(89\) −9.92117 0.867990i −1.05164 0.0920068i −0.451795 0.892122i \(-0.649216\pi\)
−0.599847 + 0.800115i \(0.704772\pi\)
\(90\) 0 0
\(91\) −1.12564 2.41393i −0.117999 0.253049i
\(92\) −0.668779 + 0.468284i −0.0697251 + 0.0488220i
\(93\) 0 0
\(94\) 12.0605 5.62392i 1.24395 0.580063i
\(95\) 2.75334 2.31033i 0.282487 0.237035i
\(96\) 0 0
\(97\) −7.26572 + 1.94684i −0.737722 + 0.197672i −0.608065 0.793887i \(-0.708054\pi\)
−0.129656 + 0.991559i \(0.541387\pi\)
\(98\) −4.23131 1.97309i −0.427427 0.199313i
\(99\) 0 0
\(100\) 2.01555 + 3.49103i 0.201555 + 0.349103i
\(101\) −3.47385 + 6.01688i −0.345661 + 0.598702i −0.985474 0.169829i \(-0.945679\pi\)
0.639813 + 0.768531i \(0.279012\pi\)
\(102\) 0 0
\(103\) 6.01896 + 1.61278i 0.593066 + 0.158912i 0.542854 0.839827i \(-0.317344\pi\)
0.0502118 + 0.998739i \(0.484010\pi\)
\(104\) 1.33631 + 1.12130i 0.131036 + 0.109952i
\(105\) 0 0
\(106\) 12.2949 1.07566i 1.19418 0.104477i
\(107\) −2.81945 7.74636i −0.272566 0.748869i −0.998154 0.0607394i \(-0.980654\pi\)
0.725588 0.688130i \(-0.241568\pi\)
\(108\) 0 0
\(109\) −10.2084 + 14.5790i −0.977783 + 1.39642i −0.0605072 + 0.998168i \(0.519272\pi\)
−0.917276 + 0.398252i \(0.869617\pi\)
\(110\) 5.96078 0.568338
\(111\) 0 0
\(112\) −1.52685 −0.144274
\(113\) −2.86810 + 4.09607i −0.269808 + 0.385326i −0.931077 0.364823i \(-0.881129\pi\)
0.661269 + 0.750149i \(0.270018\pi\)
\(114\) 0 0
\(115\) −0.274859 0.755168i −0.0256307 0.0704198i
\(116\) 1.20914 0.105786i 0.112266 0.00982202i
\(117\) 0 0
\(118\) −8.59119 7.20886i −0.790883 0.663629i
\(119\) 11.6714 + 3.12734i 1.06991 + 0.286683i
\(120\) 0 0
\(121\) −12.8357 + 22.2321i −1.16688 + 2.02110i
\(122\) −3.81938 6.61536i −0.345790 0.598927i
\(123\) 0 0
\(124\) −0.400074 0.186557i −0.0359277 0.0167534i
\(125\) −8.58665 + 2.30079i −0.768014 + 0.205789i
\(126\) 0 0
\(127\) −12.5650 + 10.5433i −1.11496 + 0.935563i −0.998339 0.0576136i \(-0.981651\pi\)
−0.116621 + 0.993176i \(0.537206\pi\)
\(128\) 0.906308 0.422618i 0.0801070 0.0373545i
\(129\) 0 0
\(130\) −1.40656 + 0.984883i −0.123363 + 0.0863799i
\(131\) 0.709934 + 1.52246i 0.0620273 + 0.133018i 0.934878 0.354970i \(-0.115509\pi\)
−0.872851 + 0.487988i \(0.837731\pi\)
\(132\) 0 0
\(133\) 5.55401 + 0.485913i 0.481593 + 0.0421340i
\(134\) 1.60760 + 5.99963i 0.138875 + 0.518289i
\(135\) 0 0
\(136\) −7.79354 + 1.37421i −0.668290 + 0.117838i
\(137\) −1.25569 + 0.724975i −0.107281 + 0.0619388i −0.552681 0.833393i \(-0.686395\pi\)
0.445399 + 0.895332i \(0.353062\pi\)
\(138\) 0 0
\(139\) 2.22338 6.10870i 0.188585 0.518133i −0.808983 0.587832i \(-0.799982\pi\)
0.997568 + 0.0696990i \(0.0222039\pi\)
\(140\) 0.388984 1.45171i 0.0328751 0.122692i
\(141\) 0 0
\(142\) −5.29584 + 5.29584i −0.444417 + 0.444417i
\(143\) −0.920690 10.5235i −0.0769919 0.880022i
\(144\) 0 0
\(145\) −0.207464 + 1.17659i −0.0172290 + 0.0977104i
\(146\) 6.97547 + 4.88428i 0.577294 + 0.404226i
\(147\) 0 0
\(148\) −5.14090 + 3.25134i −0.422579 + 0.267258i
\(149\) 7.47001i 0.611967i −0.952037 0.305984i \(-0.901015\pi\)
0.952037 0.305984i \(-0.0989853\pi\)
\(150\) 0 0
\(151\) 10.0724 + 1.77603i 0.819676 + 0.144531i 0.567735 0.823211i \(-0.307820\pi\)
0.251941 + 0.967742i \(0.418931\pi\)
\(152\) −3.43125 + 1.24887i −0.278311 + 0.101297i
\(153\) 0 0
\(154\) 6.53799 + 6.53799i 0.526846 + 0.526846i
\(155\) 0.279300 0.332857i 0.0224339 0.0267357i
\(156\) 0 0
\(157\) −6.97750 2.53960i −0.556865 0.202682i 0.0482292 0.998836i \(-0.484642\pi\)
−0.605094 + 0.796154i \(0.706864\pi\)
\(158\) −0.0712357 0.0411279i −0.00566720 0.00327196i
\(159\) 0 0
\(160\) 0.170927 + 0.969373i 0.0135129 + 0.0766357i
\(161\) 0.526820 1.12977i 0.0415192 0.0890383i
\(162\) 0 0
\(163\) 0.420877 4.81064i 0.0329656 0.376799i −0.961735 0.273982i \(-0.911659\pi\)
0.994700 0.102816i \(-0.0327854\pi\)
\(164\) 6.05100 + 7.21130i 0.472504 + 0.563108i
\(165\) 0 0
\(166\) 0.159611 + 0.227947i 0.0123882 + 0.0176922i
\(167\) −2.87228 4.10205i −0.222264 0.317426i 0.692497 0.721420i \(-0.256510\pi\)
−0.914761 + 0.403994i \(0.867622\pi\)
\(168\) 0 0
\(169\) −6.40021 7.62748i −0.492324 0.586729i
\(170\) 0.678920 7.76009i 0.0520708 0.595172i
\(171\) 0 0
\(172\) −2.73489 + 5.86500i −0.208534 + 0.447202i
\(173\) 0.560433 + 3.17837i 0.0426089 + 0.241647i 0.998672 0.0515128i \(-0.0164043\pi\)
−0.956063 + 0.293160i \(0.905293\pi\)
\(174\) 0 0
\(175\) −5.33028 3.07744i −0.402931 0.232632i
\(176\) −5.69049 2.07117i −0.428937 0.156120i
\(177\) 0 0
\(178\) −6.40157 + 7.62909i −0.479818 + 0.571825i
\(179\) −11.0818 11.0818i −0.828289 0.828289i 0.158991 0.987280i \(-0.449176\pi\)
−0.987280 + 0.158991i \(0.949176\pi\)
\(180\) 0 0
\(181\) 8.99844 3.27516i 0.668849 0.243441i 0.0147965 0.999891i \(-0.495290\pi\)
0.654052 + 0.756450i \(0.273068\pi\)
\(182\) −2.62302 0.462508i −0.194431 0.0342834i
\(183\) 0 0
\(184\) 0.816429i 0.0601879i
\(185\) −1.78162 5.71622i −0.130987 0.420265i
\(186\) 0 0
\(187\) 39.2565 + 27.4877i 2.87072 + 2.01010i
\(188\) 2.31079 13.1052i 0.168532 0.955791i
\(189\) 0 0
\(190\) −0.313258 3.58055i −0.0227261 0.259761i
\(191\) 12.9234 12.9234i 0.935102 0.935102i −0.0629166 0.998019i \(-0.520040\pi\)
0.998019 + 0.0629166i \(0.0200402\pi\)
\(192\) 0 0
\(193\) 3.03191 11.3153i 0.218242 0.814490i −0.766758 0.641936i \(-0.778131\pi\)
0.985000 0.172554i \(-0.0552019\pi\)
\(194\) −2.57268 + 7.06839i −0.184708 + 0.507481i
\(195\) 0 0
\(196\) −4.04324 + 2.33437i −0.288803 + 0.166741i
\(197\) −11.1073 + 1.95852i −0.791364 + 0.139539i −0.554698 0.832052i \(-0.687166\pi\)
−0.236667 + 0.971591i \(0.576055\pi\)
\(198\) 0 0
\(199\) 5.71993 + 21.3471i 0.405475 + 1.51325i 0.803178 + 0.595739i \(0.203141\pi\)
−0.397703 + 0.917514i \(0.630192\pi\)
\(200\) 4.01576 + 0.351333i 0.283957 + 0.0248430i
\(201\) 0 0
\(202\) 2.93622 + 6.29675i 0.206592 + 0.443038i
\(203\) −1.51808 + 1.06297i −0.106548 + 0.0746058i
\(204\) 0 0
\(205\) −8.39799 + 3.91605i −0.586541 + 0.273508i
\(206\) 4.77344 4.00539i 0.332581 0.279069i
\(207\) 0 0
\(208\) 1.68499 0.451492i 0.116833 0.0313053i
\(209\) 20.0404 + 9.34498i 1.38622 + 0.646406i
\(210\) 0 0
\(211\) −1.27177 2.20277i −0.0875524 0.151645i 0.818924 0.573903i \(-0.194571\pi\)
−0.906476 + 0.422257i \(0.861238\pi\)
\(212\) 6.17091 10.6883i 0.423820 0.734078i
\(213\) 0 0
\(214\) −7.96262 2.13358i −0.544313 0.145848i
\(215\) −4.87961 4.09448i −0.332787 0.279241i
\(216\) 0 0
\(217\) 0.671435 0.0587430i 0.0455800 0.00398773i
\(218\) 6.08718 + 16.7244i 0.412276 + 1.13272i
\(219\) 0 0
\(220\) 3.41896 4.88279i 0.230506 0.329197i
\(221\) −13.8050 −0.928626
\(222\) 0 0
\(223\) −15.0865 −1.01027 −0.505134 0.863041i \(-0.668557\pi\)
−0.505134 + 0.863041i \(0.668557\pi\)
\(224\) −0.875764 + 1.25072i −0.0585144 + 0.0835673i
\(225\) 0 0
\(226\) 1.71023 + 4.69882i 0.113763 + 0.312561i
\(227\) −12.0674 + 1.05576i −0.800941 + 0.0700732i −0.480274 0.877119i \(-0.659463\pi\)
−0.320667 + 0.947192i \(0.603907\pi\)
\(228\) 0 0
\(229\) −17.3680 14.5735i −1.14771 0.963045i −0.148048 0.988980i \(-0.547299\pi\)
−0.999664 + 0.0259356i \(0.991744\pi\)
\(230\) −0.776250 0.207996i −0.0511844 0.0137148i
\(231\) 0 0
\(232\) 0.606881 1.05115i 0.0398437 0.0690113i
\(233\) 10.2423 + 17.7402i 0.670997 + 1.16220i 0.977622 + 0.210371i \(0.0674672\pi\)
−0.306624 + 0.951831i \(0.599200\pi\)
\(234\) 0 0
\(235\) 11.8715 + 5.53577i 0.774412 + 0.361114i
\(236\) −10.8329 + 2.90265i −0.705159 + 0.188947i
\(237\) 0 0
\(238\) 9.25620 7.76688i 0.599991 0.503452i
\(239\) 12.2403 5.70775i 0.791759 0.369203i 0.0157108 0.999877i \(-0.494999\pi\)
0.776049 + 0.630673i \(0.217221\pi\)
\(240\) 0 0
\(241\) 5.14569 3.60305i 0.331463 0.232093i −0.395983 0.918258i \(-0.629596\pi\)
0.727446 + 0.686165i \(0.240707\pi\)
\(242\) 10.8492 + 23.2662i 0.697413 + 1.49561i
\(243\) 0 0
\(244\) −7.60969 0.665762i −0.487161 0.0426210i
\(245\) −1.18942 4.43897i −0.0759892 0.283596i
\(246\) 0 0
\(247\) −6.27295 + 1.10609i −0.399138 + 0.0703788i
\(248\) −0.382292 + 0.220716i −0.0242756 + 0.0140155i
\(249\) 0 0
\(250\) −3.04041 + 8.35345i −0.192292 + 0.528319i
\(251\) −5.04274 + 18.8198i −0.318295 + 1.18789i 0.602588 + 0.798053i \(0.294136\pi\)
−0.920883 + 0.389840i \(0.872530\pi\)
\(252\) 0 0
\(253\) 3.49596 3.49596i 0.219789 0.219789i
\(254\) 1.42956 + 16.3400i 0.0896988 + 1.02526i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) −16.9969 11.9014i −1.06024 0.742388i −0.0928503 0.995680i \(-0.529598\pi\)
−0.967390 + 0.253292i \(0.918487\pi\)
\(258\) 0 0
\(259\) 4.31560 8.22389i 0.268159 0.511008i
\(260\) 1.71709i 0.106489i
\(261\) 0 0
\(262\) 1.65433 + 0.291703i 0.102205 + 0.0180214i
\(263\) 25.3902 9.24126i 1.56562 0.569841i 0.593608 0.804754i \(-0.297703\pi\)
0.972016 + 0.234913i \(0.0754807\pi\)
\(264\) 0 0
\(265\) 8.59021 + 8.59021i 0.527693 + 0.527693i
\(266\) 3.58368 4.27087i 0.219730 0.261864i
\(267\) 0 0
\(268\) 5.83669 + 2.12438i 0.356533 + 0.129767i
\(269\) −2.88940 1.66819i −0.176170 0.101712i 0.409322 0.912390i \(-0.365765\pi\)
−0.585492 + 0.810678i \(0.699099\pi\)
\(270\) 0 0
\(271\) −2.30713 13.0844i −0.140148 0.794819i −0.971136 0.238528i \(-0.923335\pi\)
0.830987 0.556291i \(-0.187776\pi\)
\(272\) −3.34450 + 7.17231i −0.202790 + 0.434885i
\(273\) 0 0
\(274\) −0.126372 + 1.44443i −0.00763438 + 0.0872614i
\(275\) −15.6911 18.7000i −0.946212 1.12765i
\(276\) 0 0
\(277\) −11.9768 17.1046i −0.719615 1.02772i −0.997741 0.0671725i \(-0.978602\pi\)
0.278126 0.960545i \(-0.410287\pi\)
\(278\) −3.72867 5.32509i −0.223631 0.319378i
\(279\) 0 0
\(280\) −0.966057 1.15130i −0.0577330 0.0688035i
\(281\) −0.465800 + 5.32412i −0.0277873 + 0.317610i 0.969562 + 0.244846i \(0.0787375\pi\)
−0.997349 + 0.0727639i \(0.976818\pi\)
\(282\) 0 0
\(283\) −8.48893 + 18.2046i −0.504614 + 1.08215i 0.474764 + 0.880113i \(0.342533\pi\)
−0.979378 + 0.202036i \(0.935244\pi\)
\(284\) 1.30053 + 7.37567i 0.0771722 + 0.437665i
\(285\) 0 0
\(286\) −9.14846 5.28186i −0.540960 0.312323i
\(287\) −13.5065 4.91595i −0.797261 0.290179i
\(288\) 0 0
\(289\) 29.3289 34.9528i 1.72523 2.05605i
\(290\) 0.844808 + 0.844808i 0.0496089 + 0.0496089i
\(291\) 0 0
\(292\) 8.00194 2.91247i 0.468278 0.170439i
\(293\) −1.95100 0.344014i −0.113979 0.0200975i 0.116368 0.993206i \(-0.462875\pi\)
−0.230347 + 0.973109i \(0.573986\pi\)
\(294\) 0 0
\(295\) 11.0392i 0.642729i
\(296\) −0.285359 + 6.07607i −0.0165862 + 0.353164i
\(297\) 0 0
\(298\) −6.11908 4.28462i −0.354469 0.248202i
\(299\) −0.247310 + 1.40257i −0.0143023 + 0.0811125i
\(300\) 0 0
\(301\) −0.861160 9.84310i −0.0496364 0.567347i
\(302\) 7.23210 7.23210i 0.416161 0.416161i
\(303\) 0 0
\(304\) −0.945067 + 3.52704i −0.0542033 + 0.202290i
\(305\) 2.57166 7.06559i 0.147253 0.404574i
\(306\) 0 0
\(307\) 9.48030 5.47345i 0.541069 0.312386i −0.204443 0.978878i \(-0.565538\pi\)
0.745512 + 0.666492i \(0.232205\pi\)
\(308\) 9.10565 1.60557i 0.518842 0.0914859i
\(309\) 0 0
\(310\) −0.112461 0.419708i −0.00638733 0.0238378i
\(311\) 12.4693 + 1.09092i 0.707070 + 0.0618606i 0.435018 0.900422i \(-0.356742\pi\)
0.272052 + 0.962282i \(0.412298\pi\)
\(312\) 0 0
\(313\) −12.1833 26.1271i −0.688640 1.47679i −0.869833 0.493346i \(-0.835774\pi\)
0.181194 0.983447i \(-0.442004\pi\)
\(314\) −6.08245 + 4.25897i −0.343252 + 0.240348i
\(315\) 0 0
\(316\) −0.0745491 + 0.0347628i −0.00419372 + 0.00195556i
\(317\) 2.15708 1.81001i 0.121154 0.101660i −0.580198 0.814476i \(-0.697025\pi\)
0.701352 + 0.712816i \(0.252580\pi\)
\(318\) 0 0
\(319\) −7.09972 + 1.90236i −0.397508 + 0.106512i
\(320\) 0.892104 + 0.415995i 0.0498701 + 0.0232548i
\(321\) 0 0
\(322\) −0.623281 1.07955i −0.0347341 0.0601612i
\(323\) 14.4484 25.0254i 0.803930 1.39245i
\(324\) 0 0
\(325\) 6.79236 + 1.82001i 0.376773 + 0.100956i
\(326\) −3.69924 3.10403i −0.204882 0.171917i
\(327\) 0 0
\(328\) 9.37787 0.820457i 0.517806 0.0453022i
\(329\) 6.94925 + 19.0929i 0.383125 + 1.05263i
\(330\) 0 0
\(331\) 18.4501 26.3494i 1.01411 1.44830i 0.124144 0.992264i \(-0.460381\pi\)
0.889964 0.456032i \(-0.150730\pi\)
\(332\) 0.278272 0.0152722
\(333\) 0 0
\(334\) −5.00768 −0.274008
\(335\) −3.50681 + 5.00824i −0.191597 + 0.273629i
\(336\) 0 0
\(337\) 0.123390 + 0.339012i 0.00672150 + 0.0184672i 0.943008 0.332770i \(-0.107983\pi\)
−0.936287 + 0.351237i \(0.885761\pi\)
\(338\) −9.91907 + 0.867806i −0.539526 + 0.0472024i
\(339\) 0 0
\(340\) −5.96728 5.00715i −0.323621 0.271551i
\(341\) 2.58209 + 0.691869i 0.139828 + 0.0374668i
\(342\) 0 0
\(343\) 8.90819 15.4294i 0.480997 0.833111i
\(344\) 3.23565 + 5.60432i 0.174455 + 0.302164i
\(345\) 0 0
\(346\) 2.92502 + 1.36396i 0.157250 + 0.0733269i
\(347\) −24.4355 + 6.54748i −1.31177 + 0.351487i −0.845888 0.533360i \(-0.820929\pi\)
−0.465881 + 0.884848i \(0.654262\pi\)
\(348\) 0 0
\(349\) 3.73895 3.13735i 0.200141 0.167939i −0.537209 0.843449i \(-0.680521\pi\)
0.737350 + 0.675511i \(0.236077\pi\)
\(350\) −5.57821 + 2.60116i −0.298168 + 0.139038i
\(351\) 0 0
\(352\) −4.96053 + 3.47340i −0.264397 + 0.185133i
\(353\) 11.8230 + 25.3546i 0.629277 + 1.34949i 0.919712 + 0.392595i \(0.128422\pi\)
−0.290434 + 0.956895i \(0.593800\pi\)
\(354\) 0 0
\(355\) −7.34402 0.642518i −0.389780 0.0341013i
\(356\) 2.57760 + 9.61972i 0.136612 + 0.509844i
\(357\) 0 0
\(358\) −15.4339 + 2.72141i −0.815705 + 0.143831i
\(359\) −6.61627 + 3.81990i −0.349193 + 0.201607i −0.664330 0.747439i \(-0.731283\pi\)
0.315137 + 0.949046i \(0.397950\pi\)
\(360\) 0 0
\(361\) −1.93818 + 5.32509i −0.102009 + 0.280268i
\(362\) 2.47843 9.24964i 0.130264 0.486150i
\(363\) 0 0
\(364\) −1.88336 + 1.88336i −0.0987151 + 0.0987151i
\(365\) 0.730541 + 8.35013i 0.0382383 + 0.437066i
\(366\) 0 0
\(367\) −2.73554 + 15.5140i −0.142794 + 0.809824i 0.826318 + 0.563203i \(0.190431\pi\)
−0.969112 + 0.246621i \(0.920680\pi\)
\(368\) 0.668779 + 0.468284i 0.0348625 + 0.0244110i
\(369\) 0 0
\(370\) −5.70435 1.81927i −0.296555 0.0945794i
\(371\) 18.8441i 0.978336i
\(372\) 0 0
\(373\) 3.58277 + 0.631738i 0.185509 + 0.0327102i 0.265631 0.964075i \(-0.414420\pi\)
−0.0801219 + 0.996785i \(0.525531\pi\)
\(374\) 45.0332 16.3907i 2.32861 0.847545i
\(375\) 0 0
\(376\) −9.40970 9.40970i −0.485268 0.485268i
\(377\) 1.36099 1.62196i 0.0700945 0.0835354i
\(378\) 0 0
\(379\) 15.3773 + 5.59687i 0.789878 + 0.287492i 0.705285 0.708924i \(-0.250819\pi\)
0.0845927 + 0.996416i \(0.473041\pi\)
\(380\) −3.11270 1.79712i −0.159678 0.0921901i
\(381\) 0 0
\(382\) −3.17366 17.9987i −0.162379 0.920896i
\(383\) 2.01740 4.32632i 0.103084 0.221065i −0.848000 0.529996i \(-0.822193\pi\)
0.951084 + 0.308931i \(0.0999712\pi\)
\(384\) 0 0
\(385\) −0.793222 + 9.06657i −0.0404264 + 0.462075i
\(386\) −7.52988 8.97376i −0.383261 0.456753i
\(387\) 0 0
\(388\) 4.31446 + 6.16168i 0.219033 + 0.312812i
\(389\) −3.11915 4.45460i −0.158147 0.225857i 0.732257 0.681028i \(-0.238467\pi\)
−0.890404 + 0.455171i \(0.849578\pi\)
\(390\) 0 0
\(391\) −4.15307 4.94943i −0.210030 0.250304i
\(392\) −0.406907 + 4.65097i −0.0205519 + 0.234909i
\(393\) 0 0
\(394\) −4.76658 + 10.2220i −0.240137 + 0.514975i
\(395\) −0.0140597 0.0797366i −0.000707421 0.00401199i
\(396\) 0 0
\(397\) 19.2315 + 11.1033i 0.965201 + 0.557259i 0.897770 0.440465i \(-0.145186\pi\)
0.0674309 + 0.997724i \(0.478520\pi\)
\(398\) 20.7673 + 7.55868i 1.04097 + 0.378883i
\(399\) 0 0
\(400\) 2.59114 3.08800i 0.129557 0.154400i
\(401\) −24.8404 24.8404i −1.24047 1.24047i −0.959806 0.280665i \(-0.909445\pi\)
−0.280665 0.959806i \(-0.590555\pi\)
\(402\) 0 0
\(403\) −0.723609 + 0.263372i −0.0360455 + 0.0131195i
\(404\) 6.84215 + 1.20646i 0.340410 + 0.0600234i
\(405\) 0 0
\(406\) 1.85323i 0.0919743i
\(407\) 27.2397 24.7959i 1.35022 1.22909i
\(408\) 0 0
\(409\) −10.1620 7.11549i −0.502477 0.351838i 0.294694 0.955592i \(-0.404782\pi\)
−0.797171 + 0.603753i \(0.793671\pi\)
\(410\) −1.60905 + 9.12538i −0.0794653 + 0.450670i
\(411\) 0 0
\(412\) −0.543092 6.20757i −0.0267562 0.305825i
\(413\) 12.1082 12.1082i 0.595806 0.595806i
\(414\) 0 0
\(415\) −0.0708934 + 0.264578i −0.00348002 + 0.0129876i
\(416\) 0.596630 1.63923i 0.0292522 0.0803698i
\(417\) 0 0
\(418\) 19.1496 11.0561i 0.936640 0.540769i
\(419\) 33.6752 5.93784i 1.64514 0.290083i 0.727089 0.686544i \(-0.240873\pi\)
0.918052 + 0.396461i \(0.129762\pi\)
\(420\) 0 0
\(421\) 2.22301 + 8.29640i 0.108343 + 0.404342i 0.998703 0.0509155i \(-0.0162139\pi\)
−0.890360 + 0.455257i \(0.849547\pi\)
\(422\) −2.53387 0.221685i −0.123347 0.0107914i
\(423\) 0 0
\(424\) −5.21588 11.1855i −0.253306 0.543215i
\(425\) −26.1319 + 18.2978i −1.26758 + 0.887572i
\(426\) 0 0
\(427\) 10.5705 4.92909i 0.511541 0.238535i
\(428\) −6.31489 + 5.29883i −0.305242 + 0.256128i
\(429\) 0 0
\(430\) −6.15284 + 1.64865i −0.296716 + 0.0795048i
\(431\) 8.80790 + 4.10719i 0.424262 + 0.197836i 0.623010 0.782214i \(-0.285910\pi\)
−0.198748 + 0.980051i \(0.563688\pi\)
\(432\) 0 0
\(433\) −1.16067 2.01034i −0.0557781 0.0966106i 0.836788 0.547527i \(-0.184431\pi\)
−0.892566 + 0.450916i \(0.851097\pi\)
\(434\) 0.337000 0.583701i 0.0161765 0.0280186i
\(435\) 0 0
\(436\) 17.1913 + 4.60639i 0.823313 + 0.220606i
\(437\) −2.28370 1.91625i −0.109244 0.0916667i
\(438\) 0 0
\(439\) 30.0362 2.62783i 1.43355 0.125420i 0.656248 0.754545i \(-0.272143\pi\)
0.777304 + 0.629126i \(0.216587\pi\)
\(440\) −2.03871 5.60130i −0.0971916 0.267032i
\(441\) 0 0
\(442\) −7.91823 + 11.3084i −0.376632 + 0.537886i
\(443\) −14.5868 −0.693037 −0.346519 0.938043i \(-0.612636\pi\)
−0.346519 + 0.938043i \(0.612636\pi\)
\(444\) 0 0
\(445\) −9.80299 −0.464706
\(446\) −8.65327 + 12.3581i −0.409744 + 0.585175i
\(447\) 0 0
\(448\) 0.522213 + 1.43477i 0.0246722 + 0.0677864i
\(449\) 13.1170 1.14759i 0.619032 0.0541583i 0.226674 0.973971i \(-0.427215\pi\)
0.392358 + 0.919813i \(0.371659\pi\)
\(450\) 0 0
\(451\) −43.6694 36.6430i −2.05631 1.72545i
\(452\) 4.82999 + 1.29419i 0.227184 + 0.0608737i
\(453\) 0 0
\(454\) −6.05674 + 10.4906i −0.284257 + 0.492348i
\(455\) −1.31087 2.27049i −0.0614544 0.106442i
\(456\) 0 0
\(457\) −2.11792 0.987603i −0.0990722 0.0461981i 0.372450 0.928052i \(-0.378518\pi\)
−0.471523 + 0.881854i \(0.656295\pi\)
\(458\) −21.8998 + 5.86804i −1.02331 + 0.274195i
\(459\) 0 0
\(460\) −0.615619 + 0.516565i −0.0287034 + 0.0240850i
\(461\) −21.7782 + 10.1554i −1.01431 + 0.472982i −0.857411 0.514632i \(-0.827928\pi\)
−0.156902 + 0.987614i \(0.550151\pi\)
\(462\) 0 0
\(463\) 12.7977 8.96103i 0.594758 0.416454i −0.237066 0.971494i \(-0.576186\pi\)
0.831824 + 0.555039i \(0.187297\pi\)
\(464\) −0.512958 1.10004i −0.0238135 0.0510682i
\(465\) 0 0
\(466\) 20.4067 + 1.78536i 0.945323 + 0.0827050i
\(467\) −3.84533 14.3510i −0.177940 0.664083i −0.996032 0.0889949i \(-0.971635\pi\)
0.818092 0.575088i \(-0.195032\pi\)
\(468\) 0 0
\(469\) −9.33960 + 1.64682i −0.431263 + 0.0760432i
\(470\) 11.3439 6.54938i 0.523253 0.302100i
\(471\) 0 0
\(472\) −3.83575 + 10.5386i −0.176555 + 0.485081i
\(473\) 10.1427 37.8529i 0.466360 1.74048i
\(474\) 0 0
\(475\) −10.4082 + 10.4082i −0.477560 + 0.477560i
\(476\) −1.05311 12.0371i −0.0482693 0.551721i
\(477\) 0 0
\(478\) 2.34524 13.3005i 0.107269 0.608351i
\(479\) 21.9877 + 15.3960i 1.00464 + 0.703459i 0.955396 0.295327i \(-0.0954287\pi\)
0.0492478 + 0.998787i \(0.484318\pi\)
\(480\) 0 0
\(481\) −2.33077 + 10.3518i −0.106274 + 0.472002i
\(482\) 6.28172i 0.286125i
\(483\) 0 0
\(484\) 25.2814 + 4.45779i 1.14915 + 0.202627i
\(485\) −6.95761 + 2.53236i −0.315929 + 0.114989i
\(486\) 0 0
\(487\) 15.9768 + 15.9768i 0.723977 + 0.723977i 0.969413 0.245435i \(-0.0789310\pi\)
−0.245435 + 0.969413i \(0.578931\pi\)
\(488\) −4.91010 + 5.85163i −0.222270 + 0.264891i
\(489\) 0 0
\(490\) −4.31842 1.57178i −0.195086 0.0710056i
\(491\) 17.6071 + 10.1655i 0.794598 + 0.458761i 0.841579 0.540135i \(-0.181627\pi\)
−0.0469809 + 0.998896i \(0.514960\pi\)
\(492\) 0 0
\(493\) 1.66797 + 9.45950i 0.0751214 + 0.426035i
\(494\) −2.69196 + 5.77292i −0.121117 + 0.259736i
\(495\) 0 0
\(496\) −0.0384734 + 0.439753i −0.00172751 + 0.0197455i
\(497\) −7.35044 8.75991i −0.329712 0.392936i
\(498\) 0 0
\(499\) −17.6846 25.2562i −0.791671 1.13062i −0.988653 0.150216i \(-0.952003\pi\)
0.196982 0.980407i \(-0.436886\pi\)
\(500\) 5.09884 + 7.28190i 0.228027 + 0.325656i
\(501\) 0 0
\(502\) 12.5239 + 14.9253i 0.558967 + 0.666151i
\(503\) −3.36949 + 38.5134i −0.150238 + 1.71723i 0.430039 + 0.902810i \(0.358500\pi\)
−0.580277 + 0.814419i \(0.697056\pi\)
\(504\) 0 0
\(505\) −2.89021 + 6.19807i −0.128612 + 0.275810i
\(506\) −0.858523 4.86893i −0.0381660 0.216450i
\(507\) 0 0
\(508\) 14.2049 + 8.20120i 0.630240 + 0.363869i
\(509\) −2.11147 0.768514i −0.0935895 0.0340638i 0.294801 0.955559i \(-0.404747\pi\)
−0.388391 + 0.921495i \(0.626969\pi\)
\(510\) 0 0
\(511\) −8.35742 + 9.95999i −0.369711 + 0.440604i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −19.4981 + 7.09672i −0.860024 + 0.313023i
\(515\) 6.04044 + 1.06509i 0.266174 + 0.0469336i
\(516\) 0 0
\(517\) 80.5850i 3.54412i
\(518\) −4.26129 8.25216i −0.187230 0.362579i
\(519\) 0 0
\(520\) 1.40656 + 0.984883i 0.0616817 + 0.0431900i
\(521\) −5.04735 + 28.6250i −0.221128 + 1.25408i 0.648821 + 0.760941i \(0.275262\pi\)
−0.869949 + 0.493141i \(0.835849\pi\)
\(522\) 0 0
\(523\) −0.175420 2.00506i −0.00767059 0.0876753i 0.991394 0.130909i \(-0.0417896\pi\)
−0.999065 + 0.0432337i \(0.986234\pi\)
\(524\) 1.18783 1.18783i 0.0518907 0.0518907i
\(525\) 0 0
\(526\) 6.99320 26.0990i 0.304918 1.13797i
\(527\) 1.19481 3.28272i 0.0520468 0.142997i
\(528\) 0 0
\(529\) 19.3413 11.1667i 0.840927 0.485510i
\(530\) 11.9638 2.10955i 0.519676 0.0916328i
\(531\) 0 0
\(532\) −1.44297 5.38525i −0.0625608 0.233480i
\(533\) 16.3590 + 1.43123i 0.708589 + 0.0619935i
\(534\) 0 0
\(535\) −3.42926 7.35406i −0.148260 0.317944i
\(536\) 5.08798 3.56264i 0.219767 0.153883i
\(537\) 0 0
\(538\) −3.02379 + 1.41002i −0.130365 + 0.0607902i
\(539\) 21.6579 18.1732i 0.932873 0.782773i
\(540\) 0 0
\(541\) −33.0514 + 8.85609i −1.42099 + 0.380753i −0.885835 0.464001i \(-0.846413\pi\)
−0.535155 + 0.844754i \(0.679747\pi\)
\(542\) −12.0414 5.61500i −0.517223 0.241185i
\(543\) 0 0
\(544\) 3.95688 + 6.85352i 0.169650 + 0.293842i
\(545\) −8.75940 + 15.1717i −0.375211 + 0.649885i
\(546\) 0 0
\(547\) 36.9027 + 9.88804i 1.57784 + 0.422782i 0.938258 0.345937i \(-0.112439\pi\)
0.639586 + 0.768719i \(0.279106\pi\)
\(548\) 1.11073 + 0.932010i 0.0474479 + 0.0398135i
\(549\) 0 0
\(550\) −24.3182 + 2.12757i −1.03693 + 0.0907197i
\(551\) 1.51583 + 4.16472i 0.0645767 + 0.177423i
\(552\) 0 0
\(553\) 0.0720367 0.102879i 0.00306331 0.00437486i
\(554\) −20.8809 −0.887144
\(555\) 0 0
\(556\) −6.50074 −0.275693
\(557\) 18.8529 26.9247i 0.798822 1.14084i −0.188495 0.982074i \(-0.560361\pi\)
0.987317 0.158761i \(-0.0507501\pi\)
\(558\) 0 0
\(559\) 3.86098 + 10.6080i 0.163302 + 0.448669i
\(560\) −1.49720 + 0.130988i −0.0632682 + 0.00553525i
\(561\) 0 0
\(562\) 4.09409 + 3.43535i 0.172699 + 0.144911i
\(563\) −37.9953 10.1808i −1.60131 0.429070i −0.655874 0.754871i \(-0.727700\pi\)
−0.945439 + 0.325800i \(0.894366\pi\)
\(564\) 0 0
\(565\) −2.46100 + 4.26258i −0.103535 + 0.179328i
\(566\) 10.0433 + 17.3954i 0.422149 + 0.731184i
\(567\) 0 0
\(568\) 6.78775 + 3.16518i 0.284808 + 0.132808i
\(569\) 9.96167 2.66922i 0.417615 0.111900i −0.0438919 0.999036i \(-0.513976\pi\)
0.461507 + 0.887137i \(0.347309\pi\)
\(570\) 0 0
\(571\) −6.09096 + 5.11092i −0.254899 + 0.213885i −0.761278 0.648425i \(-0.775428\pi\)
0.506380 + 0.862311i \(0.330983\pi\)
\(572\) −9.57399 + 4.46443i −0.400309 + 0.186667i
\(573\) 0 0
\(574\) −11.7739 + 8.24417i −0.491433 + 0.344105i
\(575\) 1.39088 + 2.98275i 0.0580038 + 0.124389i
\(576\) 0 0
\(577\) −25.3040 2.21381i −1.05342 0.0921622i −0.452732 0.891647i \(-0.649551\pi\)
−0.600687 + 0.799484i \(0.705106\pi\)
\(578\) −11.8093 44.0730i −0.491203 1.83319i
\(579\) 0 0
\(580\) 1.17659 0.207464i 0.0488552 0.00861449i
\(581\) −0.367957 + 0.212440i −0.0152654 + 0.00881349i
\(582\) 0 0
\(583\) −25.5620 + 70.2310i −1.05867 + 2.90867i
\(584\) 2.20397 8.22532i 0.0912009 0.340366i
\(585\) 0 0
\(586\) −1.40085 + 1.40085i −0.0578685 + 0.0578685i
\(587\) 0.574609 + 6.56781i 0.0237166 + 0.271082i 0.998789 + 0.0491960i \(0.0156659\pi\)
−0.975073 + 0.221886i \(0.928779\pi\)
\(588\) 0 0
\(589\) 0.279899 1.58738i 0.0115330 0.0654070i
\(590\) −9.04281 6.33184i −0.372286 0.260678i
\(591\) 0 0
\(592\) 4.81355 + 3.71884i 0.197836 + 0.152843i
\(593\) 22.2709i 0.914557i 0.889324 + 0.457278i \(0.151176\pi\)
−0.889324 + 0.457278i \(0.848824\pi\)
\(594\) 0 0
\(595\) 11.7130 + 2.06533i 0.480188 + 0.0846701i
\(596\) −7.01952 + 2.55489i −0.287531 + 0.104653i
\(597\) 0 0
\(598\) 1.00706 + 1.00706i 0.0411819 + 0.0411819i
\(599\) −21.9309 + 26.1363i −0.896073 + 1.06790i 0.101256 + 0.994860i \(0.467714\pi\)
−0.997329 + 0.0730382i \(0.976730\pi\)
\(600\) 0 0
\(601\) 11.3481 + 4.13038i 0.462899 + 0.168482i 0.562933 0.826502i \(-0.309673\pi\)
−0.100034 + 0.994984i \(0.531895\pi\)
\(602\) −8.55694 4.94035i −0.348755 0.201354i
\(603\) 0 0
\(604\) −1.77603 10.0724i −0.0722655 0.409838i
\(605\) −10.6792 + 22.9015i −0.434170 + 0.931080i
\(606\) 0 0
\(607\) −2.08749 + 23.8601i −0.0847286 + 0.968452i 0.828227 + 0.560393i \(0.189350\pi\)
−0.912955 + 0.408059i \(0.866206\pi\)
\(608\) 2.34711 + 2.79718i 0.0951880 + 0.113441i
\(609\) 0 0
\(610\) −4.31275 6.15924i −0.174618 0.249380i
\(611\) −13.3148 19.0155i −0.538660 0.769287i
\(612\) 0 0
\(613\) −23.8073 28.3725i −0.961569 1.14595i −0.989235 0.146336i \(-0.953252\pi\)
0.0276655 0.999617i \(-0.491193\pi\)
\(614\) 0.954086 10.9053i 0.0385038 0.440100i
\(615\) 0 0
\(616\) 3.90758 8.37983i 0.157441 0.337633i
\(617\) 0.734106 + 4.16332i 0.0295540 + 0.167609i 0.996012 0.0892138i \(-0.0284354\pi\)
−0.966459 + 0.256823i \(0.917324\pi\)
\(618\) 0 0
\(619\) −32.9750 19.0381i −1.32538 0.765208i −0.340797 0.940137i \(-0.610697\pi\)
−0.984581 + 0.174929i \(0.944030\pi\)
\(620\) −0.408310 0.148613i −0.0163981 0.00596842i
\(621\) 0 0
\(622\) 8.04574 9.58854i 0.322605 0.384465i
\(623\) −10.7523 10.7523i −0.430780 0.430780i
\(624\) 0 0
\(625\) 10.7174 3.90083i 0.428698 0.156033i
\(626\) −28.3901 5.00595i −1.13470 0.200078i
\(627\) 0 0
\(628\) 7.42530i 0.296302i
\(629\) −29.1782 38.2865i −1.16341 1.52658i
\(630\) 0 0
\(631\) −3.54096 2.47941i −0.140963 0.0987037i 0.500968 0.865466i \(-0.332978\pi\)
−0.641931 + 0.766762i \(0.721866\pi\)
\(632\) −0.0142836 + 0.0810062i −0.000568170 + 0.00322225i
\(633\) 0 0
\(634\) −0.245419 2.80515i −0.00974684 0.111407i
\(635\) −11.4165 + 11.4165i −0.453049 + 0.453049i
\(636\) 0 0
\(637\) −2.10790 + 7.86678i −0.0835179 + 0.311693i
\(638\) −2.51391 + 6.90690i −0.0995265 + 0.273447i
\(639\) 0 0
\(640\) 0.852453 0.492164i 0.0336961 0.0194545i
\(641\) 16.7324 2.95037i 0.660888 0.116532i 0.166863 0.985980i \(-0.446636\pi\)
0.494025 + 0.869448i \(0.335525\pi\)
\(642\) 0 0
\(643\) 4.02232 + 15.0115i 0.158625 + 0.591995i 0.998768 + 0.0496304i \(0.0158043\pi\)
−0.840143 + 0.542365i \(0.817529\pi\)
\(644\) −1.24182 0.108645i −0.0489345 0.00428122i
\(645\) 0 0
\(646\) −12.2123 26.1894i −0.480487 1.03041i
\(647\) −13.3815 + 9.36984i −0.526082 + 0.368366i −0.806241 0.591587i \(-0.798502\pi\)
0.280159 + 0.959953i \(0.409613\pi\)
\(648\) 0 0
\(649\) 61.5515 28.7019i 2.41611 1.12665i
\(650\) 5.38680 4.52007i 0.211288 0.177292i
\(651\) 0 0
\(652\) −4.66448 + 1.24984i −0.182675 + 0.0489476i
\(653\) 22.8518 + 10.6560i 0.894260 + 0.417000i 0.814736 0.579833i \(-0.196882\pi\)
0.0795243 + 0.996833i \(0.474660\pi\)
\(654\) 0 0
\(655\) 0.826760 + 1.43199i 0.0323042 + 0.0559525i
\(656\) 4.70684 8.15249i 0.183771 0.318301i
\(657\) 0 0
\(658\) 19.6259 + 5.25875i 0.765098 + 0.205007i
\(659\) −22.5572 18.9277i −0.878703 0.737319i 0.0872092 0.996190i \(-0.472205\pi\)
−0.965912 + 0.258871i \(0.916650\pi\)
\(660\) 0 0
\(661\) 0.303779 0.0265772i 0.0118156 0.00103373i −0.0812464 0.996694i \(-0.525890\pi\)
0.0930620 + 0.995660i \(0.470335\pi\)
\(662\) −11.0017 30.2268i −0.427592 1.17480i
\(663\) 0 0
\(664\) 0.159611 0.227947i 0.00619409 0.00884608i
\(665\) 5.48784 0.212809
\(666\) 0 0
\(667\) 0.990951 0.0383698
\(668\) −2.87228 + 4.10205i −0.111132 + 0.158713i
\(669\) 0 0
\(670\) 2.09109 + 5.74522i 0.0807858 + 0.221957i
\(671\) 46.0819 4.03165i 1.77897 0.155640i
\(672\) 0 0
\(673\) −6.45489 5.41629i −0.248818 0.208783i 0.509845 0.860266i \(-0.329703\pi\)
−0.758663 + 0.651483i \(0.774147\pi\)
\(674\) 0.348476 + 0.0933739i 0.0134228 + 0.00359663i
\(675\) 0 0
\(676\) −4.97848 + 8.62298i −0.191480 + 0.331653i
\(677\) 20.9549 + 36.2949i 0.805361 + 1.39493i 0.916047 + 0.401070i \(0.131362\pi\)
−0.110687 + 0.993855i \(0.535305\pi\)
\(678\) 0 0
\(679\) −10.4089 4.85376i −0.399458 0.186270i
\(680\) −7.52431 + 2.01613i −0.288544 + 0.0773151i
\(681\) 0 0
\(682\) 2.04777 1.71829i 0.0784133 0.0657966i
\(683\) 11.7794 5.49281i 0.450725 0.210176i −0.183982 0.982930i \(-0.558899\pi\)
0.634707 + 0.772753i \(0.281121\pi\)
\(684\) 0 0
\(685\) −1.16912 + 0.818623i −0.0446696 + 0.0312780i
\(686\) −7.52953 16.1471i −0.287479 0.616500i
\(687\) 0 0
\(688\) 6.44668 + 0.564012i 0.245777 + 0.0215027i
\(689\) −5.57223 20.7959i −0.212285 0.792259i
\(690\) 0 0
\(691\) −12.5441 + 2.21187i −0.477202 + 0.0841435i −0.407075 0.913395i \(-0.633451\pi\)
−0.0701264 + 0.997538i \(0.522340\pi\)
\(692\) 2.79501 1.61370i 0.106250 0.0613437i
\(693\) 0 0
\(694\) −8.65227 + 23.7719i −0.328436 + 0.902369i
\(695\) 1.65615 6.18082i 0.0628212 0.234452i
\(696\) 0 0
\(697\) −52.6779 + 52.6779i −1.99532 + 1.99532i
\(698\) −0.425394 4.86228i −0.0161014 0.184040i
\(699\) 0 0
\(700\) −1.06878 + 6.06137i −0.0403962 + 0.229098i
\(701\) −13.2016 9.24385i −0.498617 0.349135i 0.297058 0.954860i \(-0.403995\pi\)
−0.795675 + 0.605724i \(0.792884\pi\)
\(702\) 0 0
\(703\) −16.3261 15.0594i −0.615750 0.567976i
\(704\) 6.05569i 0.228232i
\(705\) 0 0
\(706\) 27.5507 + 4.85793i 1.03688 + 0.182831i
\(707\) −9.96833 + 3.62818i −0.374898 + 0.136452i
\(708\) 0 0
\(709\) −12.9475 12.9475i −0.486252 0.486252i 0.420869 0.907121i \(-0.361725\pi\)
−0.907121 + 0.420869i \(0.861725\pi\)
\(710\) −4.73868 + 5.64733i −0.177839 + 0.211941i
\(711\) 0 0
\(712\) 9.35847 + 3.40620i 0.350723 + 0.127653i
\(713\) −0.312114 0.180199i −0.0116888 0.00674851i
\(714\) 0 0
\(715\) −1.80562 10.2402i −0.0675265 0.382962i
\(716\) −6.62326 + 14.2036i −0.247523 + 0.530814i
\(717\) 0 0
\(718\) −0.665853 + 7.61074i −0.0248494 + 0.284030i
\(719\) 19.3068 + 23.0089i 0.720020 + 0.858087i 0.994633 0.103468i \(-0.0329940\pi\)
−0.274612 + 0.961555i \(0.588550\pi\)
\(720\) 0 0
\(721\) 5.45714 + 7.79360i 0.203234 + 0.290249i
\(722\) 3.25037 + 4.64201i 0.120966 + 0.172758i
\(723\) 0 0
\(724\) −6.15529 7.33559i −0.228760 0.272625i
\(725\) 0.426435 4.87418i 0.0158374 0.181022i
\(726\) 0 0
\(727\) −12.8824 + 27.6264i −0.477781 + 1.02461i 0.508732 + 0.860925i \(0.330114\pi\)
−0.986513 + 0.163680i \(0.947663\pi\)
\(728\) 0.462508 + 2.62302i 0.0171417 + 0.0972154i
\(729\) 0 0
\(730\) 7.25904 + 4.19101i 0.268669 + 0.155116i
\(731\) −48.1239 17.5157i −1.77993 0.647841i
\(732\) 0 0
\(733\) 17.1370 20.4230i 0.632968 0.754342i −0.350274 0.936647i \(-0.613912\pi\)
0.983242 + 0.182305i \(0.0583560\pi\)
\(734\) 11.1393 + 11.1393i 0.411158 + 0.411158i
\(735\) 0 0
\(736\) 0.767192 0.279235i 0.0282791 0.0102927i
\(737\) −37.0421 6.53153i −1.36446 0.240592i
\(738\) 0 0
\(739\) 30.0980i 1.10717i −0.832792 0.553586i \(-0.813259\pi\)
0.832792 0.553586i \(-0.186741\pi\)
\(740\) −4.76214 + 3.62924i −0.175060 + 0.133413i
\(741\) 0 0
\(742\) 15.4362 + 10.8085i 0.566680 + 0.396793i
\(743\) −5.99726 + 34.0121i −0.220018 + 1.24778i 0.651965 + 0.758249i \(0.273945\pi\)
−0.871983 + 0.489536i \(0.837166\pi\)
\(744\) 0 0
\(745\) −0.640851 7.32496i −0.0234790 0.268366i
\(746\) 2.57248 2.57248i 0.0941852 0.0941852i
\(747\) 0 0
\(748\) 12.4035 46.2904i 0.453516 1.69254i
\(749\) 4.30486 11.8275i 0.157296 0.432168i
\(750\) 0 0
\(751\) −41.0185 + 23.6820i −1.49679 + 0.864170i −0.999993 0.00369842i \(-0.998823\pi\)
−0.496794 + 0.867869i \(0.665489\pi\)
\(752\) −13.1052 + 2.31079i −0.477896 + 0.0842659i
\(753\) 0 0
\(754\) −0.548004 2.04518i −0.0199571 0.0744810i
\(755\) 10.0291 + 0.877435i 0.364997 + 0.0319331i
\(756\) 0 0
\(757\) 19.9562 + 42.7962i 0.725321 + 1.55546i 0.827992 + 0.560740i \(0.189483\pi\)
−0.102671 + 0.994715i \(0.532739\pi\)
\(758\) 13.4047 9.38610i 0.486882 0.340918i
\(759\) 0 0
\(760\) −3.25748 + 1.51899i −0.118161 + 0.0550995i
\(761\) 25.1687 21.1191i 0.912366 0.765566i −0.0602014 0.998186i \(-0.519174\pi\)
0.972568 + 0.232620i \(0.0747298\pi\)
\(762\) 0 0
\(763\) −26.2485 + 7.03326i −0.950259 + 0.254621i
\(764\) −16.5640 7.72394i −0.599266 0.279442i
\(765\) 0 0
\(766\) −2.38678 4.13403i −0.0862380 0.149369i
\(767\) −9.78189 + 16.9427i −0.353204 + 0.611767i
\(768\) 0 0
\(769\) −8.04522 2.15571i −0.290118 0.0777369i 0.110825 0.993840i \(-0.464651\pi\)
−0.400943 + 0.916103i \(0.631317\pi\)
\(770\) 6.97193 + 5.85014i 0.251251 + 0.210824i
\(771\) 0 0
\(772\) −11.6698 + 1.02098i −0.420007 + 0.0367458i
\(773\) 4.44004 + 12.1989i 0.159697 + 0.438764i 0.993574 0.113187i \(-0.0361058\pi\)
−0.833877 + 0.551951i \(0.813884\pi\)
\(774\) 0 0
\(775\) −1.02066 + 1.45765i −0.0366630 + 0.0523602i
\(776\) 7.52202 0.270025
\(777\) 0 0
\(778\) −5.43807 −0.194964
\(779\) −19.7159 + 28.1573i −0.706397 + 1.00884i
\(780\) 0 0
\(781\) −15.5119 42.6186i −0.555060 1.52501i
\(782\) −6.43644 + 0.563116i −0.230167 + 0.0201370i
\(783\) 0 0
\(784\) 3.57646 + 3.00101i<