Properties

Label 666.2.bs.a.17.2
Level $666$
Weight $2$
Character 666.17
Analytic conductor $5.318$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(6\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 666.17
Dual form 666.2.bs.a.431.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.573576 + 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(-0.718088 + 0.0628246i) q^{5} +(-2.07081 - 1.73762i) q^{7} +(0.965926 + 0.258819i) q^{8} +O(q^{10})\) \(q+(-0.573576 + 0.819152i) q^{2} +(-0.342020 - 0.939693i) q^{4} +(-0.718088 + 0.0628246i) q^{5} +(-2.07081 - 1.73762i) q^{7} +(0.965926 + 0.258819i) q^{8} +(0.360415 - 0.624258i) q^{10} +(2.14666 + 3.71813i) q^{11} +(0.0350998 + 0.0163673i) q^{13} +(2.61114 - 0.699652i) q^{14} +(-0.766044 + 0.642788i) q^{16} +(-1.26227 + 0.588607i) q^{17} +(-1.15999 + 0.812232i) q^{19} +(0.304636 + 0.653295i) q^{20} +(-4.27699 - 0.374188i) q^{22} +(1.21793 + 4.54537i) q^{23} +(-4.41234 + 0.778014i) q^{25} +(-0.0335397 + 0.0193642i) q^{26} +(-0.924566 + 2.54022i) q^{28} +(-2.18568 + 8.15709i) q^{29} +(-3.19999 + 3.19999i) q^{31} +(-0.0871557 - 0.996195i) q^{32} +(0.241851 - 1.37160i) q^{34} +(1.59619 + 1.11766i) q^{35} +(6.02223 + 0.856003i) q^{37} -1.41608i q^{38} +(-0.709880 - 0.125171i) q^{40} +(-8.42883 + 3.06784i) q^{41} +(-0.673546 - 0.673546i) q^{43} +(2.75969 - 3.28888i) q^{44} +(-4.42192 - 1.60945i) q^{46} +(2.04440 + 1.18033i) q^{47} +(0.0534066 + 0.302884i) q^{49} +(1.89350 - 4.06062i) q^{50} +(0.00337540 - 0.0385810i) q^{52} +(-0.385452 - 0.459364i) q^{53} +(-1.77508 - 2.53508i) q^{55} +(-1.55052 - 2.21437i) q^{56} +(-5.42824 - 6.46912i) q^{58} +(0.273822 - 3.12980i) q^{59} +(-4.73693 + 10.1584i) q^{61} +(-0.785839 - 4.45671i) q^{62} +(0.866025 + 0.500000i) q^{64} +(-0.0262330 - 0.00954803i) q^{65} +(5.48130 - 6.53235i) q^{67} +(0.984832 + 0.984832i) q^{68} +(-1.83107 + 0.666456i) q^{70} +(0.759603 + 0.133939i) q^{71} +9.36628i q^{73} +(-4.15541 + 4.44214i) q^{74} +(1.15999 + 0.812232i) q^{76} +(2.01535 - 11.4296i) q^{77} +(-0.124024 - 1.41760i) q^{79} +(0.509704 - 0.509704i) q^{80} +(2.32155 - 8.66414i) q^{82} +(-2.84370 + 7.81299i) q^{83} +(0.869443 - 0.501973i) q^{85} +(0.938067 - 0.165407i) q^{86} +(1.11119 + 4.14703i) q^{88} +(-10.6799 - 0.934373i) q^{89} +(-0.0442449 - 0.0948835i) q^{91} +(3.85469 - 2.69909i) q^{92} +(-2.13949 + 0.997660i) q^{94} +(0.781945 - 0.656130i) q^{95} +(-2.87161 + 0.769446i) q^{97} +(-0.278741 - 0.129979i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 12 q^{13} - 24 q^{19} - 12 q^{22} + 72 q^{34} + 72 q^{37} + 24 q^{40} + 24 q^{43} + 36 q^{46} - 48 q^{49} - 12 q^{52} + 60 q^{55} + 120 q^{61} + 60 q^{67} - 60 q^{70} + 24 q^{76} - 12 q^{79} - 48 q^{82} + 108 q^{85} - 24 q^{88} - 168 q^{91} - 84 q^{94} - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.573576 + 0.819152i −0.405580 + 0.579228i
\(3\) 0 0
\(4\) −0.342020 0.939693i −0.171010 0.469846i
\(5\) −0.718088 + 0.0628246i −0.321139 + 0.0280960i −0.246586 0.969121i \(-0.579309\pi\)
−0.0745532 + 0.997217i \(0.523753\pi\)
\(6\) 0 0
\(7\) −2.07081 1.73762i −0.782692 0.656757i 0.161233 0.986916i \(-0.448453\pi\)
−0.943925 + 0.330160i \(0.892897\pi\)
\(8\) 0.965926 + 0.258819i 0.341506 + 0.0915064i
\(9\) 0 0
\(10\) 0.360415 0.624258i 0.113973 0.197408i
\(11\) 2.14666 + 3.71813i 0.647243 + 1.12106i 0.983779 + 0.179387i \(0.0574113\pi\)
−0.336536 + 0.941671i \(0.609255\pi\)
\(12\) 0 0
\(13\) 0.0350998 + 0.0163673i 0.00973493 + 0.00453947i 0.427480 0.904025i \(-0.359402\pi\)
−0.417745 + 0.908564i \(0.637179\pi\)
\(14\) 2.61114 0.699652i 0.697856 0.186990i
\(15\) 0 0
\(16\) −0.766044 + 0.642788i −0.191511 + 0.160697i
\(17\) −1.26227 + 0.588607i −0.306146 + 0.142758i −0.569620 0.821908i \(-0.692910\pi\)
0.263474 + 0.964667i \(0.415132\pi\)
\(18\) 0 0
\(19\) −1.15999 + 0.812232i −0.266119 + 0.186339i −0.699018 0.715104i \(-0.746380\pi\)
0.432899 + 0.901442i \(0.357491\pi\)
\(20\) 0.304636 + 0.653295i 0.0681188 + 0.146081i
\(21\) 0 0
\(22\) −4.27699 0.374188i −0.911856 0.0797771i
\(23\) 1.21793 + 4.54537i 0.253955 + 0.947775i 0.968669 + 0.248357i \(0.0798906\pi\)
−0.714713 + 0.699418i \(0.753443\pi\)
\(24\) 0 0
\(25\) −4.41234 + 0.778014i −0.882467 + 0.155603i
\(26\) −0.0335397 + 0.0193642i −0.00657768 + 0.00379763i
\(27\) 0 0
\(28\) −0.924566 + 2.54022i −0.174726 + 0.480057i
\(29\) −2.18568 + 8.15709i −0.405871 + 1.51473i 0.396571 + 0.918004i \(0.370200\pi\)
−0.802443 + 0.596729i \(0.796467\pi\)
\(30\) 0 0
\(31\) −3.19999 + 3.19999i −0.574735 + 0.574735i −0.933448 0.358713i \(-0.883216\pi\)
0.358713 + 0.933448i \(0.383216\pi\)
\(32\) −0.0871557 0.996195i −0.0154071 0.176104i
\(33\) 0 0
\(34\) 0.241851 1.37160i 0.0414771 0.235228i
\(35\) 1.59619 + 1.11766i 0.269805 + 0.188920i
\(36\) 0 0
\(37\) 6.02223 + 0.856003i 0.990049 + 0.140726i
\(38\) 1.41608i 0.229719i
\(39\) 0 0
\(40\) −0.709880 0.125171i −0.112242 0.0197913i
\(41\) −8.42883 + 3.06784i −1.31636 + 0.479117i −0.902291 0.431128i \(-0.858116\pi\)
−0.414071 + 0.910244i \(0.635894\pi\)
\(42\) 0 0
\(43\) −0.673546 0.673546i −0.102715 0.102715i 0.653882 0.756597i \(-0.273139\pi\)
−0.756597 + 0.653882i \(0.773139\pi\)
\(44\) 2.75969 3.28888i 0.416040 0.495817i
\(45\) 0 0
\(46\) −4.42192 1.60945i −0.651977 0.237300i
\(47\) 2.04440 + 1.18033i 0.298206 + 0.172169i 0.641637 0.767009i \(-0.278256\pi\)
−0.343431 + 0.939178i \(0.611589\pi\)
\(48\) 0 0
\(49\) 0.0534066 + 0.302884i 0.00762951 + 0.0432691i
\(50\) 1.89350 4.06062i 0.267781 0.574259i
\(51\) 0 0
\(52\) 0.00337540 0.0385810i 0.000468083 0.00535022i
\(53\) −0.385452 0.459364i −0.0529459 0.0630985i 0.738922 0.673791i \(-0.235335\pi\)
−0.791867 + 0.610693i \(0.790891\pi\)
\(54\) 0 0
\(55\) −1.77508 2.53508i −0.239352 0.341830i
\(56\) −1.55052 2.21437i −0.207197 0.295908i
\(57\) 0 0
\(58\) −5.42824 6.46912i −0.712762 0.849437i
\(59\) 0.273822 3.12980i 0.0356486 0.407465i −0.957315 0.289046i \(-0.906662\pi\)
0.992964 0.118419i \(-0.0377826\pi\)
\(60\) 0 0
\(61\) −4.73693 + 10.1584i −0.606501 + 1.30065i 0.327997 + 0.944679i \(0.393626\pi\)
−0.934498 + 0.355967i \(0.884151\pi\)
\(62\) −0.785839 4.45671i −0.0998016 0.566003i
\(63\) 0 0
\(64\) 0.866025 + 0.500000i 0.108253 + 0.0625000i
\(65\) −0.0262330 0.00954803i −0.00325380 0.00118429i
\(66\) 0 0
\(67\) 5.48130 6.53235i 0.669647 0.798054i −0.319089 0.947725i \(-0.603377\pi\)
0.988736 + 0.149671i \(0.0478213\pi\)
\(68\) 0.984832 + 0.984832i 0.119428 + 0.119428i
\(69\) 0 0
\(70\) −1.83107 + 0.666456i −0.218855 + 0.0796567i
\(71\) 0.759603 + 0.133939i 0.0901483 + 0.0158956i 0.218540 0.975828i \(-0.429870\pi\)
−0.128392 + 0.991723i \(0.540982\pi\)
\(72\) 0 0
\(73\) 9.36628i 1.09624i 0.836400 + 0.548120i \(0.184656\pi\)
−0.836400 + 0.548120i \(0.815344\pi\)
\(74\) −4.15541 + 4.44214i −0.483056 + 0.516388i
\(75\) 0 0
\(76\) 1.15999 + 0.812232i 0.133060 + 0.0931694i
\(77\) 2.01535 11.4296i 0.229670 1.30252i
\(78\) 0 0
\(79\) −0.124024 1.41760i −0.0139538 0.159493i 0.986021 0.166622i \(-0.0532861\pi\)
−0.999975 + 0.00712971i \(0.997731\pi\)
\(80\) 0.509704 0.509704i 0.0569867 0.0569867i
\(81\) 0 0
\(82\) 2.32155 8.66414i 0.256372 0.956794i
\(83\) −2.84370 + 7.81299i −0.312136 + 0.857588i 0.680089 + 0.733130i \(0.261941\pi\)
−0.992225 + 0.124458i \(0.960281\pi\)
\(84\) 0 0
\(85\) 0.869443 0.501973i 0.0943044 0.0544467i
\(86\) 0.938067 0.165407i 0.101154 0.0178362i
\(87\) 0 0
\(88\) 1.11119 + 4.14703i 0.118454 + 0.442075i
\(89\) −10.6799 0.934373i −1.13207 0.0990433i −0.494315 0.869283i \(-0.664581\pi\)
−0.637755 + 0.770239i \(0.720137\pi\)
\(90\) 0 0
\(91\) −0.0442449 0.0948835i −0.00463813 0.00994649i
\(92\) 3.85469 2.69909i 0.401880 0.281399i
\(93\) 0 0
\(94\) −2.13949 + 0.997660i −0.220671 + 0.102901i
\(95\) 0.781945 0.656130i 0.0802258 0.0673175i
\(96\) 0 0
\(97\) −2.87161 + 0.769446i −0.291568 + 0.0781254i −0.401638 0.915798i \(-0.631559\pi\)
0.110070 + 0.993924i \(0.464892\pi\)
\(98\) −0.278741 0.129979i −0.0281570 0.0131298i
\(99\) 0 0
\(100\) 2.24020 + 3.88014i 0.224020 + 0.388014i
\(101\) −3.35666 + 5.81391i −0.334000 + 0.578505i −0.983292 0.182034i \(-0.941732\pi\)
0.649292 + 0.760539i \(0.275065\pi\)
\(102\) 0 0
\(103\) 9.58937 + 2.56946i 0.944869 + 0.253177i 0.698183 0.715919i \(-0.253992\pi\)
0.246685 + 0.969096i \(0.420659\pi\)
\(104\) 0.0296676 + 0.0248941i 0.00290915 + 0.00244107i
\(105\) 0 0
\(106\) 0.597375 0.0522635i 0.0580222 0.00507628i
\(107\) −3.18517 8.75119i −0.307922 0.846010i −0.993061 0.117597i \(-0.962481\pi\)
0.685139 0.728412i \(-0.259741\pi\)
\(108\) 0 0
\(109\) 5.93207 8.47187i 0.568189 0.811458i −0.427519 0.904006i \(-0.640612\pi\)
0.995708 + 0.0925480i \(0.0295012\pi\)
\(110\) 3.09476 0.295074
\(111\) 0 0
\(112\) 2.70325 0.255433
\(113\) 1.82365 2.60444i 0.171554 0.245005i −0.724163 0.689629i \(-0.757774\pi\)
0.895717 + 0.444624i \(0.146663\pi\)
\(114\) 0 0
\(115\) −1.16014 3.18746i −0.108184 0.297232i
\(116\) 8.41270 0.736016i 0.781100 0.0683374i
\(117\) 0 0
\(118\) 2.40672 + 2.01948i 0.221557 + 0.185908i
\(119\) 3.63670 + 0.974450i 0.333375 + 0.0893277i
\(120\) 0 0
\(121\) −3.71631 + 6.43684i −0.337846 + 0.585167i
\(122\) −5.60426 9.70686i −0.507386 0.878818i
\(123\) 0 0
\(124\) 4.10147 + 1.91254i 0.368322 + 0.171752i
\(125\) 6.60091 1.76871i 0.590404 0.158198i
\(126\) 0 0
\(127\) 13.2744 11.1386i 1.17792 0.988389i 0.177926 0.984044i \(-0.443061\pi\)
0.999991 0.00434519i \(-0.00138312\pi\)
\(128\) −0.906308 + 0.422618i −0.0801070 + 0.0373545i
\(129\) 0 0
\(130\) 0.0228679 0.0160123i 0.00200565 0.00140437i
\(131\) −7.18594 15.4103i −0.627838 1.34640i −0.920708 0.390252i \(-0.872388\pi\)
0.292870 0.956152i \(-0.405390\pi\)
\(132\) 0 0
\(133\) 3.81346 + 0.333634i 0.330669 + 0.0289298i
\(134\) 2.20705 + 8.23682i 0.190660 + 0.711553i
\(135\) 0 0
\(136\) −1.37160 + 0.241851i −0.117614 + 0.0207385i
\(137\) −7.25301 + 4.18752i −0.619666 + 0.357764i −0.776739 0.629823i \(-0.783128\pi\)
0.157073 + 0.987587i \(0.449794\pi\)
\(138\) 0 0
\(139\) −2.79536 + 7.68019i −0.237099 + 0.651425i 0.762889 + 0.646530i \(0.223780\pi\)
−0.999988 + 0.00489532i \(0.998442\pi\)
\(140\) 0.504331 1.88219i 0.0426238 0.159074i
\(141\) 0 0
\(142\) −0.545406 + 0.545406i −0.0457695 + 0.0457695i
\(143\) 0.0144917 + 0.165641i 0.00121185 + 0.0138516i
\(144\) 0 0
\(145\) 1.05705 5.99482i 0.0877831 0.497843i
\(146\) −7.67241 5.37228i −0.634973 0.444613i
\(147\) 0 0
\(148\) −1.25534 5.95182i −0.103189 0.489236i
\(149\) 10.1731i 0.833417i −0.909040 0.416708i \(-0.863184\pi\)
0.909040 0.416708i \(-0.136816\pi\)
\(150\) 0 0
\(151\) 16.5269 + 2.91414i 1.34494 + 0.237149i 0.799332 0.600890i \(-0.205187\pi\)
0.545609 + 0.838040i \(0.316298\pi\)
\(152\) −1.33068 + 0.484329i −0.107933 + 0.0392843i
\(153\) 0 0
\(154\) 8.20663 + 8.20663i 0.661309 + 0.661309i
\(155\) 2.09684 2.49891i 0.168422 0.200717i
\(156\) 0 0
\(157\) 22.5615 + 8.21170i 1.80060 + 0.655365i 0.998290 + 0.0584573i \(0.0186182\pi\)
0.802310 + 0.596907i \(0.203604\pi\)
\(158\) 1.23237 + 0.711508i 0.0980420 + 0.0566046i
\(159\) 0 0
\(160\) 0.125171 + 0.709880i 0.00989564 + 0.0561209i
\(161\) 5.37600 11.5289i 0.423689 0.908603i
\(162\) 0 0
\(163\) 0.660979 7.55502i 0.0517718 0.591755i −0.925356 0.379100i \(-0.876234\pi\)
0.977127 0.212655i \(-0.0682109\pi\)
\(164\) 5.76566 + 6.87125i 0.450222 + 0.536554i
\(165\) 0 0
\(166\) −4.76895 6.81077i −0.370142 0.528618i
\(167\) 12.3723 + 17.6695i 0.957398 + 1.36731i 0.929951 + 0.367683i \(0.119849\pi\)
0.0274467 + 0.999623i \(0.491262\pi\)
\(168\) 0 0
\(169\) −8.35527 9.95743i −0.642713 0.765956i
\(170\) −0.0874997 + 1.00013i −0.00671092 + 0.0767062i
\(171\) 0 0
\(172\) −0.402560 + 0.863293i −0.0306949 + 0.0658255i
\(173\) 0.812529 + 4.60808i 0.0617755 + 0.350346i 0.999991 + 0.00429404i \(0.00136684\pi\)
−0.938215 + 0.346052i \(0.887522\pi\)
\(174\) 0 0
\(175\) 10.4890 + 6.05582i 0.792893 + 0.457777i
\(176\) −4.03440 1.46840i −0.304105 0.110685i
\(177\) 0 0
\(178\) 6.89115 8.21255i 0.516514 0.615557i
\(179\) 18.2887 + 18.2887i 1.36696 + 1.36696i 0.864737 + 0.502225i \(0.167485\pi\)
0.502225 + 0.864737i \(0.332515\pi\)
\(180\) 0 0
\(181\) −2.37927 + 0.865985i −0.176850 + 0.0643681i −0.428928 0.903339i \(-0.641108\pi\)
0.252078 + 0.967707i \(0.418886\pi\)
\(182\) 0.103102 + 0.0181796i 0.00764242 + 0.00134756i
\(183\) 0 0
\(184\) 4.70571i 0.346910i
\(185\) −4.37827 0.236342i −0.321897 0.0173762i
\(186\) 0 0
\(187\) −4.89819 3.42975i −0.358191 0.250808i
\(188\) 0.409925 2.32480i 0.0298969 0.169553i
\(189\) 0 0
\(190\) 0.0889648 + 1.01687i 0.00645418 + 0.0737717i
\(191\) −0.163885 + 0.163885i −0.0118583 + 0.0118583i −0.713011 0.701153i \(-0.752669\pi\)
0.701153 + 0.713011i \(0.252669\pi\)
\(192\) 0 0
\(193\) −4.08217 + 15.2349i −0.293841 + 1.09663i 0.648292 + 0.761392i \(0.275484\pi\)
−0.942133 + 0.335239i \(0.891183\pi\)
\(194\) 1.01680 2.79362i 0.0730017 0.200571i
\(195\) 0 0
\(196\) 0.266351 0.153778i 0.0190251 0.0109841i
\(197\) −0.409273 + 0.0721659i −0.0291595 + 0.00514161i −0.188209 0.982129i \(-0.560268\pi\)
0.159049 + 0.987271i \(0.449157\pi\)
\(198\) 0 0
\(199\) −0.265434 0.990613i −0.0188161 0.0702227i 0.955879 0.293759i \(-0.0949064\pi\)
−0.974696 + 0.223537i \(0.928240\pi\)
\(200\) −4.46335 0.390493i −0.315607 0.0276120i
\(201\) 0 0
\(202\) −2.83717 6.08434i −0.199623 0.428092i
\(203\) 18.7000 13.0939i 1.31248 0.919011i
\(204\) 0 0
\(205\) 5.85991 2.73252i 0.409274 0.190847i
\(206\) −7.60502 + 6.38137i −0.529867 + 0.444611i
\(207\) 0 0
\(208\) −0.0374087 + 0.0100236i −0.00259383 + 0.000695014i
\(209\) −5.51008 2.56939i −0.381140 0.177729i
\(210\) 0 0
\(211\) −5.73085 9.92613i −0.394528 0.683343i 0.598513 0.801113i \(-0.295759\pi\)
−0.993041 + 0.117771i \(0.962425\pi\)
\(212\) −0.299828 + 0.519318i −0.0205923 + 0.0356669i
\(213\) 0 0
\(214\) 8.99550 + 2.41034i 0.614920 + 0.164767i
\(215\) 0.525981 + 0.441350i 0.0358716 + 0.0300998i
\(216\) 0 0
\(217\) 12.1869 1.06622i 0.827301 0.0723795i
\(218\) 3.53726 + 9.71854i 0.239573 + 0.658222i
\(219\) 0 0
\(220\) −1.77508 + 2.53508i −0.119676 + 0.170915i
\(221\) −0.0539394 −0.00362836
\(222\) 0 0
\(223\) −3.10179 −0.207711 −0.103856 0.994592i \(-0.533118\pi\)
−0.103856 + 0.994592i \(0.533118\pi\)
\(224\) −1.55052 + 2.21437i −0.103598 + 0.147954i
\(225\) 0 0
\(226\) 1.08743 + 2.98769i 0.0723348 + 0.198738i
\(227\) −4.72486 + 0.413372i −0.313600 + 0.0274365i −0.242869 0.970059i \(-0.578089\pi\)
−0.0707307 + 0.997495i \(0.522533\pi\)
\(228\) 0 0
\(229\) −19.3753 16.2578i −1.28035 1.07434i −0.993195 0.116461i \(-0.962845\pi\)
−0.287158 0.957883i \(-0.592711\pi\)
\(230\) 3.27644 + 0.877920i 0.216042 + 0.0578883i
\(231\) 0 0
\(232\) −4.22242 + 7.31344i −0.277215 + 0.480151i
\(233\) −5.20016 9.00695i −0.340674 0.590065i 0.643884 0.765123i \(-0.277322\pi\)
−0.984558 + 0.175058i \(0.943989\pi\)
\(234\) 0 0
\(235\) −1.54221 0.719144i −0.100603 0.0469118i
\(236\) −3.03470 + 0.813146i −0.197542 + 0.0529313i
\(237\) 0 0
\(238\) −2.88415 + 2.42009i −0.186951 + 0.156871i
\(239\) 11.3149 5.27620i 0.731897 0.341289i −0.0206863 0.999786i \(-0.506585\pi\)
0.752584 + 0.658497i \(0.228807\pi\)
\(240\) 0 0
\(241\) −7.21834 + 5.05434i −0.464974 + 0.325578i −0.782478 0.622679i \(-0.786044\pi\)
0.317503 + 0.948257i \(0.397155\pi\)
\(242\) −3.14116 6.73624i −0.201921 0.433022i
\(243\) 0 0
\(244\) 11.1659 + 0.976887i 0.714821 + 0.0625388i
\(245\) −0.0573792 0.214142i −0.00366582 0.0136810i
\(246\) 0 0
\(247\) −0.0540094 + 0.00952331i −0.00343653 + 0.000605954i
\(248\) −3.91917 + 2.26273i −0.248867 + 0.143684i
\(249\) 0 0
\(250\) −2.33729 + 6.42164i −0.147823 + 0.406140i
\(251\) 2.12374 7.92590i 0.134049 0.500279i −0.865951 0.500129i \(-0.833286\pi\)
1.00000 0.000149336i \(-4.75350e-5\pi\)
\(252\) 0 0
\(253\) −14.2858 + 14.2858i −0.898139 + 0.898139i
\(254\) 1.51028 + 17.2626i 0.0947636 + 1.08315i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) −6.57242 4.60206i −0.409976 0.287068i 0.350339 0.936623i \(-0.386067\pi\)
−0.760315 + 0.649555i \(0.774955\pi\)
\(258\) 0 0
\(259\) −10.9835 12.2369i −0.682481 0.760366i
\(260\) 0.0279166i 0.00173131i
\(261\) 0 0
\(262\) 16.7451 + 2.95261i 1.03451 + 0.182413i
\(263\) −18.2632 + 6.64726i −1.12616 + 0.409888i −0.836896 0.547363i \(-0.815632\pi\)
−0.289261 + 0.957250i \(0.593410\pi\)
\(264\) 0 0
\(265\) 0.305648 + 0.305648i 0.0187758 + 0.0187758i
\(266\) −2.46061 + 2.93244i −0.150870 + 0.179799i
\(267\) 0 0
\(268\) −8.01312 2.91654i −0.489479 0.178156i
\(269\) −17.0791 9.86062i −1.04133 0.601212i −0.121121 0.992638i \(-0.538649\pi\)
−0.920210 + 0.391425i \(0.871982\pi\)
\(270\) 0 0
\(271\) −4.40413 24.9771i −0.267532 1.51725i −0.761727 0.647898i \(-0.775648\pi\)
0.494195 0.869351i \(-0.335463\pi\)
\(272\) 0.588607 1.26227i 0.0356895 0.0765365i
\(273\) 0 0
\(274\) 0.729934 8.34318i 0.0440969 0.504030i
\(275\) −12.3645 14.7355i −0.745610 0.888583i
\(276\) 0 0
\(277\) −3.96790 5.66675i −0.238408 0.340482i 0.682063 0.731294i \(-0.261083\pi\)
−0.920471 + 0.390812i \(0.872194\pi\)
\(278\) −4.68789 6.69500i −0.281161 0.401540i
\(279\) 0 0
\(280\) 1.25253 + 1.49270i 0.0748528 + 0.0892061i
\(281\) −0.564702 + 6.45458i −0.0336873 + 0.385048i 0.960571 + 0.278037i \(0.0896836\pi\)
−0.994258 + 0.107011i \(0.965872\pi\)
\(282\) 0 0
\(283\) −10.1227 + 21.7081i −0.601729 + 1.29041i 0.335612 + 0.942000i \(0.391057\pi\)
−0.937341 + 0.348413i \(0.886721\pi\)
\(284\) −0.133939 0.759603i −0.00794779 0.0450742i
\(285\) 0 0
\(286\) −0.143997 0.0831366i −0.00851471 0.00491597i
\(287\) 22.7852 + 8.29315i 1.34497 + 0.489529i
\(288\) 0 0
\(289\) −9.68052 + 11.5368i −0.569442 + 0.678635i
\(290\) 4.30437 + 4.30437i 0.252761 + 0.252761i
\(291\) 0 0
\(292\) 8.80143 3.20346i 0.515064 0.187468i
\(293\) 13.7242 + 2.41994i 0.801775 + 0.141375i 0.559497 0.828832i \(-0.310994\pi\)
0.242278 + 0.970207i \(0.422105\pi\)
\(294\) 0 0
\(295\) 2.26467i 0.131854i
\(296\) 5.59548 + 2.38550i 0.325231 + 0.138655i
\(297\) 0 0
\(298\) 8.33335 + 5.83508i 0.482738 + 0.338017i
\(299\) −0.0316464 + 0.179476i −0.00183016 + 0.0103793i
\(300\) 0 0
\(301\) 0.224421 + 2.56515i 0.0129354 + 0.147853i
\(302\) −11.8666 + 11.8666i −0.682844 + 0.682844i
\(303\) 0 0
\(304\) 0.366509 1.36783i 0.0210207 0.0784505i
\(305\) 2.76333 7.59220i 0.158228 0.434728i
\(306\) 0 0
\(307\) 14.6235 8.44288i 0.834607 0.481860i −0.0208206 0.999783i \(-0.506628\pi\)
0.855427 + 0.517923i \(0.173295\pi\)
\(308\) −11.4296 + 2.01535i −0.651262 + 0.114835i
\(309\) 0 0
\(310\) 0.844293 + 3.15094i 0.0479526 + 0.178962i
\(311\) 8.86433 + 0.775528i 0.502650 + 0.0439762i 0.335662 0.941983i \(-0.391040\pi\)
0.166988 + 0.985959i \(0.446596\pi\)
\(312\) 0 0
\(313\) −8.21984 17.6275i −0.464613 0.996365i −0.989411 0.145139i \(-0.953637\pi\)
0.524799 0.851226i \(-0.324141\pi\)
\(314\) −19.6673 + 13.7712i −1.10989 + 0.777155i
\(315\) 0 0
\(316\) −1.28969 + 0.601393i −0.0725508 + 0.0338310i
\(317\) −17.2721 + 14.4930i −0.970100 + 0.814011i −0.982566 0.185912i \(-0.940476\pi\)
0.0124662 + 0.999922i \(0.496032\pi\)
\(318\) 0 0
\(319\) −35.0210 + 9.38385i −1.96080 + 0.525395i
\(320\) −0.653295 0.304636i −0.0365203 0.0170297i
\(321\) 0 0
\(322\) 6.36036 + 11.0165i 0.354449 + 0.613923i
\(323\) 0.986134 1.70803i 0.0548700 0.0950376i
\(324\) 0 0
\(325\) −0.167606 0.0449099i −0.00929711 0.00249115i
\(326\) 5.80959 + 4.87482i 0.321763 + 0.269992i
\(327\) 0 0
\(328\) −8.93564 + 0.781767i −0.493388 + 0.0431659i
\(329\) −2.18259 5.99661i −0.120330 0.330604i
\(330\) 0 0
\(331\) −4.31602 + 6.16391i −0.237230 + 0.338799i −0.920060 0.391778i \(-0.871860\pi\)
0.682830 + 0.730577i \(0.260749\pi\)
\(332\) 8.31441 0.456313
\(333\) 0 0
\(334\) −21.5705 −1.18028
\(335\) −3.52566 + 5.03517i −0.192627 + 0.275100i
\(336\) 0 0
\(337\) −3.76826 10.3532i −0.205270 0.563976i 0.793749 0.608245i \(-0.208126\pi\)
−0.999020 + 0.0442695i \(0.985904\pi\)
\(338\) 12.9490 1.13289i 0.704335 0.0616213i
\(339\) 0 0
\(340\) −0.769068 0.645324i −0.0417086 0.0349976i
\(341\) −18.7672 5.02867i −1.01630 0.272318i
\(342\) 0 0
\(343\) −9.04567 + 15.6676i −0.488420 + 0.845969i
\(344\) −0.476269 0.824922i −0.0256787 0.0444768i
\(345\) 0 0
\(346\) −4.24077 1.97750i −0.227985 0.106311i
\(347\) 19.7758 5.29892i 1.06162 0.284461i 0.314576 0.949232i \(-0.398138\pi\)
0.747047 + 0.664772i \(0.231471\pi\)
\(348\) 0 0
\(349\) −20.4583 + 17.1665i −1.09511 + 0.918903i −0.997086 0.0762816i \(-0.975695\pi\)
−0.0980196 + 0.995184i \(0.531251\pi\)
\(350\) −10.9769 + 5.11860i −0.586739 + 0.273601i
\(351\) 0 0
\(352\) 3.51688 2.46255i 0.187451 0.131254i
\(353\) 1.23427 + 2.64689i 0.0656933 + 0.140880i 0.936413 0.350900i \(-0.114124\pi\)
−0.870720 + 0.491780i \(0.836347\pi\)
\(354\) 0 0
\(355\) −0.553877 0.0484579i −0.0293967 0.00257188i
\(356\) 2.77473 + 10.3554i 0.147060 + 0.548837i
\(357\) 0 0
\(358\) −25.4712 + 4.49126i −1.34619 + 0.237370i
\(359\) 26.8112 15.4795i 1.41504 0.816975i 0.419184 0.907901i \(-0.362316\pi\)
0.995858 + 0.0909267i \(0.0289829\pi\)
\(360\) 0 0
\(361\) −5.81253 + 15.9698i −0.305923 + 0.840516i
\(362\) 0.655322 2.44570i 0.0344430 0.128543i
\(363\) 0 0
\(364\) −0.0740287 + 0.0740287i −0.00388016 + 0.00388016i
\(365\) −0.588433 6.72581i −0.0308000 0.352045i
\(366\) 0 0
\(367\) 1.71660 9.73534i 0.0896059 0.508180i −0.906661 0.421859i \(-0.861378\pi\)
0.996267 0.0863214i \(-0.0275112\pi\)
\(368\) −3.85469 2.69909i −0.200940 0.140700i
\(369\) 0 0
\(370\) 2.70487 3.45091i 0.140620 0.179404i
\(371\) 1.62102i 0.0841592i
\(372\) 0 0
\(373\) 3.04917 + 0.537652i 0.157880 + 0.0278386i 0.252030 0.967720i \(-0.418902\pi\)
−0.0941493 + 0.995558i \(0.530013\pi\)
\(374\) 5.61897 2.04514i 0.290550 0.105752i
\(375\) 0 0
\(376\) 1.66924 + 1.66924i 0.0860846 + 0.0860846i
\(377\) −0.210227 + 0.250538i −0.0108272 + 0.0129034i
\(378\) 0 0
\(379\) −25.9424 9.44226i −1.33257 0.485016i −0.425106 0.905144i \(-0.639763\pi\)
−0.907465 + 0.420127i \(0.861985\pi\)
\(380\) −0.884001 0.510378i −0.0453483 0.0261819i
\(381\) 0 0
\(382\) −0.0402462 0.228247i −0.00205917 0.0116782i
\(383\) −4.97953 + 10.6786i −0.254442 + 0.545653i −0.991489 0.130189i \(-0.958442\pi\)
0.737047 + 0.675841i \(0.236219\pi\)
\(384\) 0 0
\(385\) −0.729137 + 8.33407i −0.0371603 + 0.424744i
\(386\) −10.1382 12.0823i −0.516023 0.614972i
\(387\) 0 0
\(388\) 1.70519 + 2.43527i 0.0865680 + 0.123632i
\(389\) 13.8852 + 19.8301i 0.704006 + 1.00543i 0.998757 + 0.0498511i \(0.0158747\pi\)
−0.294750 + 0.955574i \(0.595236\pi\)
\(390\) 0 0
\(391\) −4.21279 5.02061i −0.213050 0.253903i
\(392\) −0.0268053 + 0.306386i −0.00135387 + 0.0154748i
\(393\) 0 0
\(394\) 0.175635 0.376650i 0.00884835 0.0189753i
\(395\) 0.178120 + 1.01017i 0.00896221 + 0.0508272i
\(396\) 0 0
\(397\) −12.1780 7.03099i −0.611198 0.352875i 0.162236 0.986752i \(-0.448129\pi\)
−0.773434 + 0.633877i \(0.781463\pi\)
\(398\) 0.963709 + 0.350761i 0.0483064 + 0.0175821i
\(399\) 0 0
\(400\) 2.87995 3.43219i 0.143997 0.171609i
\(401\) 12.7350 + 12.7350i 0.635955 + 0.635955i 0.949555 0.313600i \(-0.101535\pi\)
−0.313600 + 0.949555i \(0.601535\pi\)
\(402\) 0 0
\(403\) −0.164694 + 0.0599437i −0.00820400 + 0.00298601i
\(404\) 6.61133 + 1.16576i 0.328926 + 0.0579985i
\(405\) 0 0
\(406\) 22.8285i 1.13296i
\(407\) 9.74496 + 24.2290i 0.483040 + 1.20099i
\(408\) 0 0
\(409\) 19.7209 + 13.8087i 0.975135 + 0.682797i 0.948476 0.316848i \(-0.102624\pi\)
0.0266586 + 0.999645i \(0.491513\pi\)
\(410\) −1.12276 + 6.36746i −0.0554489 + 0.314467i
\(411\) 0 0
\(412\) −0.865251 9.88987i −0.0426279 0.487239i
\(413\) −6.00542 + 6.00542i −0.295507 + 0.295507i
\(414\) 0 0
\(415\) 1.55118 5.78907i 0.0761443 0.284174i
\(416\) 0.0132459 0.0363927i 0.000649432 0.00178430i
\(417\) 0 0
\(418\) 5.26518 3.03985i 0.257528 0.148684i
\(419\) −4.19000 + 0.738811i −0.204695 + 0.0360933i −0.275055 0.961428i \(-0.588696\pi\)
0.0703603 + 0.997522i \(0.477585\pi\)
\(420\) 0 0
\(421\) 2.60289 + 9.71413i 0.126857 + 0.473438i 0.999899 0.0142075i \(-0.00452255\pi\)
−0.873042 + 0.487645i \(0.837856\pi\)
\(422\) 11.4181 + 0.998953i 0.555824 + 0.0486283i
\(423\) 0 0
\(424\) −0.253426 0.543474i −0.0123074 0.0263934i
\(425\) 5.11162 3.57920i 0.247950 0.173617i
\(426\) 0 0
\(427\) 27.4606 12.8051i 1.32891 0.619682i
\(428\) −7.13404 + 5.98617i −0.344837 + 0.289352i
\(429\) 0 0
\(430\) −0.663223 + 0.177710i −0.0319835 + 0.00856994i
\(431\) −10.0279 4.67606i −0.483025 0.225238i 0.165824 0.986155i \(-0.446972\pi\)
−0.648849 + 0.760917i \(0.724749\pi\)
\(432\) 0 0
\(433\) −8.87524 15.3724i −0.426517 0.738748i 0.570044 0.821614i \(-0.306926\pi\)
−0.996561 + 0.0828656i \(0.973593\pi\)
\(434\) −6.11673 + 10.5945i −0.293613 + 0.508552i
\(435\) 0 0
\(436\) −9.98985 2.67677i −0.478427 0.128194i
\(437\) −5.10467 4.28333i −0.244190 0.204899i
\(438\) 0 0
\(439\) 10.2965 0.900824i 0.491424 0.0429940i 0.161249 0.986914i \(-0.448448\pi\)
0.330175 + 0.943920i \(0.392892\pi\)
\(440\) −1.05847 2.90812i −0.0504606 0.138639i
\(441\) 0 0
\(442\) 0.0309384 0.0441846i 0.00147159 0.00210165i
\(443\) 19.7759 0.939580 0.469790 0.882778i \(-0.344330\pi\)
0.469790 + 0.882778i \(0.344330\pi\)
\(444\) 0 0
\(445\) 7.72783 0.366334
\(446\) 1.77911 2.54084i 0.0842434 0.120312i
\(447\) 0 0
\(448\) −0.924566 2.54022i −0.0436816 0.120014i
\(449\) −17.1146 + 1.49733i −0.807686 + 0.0706633i −0.483516 0.875336i \(-0.660640\pi\)
−0.324170 + 0.945999i \(0.605085\pi\)
\(450\) 0 0
\(451\) −29.5005 24.7538i −1.38912 1.16561i
\(452\) −3.07110 0.822898i −0.144452 0.0387058i
\(453\) 0 0
\(454\) 2.37146 4.10748i 0.111298 0.192774i
\(455\) 0.0377327 + 0.0653550i 0.00176894 + 0.00306389i
\(456\) 0 0
\(457\) 36.0382 + 16.8049i 1.68579 + 0.786099i 0.998198 + 0.0600060i \(0.0191120\pi\)
0.687597 + 0.726093i \(0.258666\pi\)
\(458\) 24.4308 6.54621i 1.14158 0.305884i
\(459\) 0 0
\(460\) −2.59844 + 2.18035i −0.121153 + 0.101659i
\(461\) −37.4798 + 17.4771i −1.74561 + 0.813991i −0.758959 + 0.651138i \(0.774292\pi\)
−0.986650 + 0.162853i \(0.947930\pi\)
\(462\) 0 0
\(463\) 31.8270 22.2855i 1.47913 1.03570i 0.492939 0.870064i \(-0.335922\pi\)
0.986188 0.165632i \(-0.0529665\pi\)
\(464\) −3.56894 7.65362i −0.165684 0.355310i
\(465\) 0 0
\(466\) 10.3608 + 0.906448i 0.479953 + 0.0419904i
\(467\) −5.38963 20.1144i −0.249403 0.930783i −0.971119 0.238594i \(-0.923313\pi\)
0.721717 0.692188i \(-0.243353\pi\)
\(468\) 0 0
\(469\) −22.7014 + 4.00288i −1.04825 + 0.184836i
\(470\) 1.47366 0.850820i 0.0679750 0.0392454i
\(471\) 0 0
\(472\) 1.07454 2.95228i 0.0494599 0.135890i
\(473\) 1.05845 3.95021i 0.0486678 0.181631i
\(474\) 0 0
\(475\) 4.48633 4.48633i 0.205847 0.205847i
\(476\) −0.328140 3.75066i −0.0150403 0.171911i
\(477\) 0 0
\(478\) −2.16792 + 12.2949i −0.0991584 + 0.562355i
\(479\) 16.4408 + 11.5120i 0.751201 + 0.525996i 0.885328 0.464968i \(-0.153934\pi\)
−0.134127 + 0.990964i \(0.542823\pi\)
\(480\) 0 0
\(481\) 0.197369 + 0.128613i 0.00899923 + 0.00586426i
\(482\) 8.81197i 0.401374i
\(483\) 0 0
\(484\) 7.31970 + 1.29066i 0.332714 + 0.0586664i
\(485\) 2.01373 0.732938i 0.0914388 0.0332810i
\(486\) 0 0
\(487\) 10.4440 + 10.4440i 0.473261 + 0.473261i 0.902968 0.429708i \(-0.141383\pi\)
−0.429708 + 0.902968i \(0.641383\pi\)
\(488\) −7.20470 + 8.58622i −0.326141 + 0.388680i
\(489\) 0 0
\(490\) 0.208326 + 0.0758245i 0.00941121 + 0.00342540i
\(491\) −19.9822 11.5367i −0.901785 0.520646i −0.0240064 0.999712i \(-0.507642\pi\)
−0.877779 + 0.479066i \(0.840976\pi\)
\(492\) 0 0
\(493\) −2.04239 11.5830i −0.0919846 0.521671i
\(494\) 0.0231775 0.0497042i 0.00104280 0.00223630i
\(495\) 0 0
\(496\) 0.394420 4.50825i 0.0177100 0.202426i
\(497\) −1.34026 1.59726i −0.0601189 0.0716469i
\(498\) 0 0
\(499\) 9.48381 + 13.5443i 0.424554 + 0.606326i 0.973265 0.229687i \(-0.0737701\pi\)
−0.548711 + 0.836012i \(0.684881\pi\)
\(500\) −3.91969 5.59790i −0.175294 0.250345i
\(501\) 0 0
\(502\) 5.27439 + 6.28578i 0.235408 + 0.280548i
\(503\) −3.72021 + 42.5222i −0.165876 + 1.89597i 0.223210 + 0.974770i \(0.428346\pi\)
−0.389086 + 0.921201i \(0.627209\pi\)
\(504\) 0 0
\(505\) 2.04512 4.38578i 0.0910067 0.195165i
\(506\) −3.50824 19.8962i −0.155960 0.884494i
\(507\) 0 0
\(508\) −15.0070 8.66428i −0.665827 0.384415i
\(509\) 18.5564 + 6.75400i 0.822500 + 0.299366i 0.718777 0.695241i \(-0.244702\pi\)
0.103723 + 0.994606i \(0.466924\pi\)
\(510\) 0 0
\(511\) 16.2750 19.3958i 0.719963 0.858019i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 7.53957 2.74418i 0.332556 0.121041i
\(515\) −7.04744 1.24265i −0.310547 0.0547578i
\(516\) 0 0
\(517\) 10.1351i 0.445741i
\(518\) 16.3238 1.97833i 0.717226 0.0869226i
\(519\) 0 0
\(520\) −0.0228679 0.0160123i −0.00100283 0.000702186i
\(521\) 4.14458 23.5051i 0.181577 1.02978i −0.748697 0.662912i \(-0.769320\pi\)
0.930275 0.366864i \(-0.119569\pi\)
\(522\) 0 0
\(523\) −2.11764 24.2048i −0.0925981 1.05840i −0.890308 0.455360i \(-0.849511\pi\)
0.797709 0.603042i \(-0.206045\pi\)
\(524\) −12.0232 + 12.0232i −0.525236 + 0.525236i
\(525\) 0 0
\(526\) 5.03022 18.7730i 0.219328 0.818544i
\(527\) 2.15572 5.92279i 0.0939046 0.258001i
\(528\) 0 0
\(529\) 0.741561 0.428140i 0.0322418 0.0186148i
\(530\) −0.425684 + 0.0750596i −0.0184905 + 0.00326038i
\(531\) 0 0
\(532\) −0.990766 3.69759i −0.0429551 0.160311i
\(533\) −0.346063 0.0302766i −0.0149896 0.00131142i
\(534\) 0 0
\(535\) 2.83703 + 6.08402i 0.122655 + 0.263035i
\(536\) 6.98522 4.89111i 0.301716 0.211264i
\(537\) 0 0
\(538\) 17.8735 8.33455i 0.770582 0.359328i
\(539\) −1.01151 + 0.848761i −0.0435690 + 0.0365587i
\(540\) 0 0
\(541\) −18.3170 + 4.90803i −0.787510 + 0.211013i −0.630093 0.776520i \(-0.716983\pi\)
−0.157417 + 0.987532i \(0.550317\pi\)
\(542\) 22.9861 + 10.7186i 0.987338 + 0.460403i
\(543\) 0 0
\(544\) 0.696381 + 1.20617i 0.0298571 + 0.0517140i
\(545\) −3.72751 + 6.45623i −0.159669 + 0.276555i
\(546\) 0 0
\(547\) 17.5071 + 4.69100i 0.748548 + 0.200573i 0.612874 0.790181i \(-0.290013\pi\)
0.135674 + 0.990754i \(0.456680\pi\)
\(548\) 6.41566 + 5.38338i 0.274063 + 0.229967i
\(549\) 0 0
\(550\) 19.1626 1.67651i 0.817097 0.0714867i
\(551\) −4.09008 11.2374i −0.174243 0.478729i
\(552\) 0 0
\(553\) −2.20642 + 3.15109i −0.0938264 + 0.133998i
\(554\) 6.91782 0.293910
\(555\) 0 0
\(556\) 8.17309 0.346616
\(557\) 7.83666 11.1919i 0.332050 0.474216i −0.618060 0.786131i \(-0.712081\pi\)
0.950110 + 0.311914i \(0.100970\pi\)
\(558\) 0 0
\(559\) −0.0126172 0.0346655i −0.000533651 0.00146619i
\(560\) −1.94117 + 0.169830i −0.0820294 + 0.00717665i
\(561\) 0 0
\(562\) −4.96338 4.16477i −0.209368 0.175680i
\(563\) −8.05397 2.15805i −0.339434 0.0909512i 0.0850754 0.996375i \(-0.472887\pi\)
−0.424510 + 0.905423i \(0.639554\pi\)
\(564\) 0 0
\(565\) −1.14592 + 1.98479i −0.0482091 + 0.0835006i
\(566\) −11.9761 20.7433i −0.503394 0.871904i
\(567\) 0 0
\(568\) 0.699054 + 0.325974i 0.0293317 + 0.0136776i
\(569\) 40.1145 10.7487i 1.68169 0.450607i 0.713465 0.700691i \(-0.247125\pi\)
0.968224 + 0.250084i \(0.0804582\pi\)
\(570\) 0 0
\(571\) −27.7990 + 23.3261i −1.16335 + 0.976168i −0.999946 0.0103904i \(-0.996693\pi\)
−0.163406 + 0.986559i \(0.552248\pi\)
\(572\) 0.150695 0.0702701i 0.00630086 0.00293814i
\(573\) 0 0
\(574\) −19.8624 + 13.9078i −0.829041 + 0.580501i
\(575\) −8.91026 19.1081i −0.371584 0.796864i
\(576\) 0 0
\(577\) 43.0103 + 3.76291i 1.79054 + 0.156652i 0.933495 0.358590i \(-0.116742\pi\)
0.857045 + 0.515241i \(0.172298\pi\)
\(578\) −3.89787 14.5470i −0.162130 0.605077i
\(579\) 0 0
\(580\) −5.99482 + 1.05705i −0.248921 + 0.0438916i
\(581\) 19.4647 11.2380i 0.807533 0.466229i
\(582\) 0 0
\(583\) 0.880538 2.41926i 0.0364681 0.100195i
\(584\) −2.42417 + 9.04713i −0.100313 + 0.374373i
\(585\) 0 0
\(586\) −9.85416 + 9.85416i −0.407072 + 0.407072i
\(587\) −3.51806 40.2116i −0.145206 1.65971i −0.623734 0.781636i \(-0.714385\pi\)
0.478529 0.878072i \(-0.341170\pi\)
\(588\) 0 0
\(589\) 1.11281 6.31108i 0.0458527 0.260043i
\(590\) −1.85511 1.29896i −0.0763738 0.0534775i
\(591\) 0 0
\(592\) −5.16352 + 3.21528i −0.212220 + 0.132147i
\(593\) 34.1575i 1.40268i 0.712827 + 0.701340i \(0.247415\pi\)
−0.712827 + 0.701340i \(0.752585\pi\)
\(594\) 0 0
\(595\) −2.67269 0.471267i −0.109570 0.0193201i
\(596\) −9.55963 + 3.47942i −0.391578 + 0.142523i
\(597\) 0 0
\(598\) −0.128866 0.128866i −0.00526973 0.00526973i
\(599\) −22.3960 + 26.6906i −0.915078 + 1.09055i 0.0805140 + 0.996753i \(0.474344\pi\)
−0.995592 + 0.0937937i \(0.970101\pi\)
\(600\) 0 0
\(601\) 32.7398 + 11.9163i 1.33549 + 0.486077i 0.908388 0.418129i \(-0.137314\pi\)
0.427098 + 0.904206i \(0.359536\pi\)
\(602\) −2.22997 1.28747i −0.0908868 0.0524735i
\(603\) 0 0
\(604\) −2.91414 16.5269i −0.118575 0.672471i
\(605\) 2.26425 4.85569i 0.0920547 0.197412i
\(606\) 0 0
\(607\) −2.11297 + 24.1513i −0.0857626 + 0.980271i 0.824397 + 0.566013i \(0.191515\pi\)
−0.910159 + 0.414259i \(0.864041\pi\)
\(608\) 0.910241 + 1.08478i 0.0369151 + 0.0439937i
\(609\) 0 0
\(610\) 4.63418 + 6.61830i 0.187633 + 0.267967i
\(611\) 0.0524390 + 0.0748906i 0.00212145 + 0.00302975i
\(612\) 0 0
\(613\) 8.25283 + 9.83534i 0.333329 + 0.397246i 0.906511 0.422182i \(-0.138736\pi\)
−0.573182 + 0.819428i \(0.694291\pi\)
\(614\) −1.47169 + 16.8215i −0.0593926 + 0.678860i
\(615\) 0 0
\(616\) 4.90487 10.5185i 0.197623 0.423804i
\(617\) 0.996744 + 5.65281i 0.0401274 + 0.227574i 0.998276 0.0586983i \(-0.0186950\pi\)
−0.958148 + 0.286272i \(0.907584\pi\)
\(618\) 0 0
\(619\) 6.45138 + 3.72470i 0.259303 + 0.149709i 0.624016 0.781411i \(-0.285500\pi\)
−0.364714 + 0.931120i \(0.618833\pi\)
\(620\) −3.06537 1.11570i −0.123108 0.0448077i
\(621\) 0 0
\(622\) −5.71965 + 6.81641i −0.229337 + 0.273313i
\(623\) 20.4925 + 20.4925i 0.821015 + 0.821015i
\(624\) 0 0
\(625\) 16.4221 5.97715i 0.656884 0.239086i
\(626\) 19.1543 + 3.37742i 0.765560 + 0.134989i
\(627\) 0 0
\(628\) 24.0094i 0.958079i
\(629\) −8.10554 + 2.46422i −0.323189 + 0.0982548i
\(630\) 0 0
\(631\) 34.6175 + 24.2394i 1.37810 + 0.964955i 0.999219 + 0.0395094i \(0.0125795\pi\)
0.378880 + 0.925446i \(0.376309\pi\)
\(632\) 0.247104 1.40140i 0.00982928 0.0557446i
\(633\) 0 0
\(634\) −1.96512 22.4614i −0.0780447 0.892056i
\(635\) −8.83244 + 8.83244i −0.350505 + 0.350505i
\(636\) 0 0
\(637\) −0.00308283 + 0.0115053i −0.000122146 + 0.000455856i
\(638\) 12.4004 34.0699i 0.490937 1.34884i
\(639\) 0 0
\(640\) 0.624258 0.360415i 0.0246760 0.0142467i
\(641\) 3.53559 0.623420i 0.139647 0.0246236i −0.103387 0.994641i \(-0.532968\pi\)
0.243035 + 0.970018i \(0.421857\pi\)
\(642\) 0 0
\(643\) 10.9454 + 40.8489i 0.431646 + 1.61092i 0.748968 + 0.662606i \(0.230550\pi\)
−0.317322 + 0.948318i \(0.602784\pi\)
\(644\) −12.6723 1.10868i −0.499359 0.0436882i
\(645\) 0 0
\(646\) 0.833516 + 1.78748i 0.0327943 + 0.0703275i
\(647\) −10.5382 + 7.37894i −0.414300 + 0.290096i −0.762083 0.647479i \(-0.775823\pi\)
0.347783 + 0.937575i \(0.386934\pi\)
\(648\) 0 0
\(649\) 12.2248 5.70051i 0.479865 0.223765i
\(650\) 0.132923 0.111536i 0.00521367 0.00437479i
\(651\) 0 0
\(652\) −7.32547 + 1.96285i −0.286887 + 0.0768712i
\(653\) −20.0068 9.32931i −0.782926 0.365084i −0.0103006 0.999947i \(-0.503279\pi\)
−0.772625 + 0.634863i \(0.781057\pi\)
\(654\) 0 0
\(655\) 6.12828 + 10.6145i 0.239452 + 0.414743i
\(656\) 4.48489 7.76805i 0.175105 0.303292i
\(657\) 0 0
\(658\) 6.16402 + 1.65164i 0.240299 + 0.0643878i
\(659\) −4.14058 3.47436i −0.161294 0.135342i 0.558569 0.829458i \(-0.311351\pi\)
−0.719863 + 0.694117i \(0.755795\pi\)
\(660\) 0 0
\(661\) 37.3375 3.26660i 1.45226 0.127056i 0.666461 0.745540i \(-0.267808\pi\)
0.785798 + 0.618484i \(0.212253\pi\)
\(662\) −2.57361 7.07095i −0.100026 0.274820i
\(663\) 0 0
\(664\) −4.76895 + 6.81077i −0.185071 + 0.264309i
\(665\) −2.75936 −0.107003
\(666\) 0 0
\(667\) −39.7390 −1.53870
\(668\) 12.3723 17.6695i 0.478699 0.683653i
\(669\) 0 0
\(670\) −2.10233 5.77610i −0.0812201 0.223150i
\(671\) −47.9387 + 4.19409i −1.85065 + 0.161911i
\(672\) 0 0
\(673\) −32.0178 26.8661i −1.23420 1.03561i −0.997955 0.0639180i \(-0.979640\pi\)
−0.236240 0.971695i \(-0.575915\pi\)
\(674\) 10.6422 + 2.85158i 0.409924 + 0.109839i
\(675\) 0 0
\(676\) −6.49925 + 11.2570i −0.249971 + 0.432963i
\(677\) −19.7100 34.1388i −0.757518 1.31206i −0.944113 0.329623i \(-0.893078\pi\)
0.186594 0.982437i \(-0.440255\pi\)
\(678\) 0 0
\(679\) 7.28356 + 3.39638i 0.279518 + 0.130341i
\(680\) 0.969738 0.259841i 0.0371878 0.00996443i
\(681\) 0 0
\(682\) 14.8837 12.4889i 0.569926 0.478225i
\(683\) 15.4128 7.18709i 0.589753 0.275006i −0.104747 0.994499i \(-0.533403\pi\)
0.694500 + 0.719492i \(0.255626\pi\)
\(684\) 0 0
\(685\) 4.94522 3.46268i 0.188947 0.132302i
\(686\) −7.64573 16.3963i −0.291915 0.626015i
\(687\) 0 0
\(688\) 0.948913 + 0.0830192i 0.0361770 + 0.00316508i
\(689\) −0.00601074 0.0224324i −0.000228991 0.000854606i
\(690\) 0 0
\(691\) 8.02015 1.41417i 0.305101 0.0537975i −0.0190017 0.999819i \(-0.506049\pi\)
0.324103 + 0.946022i \(0.394938\pi\)
\(692\) 4.05228 2.33959i 0.154045 0.0889377i
\(693\) 0 0
\(694\) −7.00233 + 19.2387i −0.265805 + 0.730293i
\(695\) 1.52481 5.69067i 0.0578394 0.215859i
\(696\) 0 0
\(697\) 8.83372 8.83372i 0.334601 0.334601i
\(698\) −2.32761 26.6047i −0.0881015 1.00700i
\(699\) 0 0
\(700\) 2.10317 11.9276i 0.0794922 0.450822i
\(701\) 13.8128 + 9.67182i 0.521702 + 0.365299i 0.804569 0.593860i \(-0.202397\pi\)
−0.282867 + 0.959159i \(0.591285\pi\)
\(702\) 0 0
\(703\) −7.68098 + 3.89849i −0.289694 + 0.147035i
\(704\) 4.29332i 0.161811i
\(705\) 0 0
\(706\) −2.87615 0.507143i −0.108245 0.0190866i
\(707\) 17.0533 6.20691i 0.641357 0.233435i
\(708\) 0 0
\(709\) −11.8507 11.8507i −0.445064 0.445064i 0.448646 0.893710i \(-0.351906\pi\)
−0.893710 + 0.448646i \(0.851906\pi\)
\(710\) 0.357385 0.425915i 0.0134124 0.0159843i
\(711\) 0 0
\(712\) −10.0742 3.66670i −0.377546 0.137416i
\(713\) −18.4425 10.6478i −0.690676 0.398762i
\(714\) 0 0
\(715\) −0.0208126 0.118034i −0.000778347 0.00441422i
\(716\) 10.9307 23.4409i 0.408498 0.876026i
\(717\) 0 0
\(718\) −2.69825 + 30.8411i −0.100698 + 1.15098i
\(719\) −1.15668 1.37848i −0.0431370 0.0514086i 0.744045 0.668130i \(-0.232905\pi\)
−0.787182 + 0.616721i \(0.788461\pi\)
\(720\) 0 0
\(721\) −15.3930 21.9835i −0.573266 0.818708i
\(722\) −9.74776 13.9213i −0.362774 0.518095i
\(723\) 0 0
\(724\) 1.62752 + 1.93960i 0.0604863 + 0.0720847i
\(725\) 3.29765 37.6923i 0.122472 1.39986i
\(726\) 0 0
\(727\) 15.3139 32.8407i 0.567960 1.21800i −0.387224 0.921985i \(-0.626566\pi\)
0.955185 0.296010i \(-0.0956561\pi\)
\(728\) −0.0181796 0.103102i −0.000673782 0.00382121i
\(729\) 0 0
\(730\) 5.84698 + 3.37575i 0.216406 + 0.124942i
\(731\) 1.24665 + 0.453744i 0.0461091 + 0.0167823i
\(732\) 0 0
\(733\) 24.6964 29.4320i 0.912182 1.08710i −0.0837050 0.996491i \(-0.526675\pi\)
0.995887 0.0906055i \(-0.0288802\pi\)
\(734\) 6.99012 + 6.99012i 0.258010 + 0.258010i
\(735\) 0 0
\(736\) 4.42192 1.60945i 0.162994 0.0593250i
\(737\) 36.0546 + 6.35740i 1.32809 + 0.234178i
\(738\) 0 0
\(739\) 45.9953i 1.69196i 0.533211 + 0.845982i \(0.320985\pi\)
−0.533211 + 0.845982i \(0.679015\pi\)
\(740\) 1.27537 + 4.19506i 0.0468835 + 0.154214i
\(741\) 0 0
\(742\) −1.32786 0.929780i −0.0487474 0.0341333i
\(743\) −0.372254 + 2.11116i −0.0136567 + 0.0774508i −0.990874 0.134788i \(-0.956965\pi\)
0.977218 + 0.212239i \(0.0680756\pi\)
\(744\) 0 0
\(745\) 0.639123 + 7.30521i 0.0234157 + 0.267642i
\(746\) −2.18935 + 2.18935i −0.0801579 + 0.0801579i
\(747\) 0 0
\(748\) −1.54763 + 5.77583i −0.0565869 + 0.211185i
\(749\) −8.61032 + 23.6567i −0.314614 + 0.864395i
\(750\) 0 0
\(751\) 23.4439 13.5354i 0.855481 0.493912i −0.00701548 0.999975i \(-0.502233\pi\)
0.862496 + 0.506063i \(0.168900\pi\)
\(752\) −2.32480 + 0.409925i −0.0847767 + 0.0149484i
\(753\) 0 0
\(754\) −0.0846479 0.315910i −0.00308270 0.0115048i
\(755\) −12.0509 1.05431i −0.438576 0.0383704i
\(756\) 0 0
\(757\) −12.5183 26.8457i −0.454987 0.975723i −0.991290 0.131697i \(-0.957957\pi\)
0.536303 0.844026i \(-0.319820\pi\)
\(758\) 22.6146 15.8349i 0.821399 0.575150i
\(759\) 0 0
\(760\) 0.925120 0.431390i 0.0335576 0.0156482i
\(761\) −33.4303 + 28.0514i −1.21185 + 1.01686i −0.212637 + 0.977131i \(0.568205\pi\)
−0.999210 + 0.0397296i \(0.987350\pi\)
\(762\) 0 0
\(763\) −27.0050 + 7.23598i −0.977648 + 0.261960i
\(764\) 0.210054 + 0.0979496i 0.00759947 + 0.00354369i
\(765\) 0 0
\(766\) −5.89128 10.2040i −0.212861 0.368686i
\(767\) 0.0608375 0.105374i 0.00219671 0.00380482i
\(768\) 0 0
\(769\) 16.6847 + 4.47064i 0.601664 + 0.161215i 0.546779 0.837277i \(-0.315854\pi\)
0.0548856 + 0.998493i \(0.482521\pi\)
\(770\) −6.40866 5.37750i −0.230952 0.193792i
\(771\) 0 0
\(772\) 15.7123 1.37465i 0.565498 0.0494746i
\(773\) 3.90275 + 10.7227i 0.140372 + 0.385669i 0.989880 0.141907i \(-0.0453233\pi\)
−0.849508 + 0.527576i \(0.823101\pi\)
\(774\) 0 0
\(775\) 11.6298 16.6091i 0.417754 0.596615i
\(776\) −2.97291 −0.106721
\(777\) 0 0
\(778\) −24.2081 −0.867901
\(779\) 7.28554 10.4048i 0.261031 0.372792i
\(780\) 0 0
\(781\) 1.13261 + 3.11182i 0.0405280 + 0.111350i
\(782\) 6.52900 0.571214i 0.233477 0.0204266i
\(783\) 0 0
\(784\) −0.235602 0.197693i