Properties

Label 666.2.bj.c.613.2
Level $666$
Weight $2$
Character 666.613
Analytic conductor $5.318$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bj (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.2
Root \(0.342020 - 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 666.613
Dual form 666.2.bj.c.289.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.342020 - 0.939693i) q^{2} +(-0.766044 - 0.642788i) q^{4} +(-2.57176 - 0.453471i) q^{5} +(-0.361075 + 2.04776i) q^{7} +(-0.866025 + 0.500000i) q^{8} +O(q^{10})\) \(q+(0.342020 - 0.939693i) q^{2} +(-0.766044 - 0.642788i) q^{4} +(-2.57176 - 0.453471i) q^{5} +(-0.361075 + 2.04776i) q^{7} +(-0.866025 + 0.500000i) q^{8} +(-1.30572 + 2.26157i) q^{10} +(2.99810 + 5.19285i) q^{11} +(2.64632 - 3.15377i) q^{13} +(1.80077 + 1.03967i) q^{14} +(0.173648 + 0.984808i) q^{16} +(0.618710 + 0.737350i) q^{17} +(0.534946 + 1.46975i) q^{19} +(1.67860 + 2.00048i) q^{20} +(5.90509 - 1.04123i) q^{22} +(5.51705 + 3.18527i) q^{23} +(1.70986 + 0.622339i) q^{25} +(-2.05847 - 3.56538i) q^{26} +(1.59287 - 1.33658i) q^{28} +(3.51193 - 2.02761i) q^{29} +3.39997i q^{31} +(0.984808 + 0.173648i) q^{32} +(0.904494 - 0.329209i) q^{34} +(1.85720 - 5.10261i) q^{35} +(6.07068 + 0.383130i) q^{37} +1.56408 q^{38} +(2.45395 - 0.893164i) q^{40} +(-7.94502 - 6.66666i) q^{41} +3.76932i q^{43} +(1.04123 - 5.90509i) q^{44} +(4.88011 - 4.09490i) q^{46} +(-3.08750 + 5.34771i) q^{47} +(2.51491 + 0.915354i) q^{49} +(1.16962 - 1.39389i) q^{50} +(-4.05440 + 0.714901i) q^{52} +(1.39401 + 7.90585i) q^{53} +(-5.35558 - 14.7143i) q^{55} +(-0.711179 - 1.95395i) q^{56} +(-0.704183 - 3.99362i) q^{58} +(-5.02269 + 0.885636i) q^{59} +(-6.25519 + 7.45465i) q^{61} +(3.19493 + 1.16286i) q^{62} +(0.500000 - 0.866025i) q^{64} +(-8.23586 + 6.91071i) q^{65} +(-1.83263 + 10.3934i) q^{67} -0.962542i q^{68} +(-4.15968 - 3.49039i) q^{70} +(10.1503 - 3.69442i) q^{71} +3.55293 q^{73} +(2.43632 - 5.57354i) q^{74} +(0.534946 - 1.46975i) q^{76} +(-11.7162 + 4.26436i) q^{77} +(2.51098 + 0.442753i) q^{79} -2.61144i q^{80} +(-8.98197 + 5.18574i) q^{82} +(-5.29798 + 4.44553i) q^{83} +(-1.25681 - 2.17686i) q^{85} +(3.54200 + 1.28918i) q^{86} +(-5.19285 - 2.99810i) q^{88} +(16.0165 - 2.82414i) q^{89} +(5.50263 + 6.55778i) q^{91} +(-2.17885 - 5.98635i) q^{92} +(3.96922 + 4.73033i) q^{94} +(-0.709264 - 4.02243i) q^{95} +(-14.1175 - 8.15074i) q^{97} +(1.72030 - 2.05018i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{7} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 18 q^{14} - 18 q^{19} - 18 q^{25} - 12 q^{26} - 6 q^{28} - 18 q^{29} + 12 q^{34} - 18 q^{35} + 30 q^{37} + 24 q^{38} + 12 q^{40} - 24 q^{41} - 6 q^{44} + 30 q^{46} - 6 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 6 q^{58} - 36 q^{61} + 6 q^{64} - 36 q^{65} - 30 q^{67} - 12 q^{70} - 12 q^{71} + 48 q^{74} - 18 q^{76} - 12 q^{77} + 6 q^{79} + 48 q^{83} + 18 q^{85} + 36 q^{86} - 36 q^{88} + 18 q^{89} - 6 q^{91} - 18 q^{92} + 36 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.342020 0.939693i 0.241845 0.664463i
\(3\) 0 0
\(4\) −0.766044 0.642788i −0.383022 0.321394i
\(5\) −2.57176 0.453471i −1.15013 0.202798i −0.434096 0.900867i \(-0.642932\pi\)
−0.716031 + 0.698068i \(0.754043\pi\)
\(6\) 0 0
\(7\) −0.361075 + 2.04776i −0.136473 + 0.773979i 0.837349 + 0.546669i \(0.184104\pi\)
−0.973822 + 0.227311i \(0.927007\pi\)
\(8\) −0.866025 + 0.500000i −0.306186 + 0.176777i
\(9\) 0 0
\(10\) −1.30572 + 2.26157i −0.412904 + 0.715171i
\(11\) 2.99810 + 5.19285i 0.903960 + 1.56570i 0.822308 + 0.569043i \(0.192686\pi\)
0.0816522 + 0.996661i \(0.473980\pi\)
\(12\) 0 0
\(13\) 2.64632 3.15377i 0.733958 0.874697i −0.261949 0.965082i \(-0.584365\pi\)
0.995907 + 0.0903843i \(0.0288095\pi\)
\(14\) 1.80077 + 1.03967i 0.481275 + 0.277864i
\(15\) 0 0
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) 0.618710 + 0.737350i 0.150059 + 0.178834i 0.835838 0.548977i \(-0.184982\pi\)
−0.685778 + 0.727810i \(0.740538\pi\)
\(18\) 0 0
\(19\) 0.534946 + 1.46975i 0.122725 + 0.337184i 0.985808 0.167878i \(-0.0536916\pi\)
−0.863083 + 0.505063i \(0.831469\pi\)
\(20\) 1.67860 + 2.00048i 0.375346 + 0.447320i
\(21\) 0 0
\(22\) 5.90509 1.04123i 1.25897 0.221990i
\(23\) 5.51705 + 3.18527i 1.15038 + 0.664174i 0.948981 0.315334i \(-0.102117\pi\)
0.201403 + 0.979508i \(0.435450\pi\)
\(24\) 0 0
\(25\) 1.70986 + 0.622339i 0.341973 + 0.124468i
\(26\) −2.05847 3.56538i −0.403700 0.699229i
\(27\) 0 0
\(28\) 1.59287 1.33658i 0.301025 0.252590i
\(29\) 3.51193 2.02761i 0.652149 0.376519i −0.137130 0.990553i \(-0.543788\pi\)
0.789279 + 0.614035i \(0.210454\pi\)
\(30\) 0 0
\(31\) 3.39997i 0.610653i 0.952248 + 0.305326i \(0.0987655\pi\)
−0.952248 + 0.305326i \(0.901234\pi\)
\(32\) 0.984808 + 0.173648i 0.174091 + 0.0306970i
\(33\) 0 0
\(34\) 0.904494 0.329209i 0.155119 0.0564588i
\(35\) 1.85720 5.10261i 0.313924 0.862498i
\(36\) 0 0
\(37\) 6.07068 + 0.383130i 0.998014 + 0.0629862i
\(38\) 1.56408 0.253727
\(39\) 0 0
\(40\) 2.45395 0.893164i 0.388003 0.141222i
\(41\) −7.94502 6.66666i −1.24080 1.04116i −0.997461 0.0712179i \(-0.977311\pi\)
−0.243343 0.969940i \(-0.578244\pi\)
\(42\) 0 0
\(43\) 3.76932i 0.574816i 0.957808 + 0.287408i \(0.0927936\pi\)
−0.957808 + 0.287408i \(0.907206\pi\)
\(44\) 1.04123 5.90509i 0.156971 0.890227i
\(45\) 0 0
\(46\) 4.88011 4.09490i 0.719534 0.603760i
\(47\) −3.08750 + 5.34771i −0.450359 + 0.780044i −0.998408 0.0564019i \(-0.982037\pi\)
0.548050 + 0.836446i \(0.315371\pi\)
\(48\) 0 0
\(49\) 2.51491 + 0.915354i 0.359273 + 0.130765i
\(50\) 1.16962 1.39389i 0.165409 0.197126i
\(51\) 0 0
\(52\) −4.05440 + 0.714901i −0.562245 + 0.0991389i
\(53\) 1.39401 + 7.90585i 0.191483 + 1.08595i 0.917339 + 0.398106i \(0.130332\pi\)
−0.725857 + 0.687846i \(0.758556\pi\)
\(54\) 0 0
\(55\) −5.35558 14.7143i −0.722146 1.98408i
\(56\) −0.711179 1.95395i −0.0950352 0.261107i
\(57\) 0 0
\(58\) −0.704183 3.99362i −0.0924638 0.524388i
\(59\) −5.02269 + 0.885636i −0.653899 + 0.115300i −0.490749 0.871301i \(-0.663277\pi\)
−0.163150 + 0.986601i \(0.552166\pi\)
\(60\) 0 0
\(61\) −6.25519 + 7.45465i −0.800895 + 0.954470i −0.999673 0.0255750i \(-0.991858\pi\)
0.198778 + 0.980045i \(0.436303\pi\)
\(62\) 3.19493 + 1.16286i 0.405756 + 0.147683i
\(63\) 0 0
\(64\) 0.500000 0.866025i 0.0625000 0.108253i
\(65\) −8.23586 + 6.91071i −1.02153 + 0.857168i
\(66\) 0 0
\(67\) −1.83263 + 10.3934i −0.223892 + 1.26975i 0.640901 + 0.767624i \(0.278561\pi\)
−0.864792 + 0.502130i \(0.832550\pi\)
\(68\) 0.962542i 0.116725i
\(69\) 0 0
\(70\) −4.15968 3.49039i −0.497177 0.417181i
\(71\) 10.1503 3.69442i 1.20462 0.438447i 0.339787 0.940502i \(-0.389645\pi\)
0.864835 + 0.502056i \(0.167423\pi\)
\(72\) 0 0
\(73\) 3.55293 0.415839 0.207920 0.978146i \(-0.433331\pi\)
0.207920 + 0.978146i \(0.433331\pi\)
\(74\) 2.43632 5.57354i 0.283217 0.647911i
\(75\) 0 0
\(76\) 0.534946 1.46975i 0.0613625 0.168592i
\(77\) −11.7162 + 4.26436i −1.33519 + 0.485969i
\(78\) 0 0
\(79\) 2.51098 + 0.442753i 0.282507 + 0.0498136i 0.313106 0.949718i \(-0.398630\pi\)
−0.0305991 + 0.999532i \(0.509742\pi\)
\(80\) 2.61144i 0.291967i
\(81\) 0 0
\(82\) −8.98197 + 5.18574i −0.991893 + 0.572670i
\(83\) −5.29798 + 4.44553i −0.581529 + 0.487960i −0.885449 0.464737i \(-0.846149\pi\)
0.303920 + 0.952698i \(0.401704\pi\)
\(84\) 0 0
\(85\) −1.25681 2.17686i −0.136320 0.236113i
\(86\) 3.54200 + 1.28918i 0.381944 + 0.139016i
\(87\) 0 0
\(88\) −5.19285 2.99810i −0.553560 0.319598i
\(89\) 16.0165 2.82414i 1.69774 0.299358i 0.760838 0.648942i \(-0.224788\pi\)
0.936905 + 0.349584i \(0.113677\pi\)
\(90\) 0 0
\(91\) 5.50263 + 6.55778i 0.576832 + 0.687442i
\(92\) −2.17885 5.98635i −0.227161 0.624120i
\(93\) 0 0
\(94\) 3.96922 + 4.73033i 0.409394 + 0.487896i
\(95\) −0.709264 4.02243i −0.0727689 0.412693i
\(96\) 0 0
\(97\) −14.1175 8.15074i −1.43342 0.827583i −0.436036 0.899929i \(-0.643618\pi\)
−0.997380 + 0.0723469i \(0.976951\pi\)
\(98\) 1.72030 2.05018i 0.173777 0.207099i
\(99\) 0 0
\(100\) −0.909799 1.57582i −0.0909799 0.157582i
\(101\) 2.05124 3.55285i 0.204106 0.353521i −0.745742 0.666235i \(-0.767905\pi\)
0.949847 + 0.312714i \(0.101238\pi\)
\(102\) 0 0
\(103\) 9.35250 5.39967i 0.921530 0.532045i 0.0374069 0.999300i \(-0.488090\pi\)
0.884123 + 0.467255i \(0.154757\pi\)
\(104\) −0.714901 + 4.05440i −0.0701018 + 0.397567i
\(105\) 0 0
\(106\) 7.90585 + 1.39401i 0.767884 + 0.135399i
\(107\) −15.5549 13.0521i −1.50375 1.26180i −0.874930 0.484249i \(-0.839093\pi\)
−0.628823 0.777549i \(-0.716463\pi\)
\(108\) 0 0
\(109\) 2.13072 5.85411i 0.204086 0.560722i −0.794851 0.606804i \(-0.792451\pi\)
0.998938 + 0.0460817i \(0.0146734\pi\)
\(110\) −15.6587 −1.49300
\(111\) 0 0
\(112\) −2.07935 −0.196480
\(113\) −2.09726 + 5.76217i −0.197294 + 0.542059i −0.998405 0.0564555i \(-0.982020\pi\)
0.801112 + 0.598515i \(0.204242\pi\)
\(114\) 0 0
\(115\) −12.7441 10.6936i −1.18839 0.997181i
\(116\) −3.99362 0.704183i −0.370798 0.0653818i
\(117\) 0 0
\(118\) −0.885636 + 5.02269i −0.0815294 + 0.462376i
\(119\) −1.73331 + 1.00073i −0.158893 + 0.0917367i
\(120\) 0 0
\(121\) −12.4772 + 21.6111i −1.13429 + 1.96464i
\(122\) 4.86567 + 8.42760i 0.440517 + 0.762999i
\(123\) 0 0
\(124\) 2.18546 2.60453i 0.196260 0.233893i
\(125\) 7.19270 + 4.15271i 0.643335 + 0.371429i
\(126\) 0 0
\(127\) −1.10807 6.28420i −0.0983257 0.557633i −0.993677 0.112273i \(-0.964187\pi\)
0.895352 0.445360i \(-0.146924\pi\)
\(128\) −0.642788 0.766044i −0.0568149 0.0677094i
\(129\) 0 0
\(130\) 3.67711 + 10.1028i 0.322504 + 0.886072i
\(131\) −6.71929 8.00774i −0.587067 0.699640i 0.387972 0.921671i \(-0.373176\pi\)
−0.975039 + 0.222032i \(0.928731\pi\)
\(132\) 0 0
\(133\) −3.20285 + 0.564749i −0.277722 + 0.0489699i
\(134\) 9.13979 + 5.27686i 0.789557 + 0.455851i
\(135\) 0 0
\(136\) −0.904494 0.329209i −0.0775597 0.0282294i
\(137\) 3.12091 + 5.40557i 0.266637 + 0.461829i 0.967991 0.250984i \(-0.0807542\pi\)
−0.701354 + 0.712813i \(0.747421\pi\)
\(138\) 0 0
\(139\) 5.27989 4.43035i 0.447834 0.375778i −0.390797 0.920477i \(-0.627801\pi\)
0.838632 + 0.544699i \(0.183356\pi\)
\(140\) −4.70259 + 2.71504i −0.397441 + 0.229463i
\(141\) 0 0
\(142\) 10.8018i 0.906463i
\(143\) 24.3110 + 4.28668i 2.03299 + 0.358470i
\(144\) 0 0
\(145\) −9.95132 + 3.62198i −0.826412 + 0.300789i
\(146\) 1.21517 3.33866i 0.100569 0.276310i
\(147\) 0 0
\(148\) −4.40414 4.19566i −0.362018 0.344881i
\(149\) −3.49508 −0.286328 −0.143164 0.989699i \(-0.545728\pi\)
−0.143164 + 0.989699i \(0.545728\pi\)
\(150\) 0 0
\(151\) 8.84115 3.21791i 0.719482 0.261870i 0.0437763 0.999041i \(-0.486061\pi\)
0.675706 + 0.737171i \(0.263839\pi\)
\(152\) −1.19815 1.00537i −0.0971830 0.0815462i
\(153\) 0 0
\(154\) 12.4682i 1.00471i
\(155\) 1.54179 8.74391i 0.123839 0.702328i
\(156\) 0 0
\(157\) 1.94170 1.62928i 0.154964 0.130030i −0.562009 0.827131i \(-0.689971\pi\)
0.716973 + 0.697101i \(0.245527\pi\)
\(158\) 1.27486 2.20812i 0.101422 0.175668i
\(159\) 0 0
\(160\) −2.45395 0.893164i −0.194002 0.0706108i
\(161\) −8.51472 + 10.1475i −0.671054 + 0.799731i
\(162\) 0 0
\(163\) −9.23549 + 1.62847i −0.723379 + 0.127551i −0.523202 0.852208i \(-0.675263\pi\)
−0.200177 + 0.979760i \(0.564152\pi\)
\(164\) 1.80099 + 10.2139i 0.140634 + 0.797573i
\(165\) 0 0
\(166\) 2.36542 + 6.49893i 0.183592 + 0.504415i
\(167\) 3.56469 + 9.79392i 0.275844 + 0.757876i 0.997822 + 0.0659599i \(0.0210110\pi\)
−0.721978 + 0.691916i \(0.756767\pi\)
\(168\) 0 0
\(169\) −0.685785 3.88928i −0.0527527 0.299175i
\(170\) −2.47543 + 0.436485i −0.189857 + 0.0334769i
\(171\) 0 0
\(172\) 2.42287 2.88747i 0.184742 0.220167i
\(173\) 2.75312 + 1.00205i 0.209316 + 0.0761846i 0.444550 0.895754i \(-0.353364\pi\)
−0.235234 + 0.971939i \(0.575586\pi\)
\(174\) 0 0
\(175\) −1.89179 + 3.27667i −0.143006 + 0.247693i
\(176\) −4.59335 + 3.85428i −0.346237 + 0.290527i
\(177\) 0 0
\(178\) 2.82414 16.0165i 0.211678 1.20049i
\(179\) 8.76703i 0.655279i −0.944803 0.327639i \(-0.893747\pi\)
0.944803 0.327639i \(-0.106253\pi\)
\(180\) 0 0
\(181\) −20.4965 17.1986i −1.52349 1.27836i −0.829750 0.558135i \(-0.811517\pi\)
−0.693740 0.720225i \(-0.744038\pi\)
\(182\) 8.04430 2.92789i 0.596283 0.217029i
\(183\) 0 0
\(184\) −6.37054 −0.469642
\(185\) −15.4386 3.73820i −1.13507 0.274838i
\(186\) 0 0
\(187\) −1.97400 + 5.42352i −0.144353 + 0.396607i
\(188\) 5.80261 2.11198i 0.423199 0.154032i
\(189\) 0 0
\(190\) −4.02243 0.709264i −0.291818 0.0514554i
\(191\) 1.81758i 0.131515i 0.997836 + 0.0657577i \(0.0209464\pi\)
−0.997836 + 0.0657577i \(0.979054\pi\)
\(192\) 0 0
\(193\) 0.922363 0.532526i 0.0663931 0.0383321i −0.466436 0.884555i \(-0.654462\pi\)
0.532829 + 0.846223i \(0.321129\pi\)
\(194\) −12.4877 + 10.4784i −0.896562 + 0.752305i
\(195\) 0 0
\(196\) −1.33816 2.31776i −0.0955827 0.165554i
\(197\) −14.8064 5.38909i −1.05491 0.383957i −0.244398 0.969675i \(-0.578590\pi\)
−0.810515 + 0.585718i \(0.800813\pi\)
\(198\) 0 0
\(199\) 17.8722 + 10.3185i 1.26693 + 0.731461i 0.974406 0.224797i \(-0.0721719\pi\)
0.292523 + 0.956259i \(0.405505\pi\)
\(200\) −1.79195 + 0.315970i −0.126710 + 0.0223424i
\(201\) 0 0
\(202\) −2.63702 3.14268i −0.185540 0.221118i
\(203\) 2.88399 + 7.92370i 0.202417 + 0.556135i
\(204\) 0 0
\(205\) 17.4096 + 20.7479i 1.21594 + 1.44910i
\(206\) −1.87529 10.6353i −0.130657 0.740995i
\(207\) 0 0
\(208\) 3.56538 + 2.05847i 0.247215 + 0.142730i
\(209\) −6.02839 + 7.18435i −0.416992 + 0.496952i
\(210\) 0 0
\(211\) −3.10070 5.37057i −0.213461 0.369725i 0.739335 0.673338i \(-0.235140\pi\)
−0.952795 + 0.303613i \(0.901807\pi\)
\(212\) 4.01391 6.95229i 0.275676 0.477485i
\(213\) 0 0
\(214\) −17.5851 + 10.1528i −1.20209 + 0.694029i
\(215\) 1.70928 9.69380i 0.116572 0.661112i
\(216\) 0 0
\(217\) −6.96231 1.22764i −0.472633 0.0833379i
\(218\) −4.77232 4.00445i −0.323222 0.271216i
\(219\) 0 0
\(220\) −5.35558 + 14.7143i −0.361073 + 0.992040i
\(221\) 3.96274 0.266563
\(222\) 0 0
\(223\) 0.839150 0.0561936 0.0280968 0.999605i \(-0.491055\pi\)
0.0280968 + 0.999605i \(0.491055\pi\)
\(224\) −0.711179 + 1.95395i −0.0475176 + 0.130554i
\(225\) 0 0
\(226\) 4.69737 + 3.94156i 0.312464 + 0.262188i
\(227\) −6.42458 1.13283i −0.426415 0.0751884i −0.0436775 0.999046i \(-0.513907\pi\)
−0.382737 + 0.923857i \(0.625019\pi\)
\(228\) 0 0
\(229\) 1.14680 6.50380i 0.0757824 0.429784i −0.923185 0.384355i \(-0.874424\pi\)
0.998968 0.0454281i \(-0.0144652\pi\)
\(230\) −14.4074 + 8.31813i −0.949997 + 0.548481i
\(231\) 0 0
\(232\) −2.02761 + 3.51193i −0.133119 + 0.230570i
\(233\) −11.3047 19.5803i −0.740594 1.28275i −0.952225 0.305396i \(-0.901211\pi\)
0.211632 0.977349i \(-0.432122\pi\)
\(234\) 0 0
\(235\) 10.3654 12.3530i 0.676161 0.805818i
\(236\) 4.41688 + 2.55009i 0.287515 + 0.165997i
\(237\) 0 0
\(238\) 0.347550 + 1.97105i 0.0225283 + 0.127764i
\(239\) 11.0221 + 13.1357i 0.712962 + 0.849675i 0.993927 0.110043i \(-0.0350988\pi\)
−0.280965 + 0.959718i \(0.590654\pi\)
\(240\) 0 0
\(241\) 1.94526 + 5.34455i 0.125305 + 0.344273i 0.986444 0.164096i \(-0.0524708\pi\)
−0.861139 + 0.508369i \(0.830249\pi\)
\(242\) 16.0403 + 19.1161i 1.03111 + 1.22883i
\(243\) 0 0
\(244\) 9.58351 1.68983i 0.613521 0.108180i
\(245\) −6.05267 3.49451i −0.386691 0.223256i
\(246\) 0 0
\(247\) 6.05089 + 2.20235i 0.385009 + 0.140132i
\(248\) −1.69998 2.94446i −0.107949 0.186973i
\(249\) 0 0
\(250\) 6.36232 5.33862i 0.402388 0.337644i
\(251\) 21.9528 12.6745i 1.38565 0.800006i 0.392829 0.919611i \(-0.371496\pi\)
0.992821 + 0.119606i \(0.0381630\pi\)
\(252\) 0 0
\(253\) 38.1990i 2.40155i
\(254\) −6.28420 1.10807i −0.394306 0.0695268i
\(255\) 0 0
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) −1.76857 + 4.85911i −0.110320 + 0.303103i −0.982551 0.185991i \(-0.940450\pi\)
0.872231 + 0.489094i \(0.162673\pi\)
\(258\) 0 0
\(259\) −2.97653 + 12.2929i −0.184953 + 0.763847i
\(260\) 10.7512 0.666758
\(261\) 0 0
\(262\) −9.82295 + 3.57526i −0.606864 + 0.220880i
\(263\) −7.40923 6.21708i −0.456873 0.383362i 0.385106 0.922872i \(-0.374165\pi\)
−0.841979 + 0.539511i \(0.818609\pi\)
\(264\) 0 0
\(265\) 20.9641i 1.28782i
\(266\) −0.564749 + 3.20285i −0.0346270 + 0.196379i
\(267\) 0 0
\(268\) 8.08462 6.78380i 0.493847 0.414386i
\(269\) −11.9383 + 20.6777i −0.727889 + 1.26074i 0.229885 + 0.973218i \(0.426165\pi\)
−0.957774 + 0.287523i \(0.907168\pi\)
\(270\) 0 0
\(271\) −17.2047 6.26199i −1.04511 0.380389i −0.238295 0.971193i \(-0.576589\pi\)
−0.806815 + 0.590804i \(0.798811\pi\)
\(272\) −0.618710 + 0.737350i −0.0375148 + 0.0447084i
\(273\) 0 0
\(274\) 6.14698 1.08388i 0.371353 0.0654795i
\(275\) 1.89462 + 10.7449i 0.114250 + 0.647942i
\(276\) 0 0
\(277\) −6.06459 16.6623i −0.364386 1.00114i −0.977461 0.211117i \(-0.932290\pi\)
0.613075 0.790025i \(-0.289932\pi\)
\(278\) −2.35734 6.47674i −0.141384 0.388449i
\(279\) 0 0
\(280\) 0.942924 + 5.34759i 0.0563505 + 0.319579i
\(281\) 15.0167 2.64786i 0.895824 0.157958i 0.293264 0.956032i \(-0.405259\pi\)
0.602560 + 0.798074i \(0.294147\pi\)
\(282\) 0 0
\(283\) 15.7182 18.7322i 0.934350 1.11351i −0.0589858 0.998259i \(-0.518787\pi\)
0.993336 0.115256i \(-0.0367689\pi\)
\(284\) −10.1503 3.69442i −0.602311 0.219223i
\(285\) 0 0
\(286\) 12.3430 21.3787i 0.729857 1.26415i
\(287\) 16.5205 13.8623i 0.975172 0.818266i
\(288\) 0 0
\(289\) 2.79114 15.8293i 0.164184 0.931136i
\(290\) 10.5900i 0.621864i
\(291\) 0 0
\(292\) −2.72170 2.28378i −0.159276 0.133648i
\(293\) 11.8143 4.30005i 0.690199 0.251212i 0.0269784 0.999636i \(-0.491411\pi\)
0.663220 + 0.748424i \(0.269189\pi\)
\(294\) 0 0
\(295\) 13.3188 0.775450
\(296\) −5.44893 + 2.70354i −0.316713 + 0.157140i
\(297\) 0 0
\(298\) −1.19539 + 3.28430i −0.0692469 + 0.190254i
\(299\) 24.6455 8.97022i 1.42529 0.518761i
\(300\) 0 0
\(301\) −7.71866 1.36101i −0.444896 0.0784472i
\(302\) 9.40855i 0.541401i
\(303\) 0 0
\(304\) −1.35453 + 0.782038i −0.0776876 + 0.0448530i
\(305\) 19.4673 16.3350i 1.11470 0.935341i
\(306\) 0 0
\(307\) −4.70103 8.14242i −0.268302 0.464713i 0.700122 0.714024i \(-0.253129\pi\)
−0.968423 + 0.249311i \(0.919796\pi\)
\(308\) 11.7162 + 4.26436i 0.667595 + 0.242985i
\(309\) 0 0
\(310\) −7.68927 4.43940i −0.436721 0.252141i
\(311\) 15.8568 2.79599i 0.899158 0.158546i 0.295082 0.955472i \(-0.404653\pi\)
0.604077 + 0.796926i \(0.293542\pi\)
\(312\) 0 0
\(313\) 0.370220 + 0.441211i 0.0209261 + 0.0249387i 0.776406 0.630233i \(-0.217041\pi\)
−0.755480 + 0.655172i \(0.772596\pi\)
\(314\) −0.866920 2.38184i −0.0489231 0.134415i
\(315\) 0 0
\(316\) −1.63893 1.95319i −0.0921967 0.109876i
\(317\) −2.04083 11.5741i −0.114624 0.650067i −0.986935 0.161116i \(-0.948491\pi\)
0.872311 0.488951i \(-0.162620\pi\)
\(318\) 0 0
\(319\) 21.0582 + 12.1580i 1.17903 + 0.680715i
\(320\) −1.67860 + 2.00048i −0.0938365 + 0.111830i
\(321\) 0 0
\(322\) 6.62328 + 11.4719i 0.369101 + 0.639302i
\(323\) −0.752745 + 1.30379i −0.0418838 + 0.0725449i
\(324\) 0 0
\(325\) 6.48757 3.74560i 0.359865 0.207768i
\(326\) −1.62847 + 9.23549i −0.0901924 + 0.511506i
\(327\) 0 0
\(328\) 10.2139 + 1.80099i 0.563970 + 0.0994430i
\(329\) −9.83600 8.25338i −0.542276 0.455024i
\(330\) 0 0
\(331\) 4.83530 13.2849i 0.265772 0.730202i −0.732980 0.680250i \(-0.761871\pi\)
0.998752 0.0499518i \(-0.0159068\pi\)
\(332\) 6.91602 0.379566
\(333\) 0 0
\(334\) 10.4225 0.570292
\(335\) 9.42620 25.8983i 0.515008 1.41497i
\(336\) 0 0
\(337\) 8.21240 + 6.89102i 0.447358 + 0.375378i 0.838454 0.544972i \(-0.183460\pi\)
−0.391096 + 0.920350i \(0.627904\pi\)
\(338\) −3.88928 0.685785i −0.211549 0.0373018i
\(339\) 0 0
\(340\) −0.436485 + 2.47543i −0.0236717 + 0.134249i
\(341\) −17.6555 + 10.1934i −0.956101 + 0.552005i
\(342\) 0 0
\(343\) −10.0602 + 17.4248i −0.543200 + 0.940850i
\(344\) −1.88466 3.26433i −0.101614 0.176001i
\(345\) 0 0
\(346\) 1.88324 2.24436i 0.101244 0.120658i
\(347\) 6.10989 + 3.52754i 0.327996 + 0.189368i 0.654951 0.755671i \(-0.272689\pi\)
−0.326955 + 0.945040i \(0.606023\pi\)
\(348\) 0 0
\(349\) 4.45331 + 25.2560i 0.238380 + 1.35192i 0.835376 + 0.549679i \(0.185250\pi\)
−0.596996 + 0.802244i \(0.703639\pi\)
\(350\) 2.43204 + 2.89839i 0.129998 + 0.154925i
\(351\) 0 0
\(352\) 2.05082 + 5.63458i 0.109309 + 0.300324i
\(353\) −4.22017 5.02940i −0.224617 0.267688i 0.641953 0.766744i \(-0.278125\pi\)
−0.866570 + 0.499056i \(0.833680\pi\)
\(354\) 0 0
\(355\) −27.7795 + 4.89828i −1.47438 + 0.259974i
\(356\) −14.0847 8.13178i −0.746485 0.430983i
\(357\) 0 0
\(358\) −8.23831 2.99850i −0.435408 0.158476i
\(359\) 9.92813 + 17.1960i 0.523987 + 0.907572i 0.999610 + 0.0279226i \(0.00888919\pi\)
−0.475623 + 0.879649i \(0.657777\pi\)
\(360\) 0 0
\(361\) 12.6808 10.6405i 0.667413 0.560026i
\(362\) −23.1716 + 13.3781i −1.21787 + 0.703138i
\(363\) 0 0
\(364\) 8.56057i 0.448696i
\(365\) −9.13730 1.61115i −0.478268 0.0843315i
\(366\) 0 0
\(367\) 20.2967 7.38739i 1.05948 0.385619i 0.247246 0.968953i \(-0.420474\pi\)
0.812233 + 0.583334i \(0.198252\pi\)
\(368\) −2.17885 + 5.98635i −0.113581 + 0.312060i
\(369\) 0 0
\(370\) −8.79308 + 13.2290i −0.457130 + 0.687744i
\(371\) −16.6926 −0.866637
\(372\) 0 0
\(373\) 29.3944 10.6987i 1.52198 0.553956i 0.560340 0.828263i \(-0.310670\pi\)
0.961642 + 0.274306i \(0.0884482\pi\)
\(374\) 4.42129 + 3.70990i 0.228619 + 0.191835i
\(375\) 0 0
\(376\) 6.17501i 0.318452i
\(377\) 2.89909 16.4415i 0.149311 0.846782i
\(378\) 0 0
\(379\) −15.3668 + 12.8943i −0.789339 + 0.662334i −0.945582 0.325384i \(-0.894506\pi\)
0.156243 + 0.987719i \(0.450062\pi\)
\(380\) −2.04224 + 3.53727i −0.104765 + 0.181458i
\(381\) 0 0
\(382\) 1.70796 + 0.621648i 0.0873871 + 0.0318063i
\(383\) −10.6054 + 12.6391i −0.541913 + 0.645826i −0.965615 0.259975i \(-0.916286\pi\)
0.423703 + 0.905801i \(0.360730\pi\)
\(384\) 0 0
\(385\) 32.0652 5.65395i 1.63419 0.288152i
\(386\) −0.184945 1.04887i −0.00941343 0.0533862i
\(387\) 0 0
\(388\) 5.57544 + 15.3184i 0.283050 + 0.777673i
\(389\) −0.282656 0.776592i −0.0143312 0.0393748i 0.932321 0.361632i \(-0.117780\pi\)
−0.946652 + 0.322258i \(0.895558\pi\)
\(390\) 0 0
\(391\) 1.06479 + 6.03875i 0.0538490 + 0.305393i
\(392\) −2.63566 + 0.464737i −0.133121 + 0.0234728i
\(393\) 0 0
\(394\) −10.1282 + 12.0703i −0.510251 + 0.608093i
\(395\) −6.25687 2.27731i −0.314817 0.114584i
\(396\) 0 0
\(397\) −4.52451 + 7.83669i −0.227079 + 0.393312i −0.956941 0.290282i \(-0.906251\pi\)
0.729862 + 0.683594i \(0.239584\pi\)
\(398\) 15.8089 13.2653i 0.792429 0.664927i
\(399\) 0 0
\(400\) −0.315970 + 1.79195i −0.0157985 + 0.0895977i
\(401\) 13.1254i 0.655452i 0.944773 + 0.327726i \(0.106282\pi\)
−0.944773 + 0.327726i \(0.893718\pi\)
\(402\) 0 0
\(403\) 10.7227 + 8.99742i 0.534136 + 0.448194i
\(404\) −3.85506 + 1.40313i −0.191797 + 0.0698083i
\(405\) 0 0
\(406\) 8.43223 0.418484
\(407\) 16.2110 + 32.6728i 0.803547 + 1.61953i
\(408\) 0 0
\(409\) 2.70223 7.42432i 0.133617 0.367109i −0.854783 0.518986i \(-0.826310\pi\)
0.988399 + 0.151877i \(0.0485318\pi\)
\(410\) 25.4511 9.26344i 1.25694 0.457489i
\(411\) 0 0
\(412\) −10.6353 1.87529i −0.523962 0.0923887i
\(413\) 10.6050i 0.521840i
\(414\) 0 0
\(415\) 15.6411 9.03037i 0.767789 0.443283i
\(416\) 3.15377 2.64632i 0.154626 0.129747i
\(417\) 0 0
\(418\) 4.68925 + 8.12202i 0.229359 + 0.397261i
\(419\) −30.0521 10.9381i −1.46814 0.534361i −0.520548 0.853832i \(-0.674272\pi\)
−0.947596 + 0.319472i \(0.896494\pi\)
\(420\) 0 0
\(421\) −4.86073 2.80634i −0.236897 0.136773i 0.376853 0.926273i \(-0.377006\pi\)
−0.613750 + 0.789501i \(0.710340\pi\)
\(422\) −6.10718 + 1.07686i −0.297293 + 0.0524208i
\(423\) 0 0
\(424\) −5.16018 6.14966i −0.250600 0.298654i
\(425\) 0.599028 + 1.64581i 0.0290571 + 0.0798337i
\(426\) 0 0
\(427\) −13.0067 15.5008i −0.629439 0.750136i
\(428\) 3.52602 + 19.9970i 0.170437 + 0.966594i
\(429\) 0 0
\(430\) −8.52459 4.92167i −0.411092 0.237344i
\(431\) 12.8250 15.2842i 0.617757 0.736214i −0.362926 0.931818i \(-0.618222\pi\)
0.980683 + 0.195604i \(0.0626666\pi\)
\(432\) 0 0
\(433\) 7.91046 + 13.7013i 0.380152 + 0.658443i 0.991084 0.133240i \(-0.0425382\pi\)
−0.610931 + 0.791684i \(0.709205\pi\)
\(434\) −3.53486 + 6.12255i −0.169679 + 0.293892i
\(435\) 0 0
\(436\) −5.39518 + 3.11491i −0.258382 + 0.149177i
\(437\) −1.73023 + 9.81263i −0.0827682 + 0.469402i
\(438\) 0 0
\(439\) 3.01674 + 0.531932i 0.143981 + 0.0253878i 0.245174 0.969479i \(-0.421155\pi\)
−0.101193 + 0.994867i \(0.532266\pi\)
\(440\) 11.9952 + 10.0652i 0.571850 + 0.479839i
\(441\) 0 0
\(442\) 1.35534 3.72375i 0.0644668 0.177121i
\(443\) 2.75923 0.131095 0.0655475 0.997849i \(-0.479121\pi\)
0.0655475 + 0.997849i \(0.479121\pi\)
\(444\) 0 0
\(445\) −42.4712 −2.01333
\(446\) 0.287006 0.788543i 0.0135901 0.0373386i
\(447\) 0 0
\(448\) 1.59287 + 1.33658i 0.0752561 + 0.0631474i
\(449\) 22.3120 + 3.93421i 1.05297 + 0.185667i 0.673235 0.739428i \(-0.264904\pi\)
0.379735 + 0.925095i \(0.376015\pi\)
\(450\) 0 0
\(451\) 10.7991 61.2446i 0.508509 2.88390i
\(452\) 5.31045 3.06599i 0.249782 0.144212i
\(453\) 0 0
\(454\) −3.26185 + 5.64968i −0.153086 + 0.265153i
\(455\) −11.1777 19.3603i −0.524018 0.907626i
\(456\) 0 0
\(457\) −18.9638 + 22.6002i −0.887089 + 1.05719i 0.110902 + 0.993831i \(0.464626\pi\)
−0.997991 + 0.0633601i \(0.979818\pi\)
\(458\) −5.71935 3.30207i −0.267248 0.154296i
\(459\) 0 0
\(460\) 2.88885 + 16.3835i 0.134694 + 0.763885i
\(461\) −2.61917 3.12141i −0.121987 0.145378i 0.701594 0.712576i \(-0.252472\pi\)
−0.823581 + 0.567198i \(0.808027\pi\)
\(462\) 0 0
\(463\) −1.00637 2.76497i −0.0467699 0.128499i 0.914109 0.405469i \(-0.132892\pi\)
−0.960879 + 0.276970i \(0.910670\pi\)
\(464\) 2.60665 + 3.10649i 0.121011 + 0.144215i
\(465\) 0 0
\(466\) −22.2659 + 3.92607i −1.03145 + 0.181872i
\(467\) −4.59204 2.65121i −0.212494 0.122684i 0.389976 0.920825i \(-0.372483\pi\)
−0.602470 + 0.798142i \(0.705817\pi\)
\(468\) 0 0
\(469\) −20.6214 7.50558i −0.952208 0.346575i
\(470\) −8.06282 13.9652i −0.371910 0.644167i
\(471\) 0 0
\(472\) 3.90696 3.27833i 0.179833 0.150897i
\(473\) −19.5735 + 11.3008i −0.899992 + 0.519611i
\(474\) 0 0
\(475\) 2.84599i 0.130583i
\(476\) 1.97105 + 0.347550i 0.0903430 + 0.0159299i
\(477\) 0 0
\(478\) 16.1133 5.86475i 0.737004 0.268248i
\(479\) 6.11079 16.7893i 0.279209 0.767121i −0.718244 0.695792i \(-0.755054\pi\)
0.997453 0.0713293i \(-0.0227241\pi\)
\(480\) 0 0
\(481\) 17.2733 18.1316i 0.787595 0.826731i
\(482\) 5.68755 0.259061
\(483\) 0 0
\(484\) 23.4494 8.53487i 1.06588 0.387949i
\(485\) 32.6107 + 27.3637i 1.48078 + 1.24252i
\(486\) 0 0
\(487\) 31.2962i 1.41817i −0.705124 0.709084i \(-0.749109\pi\)
0.705124 0.709084i \(-0.250891\pi\)
\(488\) 1.68983 9.58351i 0.0764951 0.433825i
\(489\) 0 0
\(490\) −5.35390 + 4.49246i −0.241865 + 0.202949i
\(491\) −6.72900 + 11.6550i −0.303676 + 0.525982i −0.976966 0.213397i \(-0.931547\pi\)
0.673290 + 0.739379i \(0.264881\pi\)
\(492\) 0 0
\(493\) 3.66793 + 1.33502i 0.165195 + 0.0601261i
\(494\) 4.13905 4.93273i 0.186225 0.221934i
\(495\) 0 0
\(496\) −3.34832 + 0.590399i −0.150344 + 0.0265097i
\(497\) 3.90024 + 22.1194i 0.174950 + 0.992189i
\(498\) 0 0
\(499\) 12.5759 + 34.5520i 0.562974 + 1.54676i 0.815253 + 0.579104i \(0.196598\pi\)
−0.252279 + 0.967654i \(0.581180\pi\)
\(500\) −2.84062 7.80454i −0.127036 0.349030i
\(501\) 0 0
\(502\) −4.40180 24.9638i −0.196462 1.11419i
\(503\) −6.15105 + 1.08460i −0.274262 + 0.0483597i −0.309087 0.951034i \(-0.600024\pi\)
0.0348257 + 0.999393i \(0.488912\pi\)
\(504\) 0 0
\(505\) −6.88641 + 8.20690i −0.306441 + 0.365202i
\(506\) 35.8953 + 13.0648i 1.59574 + 0.580802i
\(507\) 0 0
\(508\) −3.19057 + 5.52624i −0.141559 + 0.245187i
\(509\) 6.29668 5.28355i 0.279096 0.234189i −0.492484 0.870321i \(-0.663911\pi\)
0.771580 + 0.636132i \(0.219467\pi\)
\(510\) 0 0
\(511\) −1.28287 + 7.27554i −0.0567510 + 0.321851i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.96118 + 3.32383i 0.174720 + 0.146608i
\(515\) −26.5010 + 9.64558i −1.16777 + 0.425035i
\(516\) 0 0
\(517\) −37.0265 −1.62842
\(518\) 10.5336 + 7.00146i 0.462818 + 0.307626i
\(519\) 0 0
\(520\) 3.67711 10.1028i 0.161252 0.443036i
\(521\) 20.8518 7.58945i 0.913536 0.332500i 0.157872 0.987460i \(-0.449537\pi\)
0.755664 + 0.654960i \(0.227314\pi\)
\(522\) 0 0
\(523\) −13.7427 2.42321i −0.600927 0.105960i −0.135095 0.990833i \(-0.543134\pi\)
−0.465832 + 0.884873i \(0.654245\pi\)
\(524\) 10.4534i 0.456657i
\(525\) 0 0
\(526\) −8.37625 + 4.83603i −0.365222 + 0.210861i
\(527\) −2.50697 + 2.10360i −0.109205 + 0.0916340i
\(528\) 0 0
\(529\) 8.79187 + 15.2280i 0.382255 + 0.662086i
\(530\) −19.6998 7.17015i −0.855706 0.311451i
\(531\) 0 0
\(532\) 2.81654 + 1.62613i 0.122112 + 0.0705016i
\(533\) −42.0502 + 7.41459i −1.82140 + 0.321161i
\(534\) 0 0
\(535\) 34.0848 + 40.6207i 1.47362 + 1.75619i
\(536\) −3.60958 9.91725i −0.155910 0.428360i
\(537\) 0 0
\(538\) 15.3475 + 18.2905i 0.661679 + 0.788559i
\(539\) 2.78665 + 15.8039i 0.120030 + 0.680722i
\(540\) 0 0
\(541\) 20.9379 + 12.0885i 0.900192 + 0.519726i 0.877262 0.480011i \(-0.159367\pi\)
0.0229292 + 0.999737i \(0.492701\pi\)
\(542\) −11.7687 + 14.0254i −0.505509 + 0.602442i
\(543\) 0 0
\(544\) 0.481271 + 0.833586i 0.0206343 + 0.0357397i
\(545\) −8.13439 + 14.0892i −0.348439 + 0.603514i
\(546\) 0 0
\(547\) −32.2382 + 18.6127i −1.37840 + 0.795822i −0.991967 0.126494i \(-0.959628\pi\)
−0.386437 + 0.922316i \(0.626294\pi\)
\(548\) 1.08388 6.14698i 0.0463010 0.262586i
\(549\) 0 0
\(550\) 10.7449 + 1.89462i 0.458164 + 0.0807867i
\(551\) 4.85878 + 4.07700i 0.206991 + 0.173686i
\(552\) 0 0
\(553\) −1.81330 + 4.98201i −0.0771095 + 0.211857i
\(554\) −17.7317 −0.753347
\(555\) 0 0
\(556\) −6.89241 −0.292303
\(557\) −0.974054 + 2.67619i −0.0412720 + 0.113394i −0.958617 0.284700i \(-0.908106\pi\)
0.917345 + 0.398094i \(0.130328\pi\)
\(558\) 0 0
\(559\) 11.8876 + 9.97485i 0.502790 + 0.421891i
\(560\) 5.34759 + 0.942924i 0.225977 + 0.0398458i
\(561\) 0 0
\(562\) 2.64786 15.0167i 0.111693 0.633443i
\(563\) 21.5088 12.4181i 0.906489 0.523362i 0.0271895 0.999630i \(-0.491344\pi\)
0.879300 + 0.476268i \(0.158011\pi\)
\(564\) 0 0
\(565\) 8.00663 13.8679i 0.336841 0.583427i
\(566\) −12.2266 21.1771i −0.513922 0.890139i
\(567\) 0 0
\(568\) −6.94323 + 8.27462i −0.291332 + 0.347195i
\(569\) 8.80519 + 5.08368i 0.369133 + 0.213119i 0.673080 0.739570i \(-0.264971\pi\)
−0.303947 + 0.952689i \(0.598304\pi\)
\(570\) 0 0
\(571\) 3.25922 + 18.4839i 0.136394 + 0.773528i 0.973879 + 0.227068i \(0.0729140\pi\)
−0.837485 + 0.546460i \(0.815975\pi\)
\(572\) −15.8679 18.9106i −0.663469 0.790691i
\(573\) 0 0
\(574\) −7.37598 20.2653i −0.307868 0.845859i
\(575\) 7.45108 + 8.87985i 0.310731 + 0.370315i
\(576\) 0 0
\(577\) −18.5265 + 3.26672i −0.771267 + 0.135995i −0.545415 0.838166i \(-0.683628\pi\)
−0.225852 + 0.974162i \(0.572517\pi\)
\(578\) −13.9201 8.03676i −0.578999 0.334285i
\(579\) 0 0
\(580\) 9.95132 + 3.62198i 0.413206 + 0.150395i
\(581\) −7.19040 12.4541i −0.298308 0.516685i
\(582\) 0 0
\(583\) −36.8745 + 30.9414i −1.52719 + 1.28146i
\(584\) −3.07693 + 1.77647i −0.127324 + 0.0735107i
\(585\) 0 0
\(586\) 12.5725i 0.519366i
\(587\) −30.2531 5.33444i −1.24868 0.220176i −0.490048 0.871696i \(-0.663021\pi\)
−0.758632 + 0.651520i \(0.774132\pi\)
\(588\) 0 0
\(589\) −4.99711 + 1.81880i −0.205902 + 0.0749423i
\(590\) 4.55529 12.5156i 0.187538 0.515258i
\(591\) 0 0
\(592\) 0.676854 + 6.04499i 0.0278185 + 0.248447i
\(593\) −6.18887 −0.254147 −0.127073 0.991893i \(-0.540558\pi\)
−0.127073 + 0.991893i \(0.540558\pi\)
\(594\) 0 0
\(595\) 4.91147 1.78763i 0.201351 0.0732857i
\(596\) 2.67738 + 2.24659i 0.109670 + 0.0920240i
\(597\) 0 0
\(598\) 26.2272i 1.07251i
\(599\) 0.183355 1.03986i 0.00749169 0.0424875i −0.980833 0.194852i \(-0.937578\pi\)
0.988324 + 0.152364i \(0.0486886\pi\)
\(600\) 0 0
\(601\) −11.9378 + 10.0170i −0.486954 + 0.408603i −0.852933 0.522020i \(-0.825179\pi\)
0.365979 + 0.930623i \(0.380734\pi\)
\(602\) −3.91887 + 6.78767i −0.159721 + 0.276645i
\(603\) 0 0
\(604\) −8.84115 3.21791i −0.359741 0.130935i
\(605\) 41.8883 49.9205i 1.70300 2.02956i
\(606\) 0 0
\(607\) −31.7497 + 5.59834i −1.28868 + 0.227229i −0.775663 0.631147i \(-0.782584\pi\)
−0.513020 + 0.858377i \(0.671473\pi\)
\(608\) 0.271599 + 1.54031i 0.0110148 + 0.0624680i
\(609\) 0 0
\(610\) −8.69169 23.8802i −0.351916 0.966882i
\(611\) 8.69490 + 23.8890i 0.351758 + 0.966447i
\(612\) 0 0
\(613\) −0.968237 5.49114i −0.0391067 0.221785i 0.958991 0.283436i \(-0.0914745\pi\)
−0.998098 + 0.0616512i \(0.980363\pi\)
\(614\) −9.25922 + 1.63265i −0.373672 + 0.0658884i
\(615\) 0 0
\(616\) 8.01438 9.55117i 0.322909 0.384827i
\(617\) 3.80891 + 1.38633i 0.153341 + 0.0558116i 0.417550 0.908654i \(-0.362889\pi\)
−0.264209 + 0.964465i \(0.585111\pi\)
\(618\) 0 0
\(619\) 3.68705 6.38616i 0.148195 0.256681i −0.782365 0.622820i \(-0.785987\pi\)
0.930560 + 0.366138i \(0.119320\pi\)
\(620\) −6.80156 + 5.70718i −0.273157 + 0.229206i
\(621\) 0 0
\(622\) 2.79599 15.8568i 0.112109 0.635801i
\(623\) 33.8176i 1.35487i
\(624\) 0 0
\(625\) −23.5843 19.7895i −0.943370 0.791581i
\(626\) 0.541225 0.196990i 0.0216317 0.00787330i
\(627\) 0 0
\(628\) −2.53470 −0.101146
\(629\) 3.47349 + 4.71327i 0.138497 + 0.187930i
\(630\) 0 0
\(631\) 2.86348 7.86734i 0.113993 0.313194i −0.869556 0.493834i \(-0.835595\pi\)
0.983549 + 0.180641i \(0.0578171\pi\)
\(632\) −2.39595 + 0.872054i −0.0953057 + 0.0346884i
\(633\) 0 0
\(634\) −11.5741 2.04083i −0.459667 0.0810517i
\(635\) 16.6640i 0.661289i
\(636\) 0 0
\(637\) 9.54209 5.50913i 0.378071 0.218280i
\(638\) 18.6271 15.6300i 0.737453 0.618797i
\(639\) 0 0
\(640\) 1.30572 + 2.26157i 0.0516130 + 0.0893964i
\(641\) −11.1583 4.06129i −0.440726 0.160411i 0.112120 0.993695i \(-0.464236\pi\)
−0.552846 + 0.833283i \(0.686458\pi\)
\(642\) 0 0
\(643\) −33.5232 19.3547i −1.32203 0.763273i −0.337976 0.941155i \(-0.609742\pi\)
−0.984052 + 0.177882i \(0.943076\pi\)
\(644\) 13.0453 2.30024i 0.514057 0.0906422i
\(645\) 0 0
\(646\) 0.967710 + 1.15327i 0.0380740 + 0.0453749i
\(647\) −6.03672 16.5857i −0.237328 0.652053i −0.999986 0.00525130i \(-0.998328\pi\)
0.762658 0.646801i \(-0.223894\pi\)
\(648\) 0 0
\(649\) −19.6575 23.4269i −0.771624 0.919586i
\(650\) −1.30083 7.37739i −0.0510228 0.289365i
\(651\) 0 0
\(652\) 8.12155 + 4.68898i 0.318065 + 0.183635i
\(653\) −9.49773 + 11.3189i −0.371675 + 0.442945i −0.919168 0.393865i \(-0.871138\pi\)
0.547493 + 0.836810i \(0.315582\pi\)
\(654\) 0 0
\(655\) 13.6491 + 23.6410i 0.533316 + 0.923731i
\(656\) 5.18574 8.98197i 0.202469 0.350687i
\(657\) 0 0
\(658\) −11.1198 + 6.41999i −0.433493 + 0.250277i
\(659\) −1.14933 + 6.51815i −0.0447714 + 0.253911i −0.998976 0.0452437i \(-0.985594\pi\)
0.954205 + 0.299155i \(0.0967047\pi\)
\(660\) 0 0
\(661\) 6.22992 + 1.09850i 0.242316 + 0.0427268i 0.293487 0.955963i \(-0.405184\pi\)
−0.0511712 + 0.998690i \(0.516295\pi\)
\(662\) −10.8299 9.08738i −0.420917 0.353191i
\(663\) 0 0
\(664\) 2.36542 6.49893i 0.0917960 0.252207i
\(665\) 8.49307 0.329347
\(666\) 0 0
\(667\) 25.8340 1.00030
\(668\) 3.56469 9.79392i 0.137922 0.378938i
\(669\) 0 0
\(670\) −21.1125 17.7155i −0.815645 0.684408i
\(671\) −57.4645 10.1325i −2.21839 0.391163i
\(672\) 0 0
\(673\) 4.26450 24.1852i 0.164384 0.932269i −0.785313 0.619099i \(-0.787498\pi\)
0.949697 0.313170i \(-0.101391\pi\)
\(674\) 9.28425 5.36027i 0.357616 0.206470i
\(675\) 0 0
\(676\) −1.97464 + 3.42017i −0.0759476 + 0.131545i
\(677\) −11.2322 19.4547i −0.431687 0.747704i 0.565332 0.824864i \(-0.308748\pi\)
−0.997019 + 0.0771600i \(0.975415\pi\)
\(678\) 0 0
\(679\) 21.7882 25.9662i 0.836155 0.996491i
\(680\) 2.17686 + 1.25681i 0.0834786 + 0.0481964i
\(681\) 0 0
\(682\) 3.54014 + 20.0771i 0.135559 + 0.768794i
\(683\) −21.2410 25.3140i −0.812764 0.968614i 0.187142 0.982333i \(-0.440077\pi\)
−0.999906 + 0.0137189i \(0.995633\pi\)
\(684\) 0 0
\(685\) −5.57496 15.3171i −0.213008 0.585235i
\(686\) 12.9332 + 15.4131i 0.493790 + 0.588476i
\(687\) 0 0
\(688\) −3.71206 + 0.654536i −0.141521 + 0.0249540i
\(689\) 28.6222 + 16.5251i 1.09042 + 0.629554i
\(690\) 0 0
\(691\) −32.8077 11.9410i −1.24806 0.454258i −0.368317 0.929700i \(-0.620066\pi\)
−0.879747 + 0.475442i \(0.842288\pi\)
\(692\) −1.46490 2.53729i −0.0556872 0.0964531i
\(693\) 0 0
\(694\) 5.40451 4.53492i 0.205152 0.172143i
\(695\) −15.5877 + 8.99954i −0.591274 + 0.341372i
\(696\) 0 0
\(697\) 9.98299i 0.378133i
\(698\) 25.2560 + 4.45331i 0.955954 + 0.168560i
\(699\) 0 0
\(700\) 3.55540 1.29406i 0.134381 0.0489108i
\(701\) −9.15308 + 25.1479i −0.345707 + 0.949823i 0.637999 + 0.770037i \(0.279763\pi\)
−0.983706 + 0.179785i \(0.942460\pi\)
\(702\) 0 0
\(703\) 2.68438 + 9.12735i 0.101243 + 0.344245i
\(704\) 5.99619 0.225990
\(705\) 0 0
\(706\) −6.16948 + 2.24551i −0.232191 + 0.0845107i
\(707\) 6.53472 + 5.48328i 0.245763 + 0.206220i
\(708\) 0 0
\(709\) 6.67084i 0.250529i 0.992123 + 0.125264i \(0.0399779\pi\)
−0.992123 + 0.125264i \(0.960022\pi\)
\(710\) −4.89828 + 27.7795i −0.183829 + 1.04255i
\(711\) 0 0
\(712\) −12.4586 + 10.4540i −0.466906 + 0.391781i
\(713\) −10.8298 + 18.7578i −0.405580 + 0.702485i
\(714\) 0 0
\(715\) −60.5782 22.0487i −2.26550 0.824573i
\(716\) −5.63534 + 6.71594i −0.210603 + 0.250986i
\(717\) 0 0
\(718\) 19.5546 3.44800i 0.729771 0.128678i
\(719\) −8.26991 46.9010i −0.308416 1.74911i −0.606975 0.794721i \(-0.707617\pi\)
0.298559 0.954391i \(-0.403494\pi\)
\(720\) 0 0
\(721\) 7.68026 + 21.1013i 0.286028 + 0.785855i
\(722\) −5.66169 15.5554i −0.210706 0.578910i
\(723\) 0 0
\(724\) 4.64617 + 26.3498i 0.172674 + 0.979281i
\(725\) 7.26679 1.28133i 0.269882 0.0475874i
\(726\) 0 0
\(727\) −32.2308 + 38.4112i −1.19537 + 1.42459i −0.315802 + 0.948825i \(0.602274\pi\)
−0.879572 + 0.475766i \(0.842171\pi\)
\(728\) −8.04430 2.92789i −0.298142 0.108515i
\(729\) 0 0
\(730\) −4.63913 + 8.03520i −0.171702 + 0.297396i
\(731\) −2.77931 + 2.33212i −0.102796 + 0.0862565i
\(732\) 0 0
\(733\) 4.88298 27.6927i 0.180357 1.02285i −0.751420 0.659824i \(-0.770631\pi\)
0.931777 0.363031i \(-0.118258\pi\)
\(734\) 21.5993i 0.797244i
\(735\) 0 0
\(736\) 4.88011 + 4.09490i 0.179883 + 0.150940i
\(737\) −59.4657 + 21.6438i −2.19045 + 0.797258i
\(738\) 0 0
\(739\) 32.3511 1.19006 0.595028 0.803705i \(-0.297141\pi\)
0.595028 + 0.803705i \(0.297141\pi\)
\(740\) 9.42380 + 12.7874i 0.346426 + 0.470073i
\(741\) 0 0
\(742\) −5.70921 + 15.6859i −0.209592 + 0.575848i
\(743\) 7.05630 2.56828i 0.258871 0.0942212i −0.209325 0.977846i \(-0.567127\pi\)
0.468195 + 0.883625i \(0.344904\pi\)
\(744\) 0 0
\(745\) 8.98851 + 1.58492i 0.329313 + 0.0580668i
\(746\) 31.2808i 1.14527i
\(747\) 0 0
\(748\) 4.99834 2.88579i 0.182757 0.105515i
\(749\) 32.3441 27.1399i 1.18183 0.991672i
\(750\) 0 0
\(751\) −7.37086 12.7667i −0.268966 0.465863i 0.699629 0.714506i \(-0.253349\pi\)
−0.968595 + 0.248643i \(0.920015\pi\)
\(752\) −5.80261 2.11198i −0.211599 0.0770159i
\(753\) 0 0
\(754\) −14.4584 8.34759i −0.526546 0.304001i
\(755\) −24.1966 + 4.26651i −0.880603 + 0.155274i
\(756\) 0 0
\(757\) −14.2111 16.9361i −0.516511 0.615553i 0.443241 0.896402i \(-0.353828\pi\)
−0.959752 + 0.280849i \(0.909384\pi\)
\(758\) 6.86090 + 18.8502i 0.249199 + 0.684669i
\(759\) 0 0
\(760\) 2.62546 + 3.12890i 0.0952353 + 0.113497i
\(761\) −5.52983 31.3612i −0.200456 1.13684i −0.904431 0.426619i \(-0.859704\pi\)
0.703975 0.710225i \(-0.251407\pi\)
\(762\) 0 0
\(763\) 11.2185 + 6.47698i 0.406135 + 0.234482i
\(764\) 1.16832 1.39235i 0.0422682 0.0503733i
\(765\) 0 0
\(766\) 8.24957 + 14.2887i 0.298069 + 0.516271i
\(767\) −10.4986 + 18.1841i −0.379082 + 0.656589i
\(768\) 0 0
\(769\) 19.6375 11.3377i 0.708148 0.408849i −0.102227 0.994761i \(-0.532597\pi\)
0.810375 + 0.585912i \(0.199263\pi\)
\(770\) 5.65395 32.0652i 0.203754 1.15555i
\(771\) 0 0
\(772\) −1.04887 0.184945i −0.0377497 0.00665630i
\(773\) −9.05550 7.59846i −0.325704 0.273298i 0.465243 0.885183i \(-0.345967\pi\)
−0.790947 + 0.611885i \(0.790411\pi\)
\(774\) 0 0
\(775\) −2.11593 + 5.81348i −0.0760066 + 0.208826i
\(776\) 16.3015 0.585189
\(777\) 0 0
\(778\) −0.826432 −0.0296290
\(779\) 5.54818 15.2435i 0.198784 0.546155i
\(780\) 0 0
\(781\) 49.6162 + 41.6329i 1.77541 + 1.48974i
\(782\) 6.03875 + 1.06479i 0.215945 + 0.0380770i
\(783\) 0 0
\(784\) −0.464737 + 2.63566i −0.0165978 + 0.0941306i
\(785\) −5.73241