Properties

Label 666.2.bj.c.595.2
Level $666$
Weight $2$
Character 666.595
Analytic conductor $5.318$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bj (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 595.2
Root \(0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 666.595
Dual form 666.2.bj.c.469.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.642788 - 0.766044i) q^{2} +(-0.173648 - 0.984808i) q^{4} +(-0.273629 + 0.751790i) q^{5} +(-0.138449 - 0.0503913i) q^{7} +(-0.866025 - 0.500000i) q^{8} +O(q^{10})\) \(q+(0.642788 - 0.766044i) q^{2} +(-0.173648 - 0.984808i) q^{4} +(-0.273629 + 0.751790i) q^{5} +(-0.138449 - 0.0503913i) q^{7} +(-0.866025 - 0.500000i) q^{8} +(0.400019 + 0.692853i) q^{10} +(2.40570 - 4.16679i) q^{11} +(1.91858 - 0.338298i) q^{13} +(-0.127595 + 0.0736672i) q^{14} +(-0.939693 + 0.342020i) q^{16} +(3.43779 + 0.606175i) q^{17} +(-4.33625 - 5.16775i) q^{19} +(0.787884 + 0.138925i) q^{20} +(-1.64560 - 4.52124i) q^{22} +(3.61610 - 2.08776i) q^{23} +(3.33991 + 2.80251i) q^{25} +(0.974090 - 1.68717i) q^{26} +(-0.0255844 + 0.145096i) q^{28} +(-2.63134 - 1.51921i) q^{29} -8.13740i q^{31} +(-0.342020 + 0.939693i) q^{32} +(2.67412 - 2.24386i) q^{34} +(0.0757674 - 0.0902961i) q^{35} +(6.08227 - 0.0772535i) q^{37} -6.74601 q^{38} +(0.612865 - 0.514255i) q^{40} +(-0.676822 - 3.83845i) q^{41} +8.10852i q^{43} +(-4.52124 - 1.64560i) q^{44} +(0.725070 - 4.11208i) q^{46} +(4.16911 + 7.22111i) q^{47} +(-5.34568 - 4.48556i) q^{49} +(4.29370 - 0.757095i) q^{50} +(-0.666317 - 1.83069i) q^{52} +(-10.2327 + 3.72440i) q^{53} +(2.47428 + 2.94874i) q^{55} +(0.0947047 + 0.112865i) q^{56} +(-2.85517 + 1.03920i) q^{58} +(2.96569 + 8.14816i) q^{59} +(-0.346344 + 0.0610698i) q^{61} +(-6.23361 - 5.23062i) q^{62} +(0.500000 + 0.866025i) q^{64} +(-0.270651 + 1.53494i) q^{65} +(-2.25471 - 0.820647i) q^{67} -3.49082i q^{68} +(-0.0204685 - 0.116082i) q^{70} +(-5.34953 + 4.48879i) q^{71} +1.13399 q^{73} +(3.85043 - 4.70895i) q^{74} +(-4.33625 + 5.16775i) q^{76} +(-0.543037 + 0.455662i) q^{77} +(0.646510 - 1.77627i) q^{79} -0.800038i q^{80} +(-3.37547 - 1.94883i) q^{82} +(1.71997 - 9.75442i) q^{83} +(-1.39639 + 2.41863i) q^{85} +(6.21149 + 5.21206i) q^{86} +(-4.16679 + 2.40570i) q^{88} +(3.45924 + 9.50418i) q^{89} +(-0.282673 - 0.0498429i) q^{91} +(-2.68397 - 3.19863i) q^{92} +(8.21154 + 1.44792i) q^{94} +(5.07158 - 1.84591i) q^{95} +(5.08812 - 2.93763i) q^{97} +(-6.87228 + 1.21177i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{7} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 18 q^{14} - 18 q^{19} - 18 q^{25} - 12 q^{26} - 6 q^{28} - 18 q^{29} + 12 q^{34} - 18 q^{35} + 30 q^{37} + 24 q^{38} + 12 q^{40} - 24 q^{41} - 6 q^{44} + 30 q^{46} - 6 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 6 q^{58} - 36 q^{61} + 6 q^{64} - 36 q^{65} - 30 q^{67} - 12 q^{70} - 12 q^{71} + 48 q^{74} - 18 q^{76} - 12 q^{77} + 6 q^{79} + 48 q^{83} + 18 q^{85} + 36 q^{86} - 36 q^{88} + 18 q^{89} - 6 q^{91} - 18 q^{92} + 36 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.642788 0.766044i 0.454519 0.541675i
\(3\) 0 0
\(4\) −0.173648 0.984808i −0.0868241 0.492404i
\(5\) −0.273629 + 0.751790i −0.122371 + 0.336211i −0.985719 0.168397i \(-0.946141\pi\)
0.863349 + 0.504608i \(0.168363\pi\)
\(6\) 0 0
\(7\) −0.138449 0.0503913i −0.0523288 0.0190461i 0.315723 0.948851i \(-0.397753\pi\)
−0.368052 + 0.929805i \(0.619975\pi\)
\(8\) −0.866025 0.500000i −0.306186 0.176777i
\(9\) 0 0
\(10\) 0.400019 + 0.692853i 0.126497 + 0.219099i
\(11\) 2.40570 4.16679i 0.725346 1.25634i −0.233486 0.972360i \(-0.575013\pi\)
0.958832 0.283975i \(-0.0916533\pi\)
\(12\) 0 0
\(13\) 1.91858 0.338298i 0.532119 0.0938270i 0.0988686 0.995100i \(-0.468478\pi\)
0.433251 + 0.901274i \(0.357367\pi\)
\(14\) −0.127595 + 0.0736672i −0.0341013 + 0.0196884i
\(15\) 0 0
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) 3.43779 + 0.606175i 0.833786 + 0.147019i 0.574214 0.818705i \(-0.305308\pi\)
0.259572 + 0.965724i \(0.416419\pi\)
\(18\) 0 0
\(19\) −4.33625 5.16775i −0.994805 1.18556i −0.982619 0.185636i \(-0.940565\pi\)
−0.0121861 0.999926i \(-0.503879\pi\)
\(20\) 0.787884 + 0.138925i 0.176176 + 0.0310646i
\(21\) 0 0
\(22\) −1.64560 4.52124i −0.350842 0.963931i
\(23\) 3.61610 2.08776i 0.754009 0.435327i −0.0731316 0.997322i \(-0.523299\pi\)
0.827141 + 0.561995i \(0.189966\pi\)
\(24\) 0 0
\(25\) 3.33991 + 2.80251i 0.667981 + 0.560503i
\(26\) 0.974090 1.68717i 0.191035 0.330882i
\(27\) 0 0
\(28\) −0.0255844 + 0.145096i −0.00483499 + 0.0274206i
\(29\) −2.63134 1.51921i −0.488628 0.282109i 0.235377 0.971904i \(-0.424367\pi\)
−0.724005 + 0.689795i \(0.757701\pi\)
\(30\) 0 0
\(31\) 8.13740i 1.46152i −0.682634 0.730760i \(-0.739166\pi\)
0.682634 0.730760i \(-0.260834\pi\)
\(32\) −0.342020 + 0.939693i −0.0604612 + 0.166116i
\(33\) 0 0
\(34\) 2.67412 2.24386i 0.458609 0.384818i
\(35\) 0.0757674 0.0902961i 0.0128070 0.0152628i
\(36\) 0 0
\(37\) 6.08227 0.0772535i 0.999919 0.0127004i
\(38\) −6.74601 −1.09435
\(39\) 0 0
\(40\) 0.612865 0.514255i 0.0969024 0.0813108i
\(41\) −0.676822 3.83845i −0.105702 0.599465i −0.990938 0.134322i \(-0.957114\pi\)
0.885236 0.465142i \(-0.153997\pi\)
\(42\) 0 0
\(43\) 8.10852i 1.23654i 0.785966 + 0.618269i \(0.212166\pi\)
−0.785966 + 0.618269i \(0.787834\pi\)
\(44\) −4.52124 1.64560i −0.681602 0.248083i
\(45\) 0 0
\(46\) 0.725070 4.11208i 0.106906 0.606293i
\(47\) 4.16911 + 7.22111i 0.608127 + 1.05331i 0.991549 + 0.129734i \(0.0414122\pi\)
−0.383422 + 0.923573i \(0.625254\pi\)
\(48\) 0 0
\(49\) −5.34568 4.48556i −0.763669 0.640794i
\(50\) 4.29370 0.757095i 0.607221 0.107069i
\(51\) 0 0
\(52\) −0.666317 1.83069i −0.0924015 0.253871i
\(53\) −10.2327 + 3.72440i −1.40557 + 0.511586i −0.929827 0.367998i \(-0.880043\pi\)
−0.475744 + 0.879584i \(0.657821\pi\)
\(54\) 0 0
\(55\) 2.47428 + 2.94874i 0.333632 + 0.397607i
\(56\) 0.0947047 + 0.112865i 0.0126555 + 0.0150822i
\(57\) 0 0
\(58\) −2.85517 + 1.03920i −0.374902 + 0.136453i
\(59\) 2.96569 + 8.14816i 0.386100 + 1.06080i 0.968742 + 0.248072i \(0.0797968\pi\)
−0.582642 + 0.812729i \(0.697981\pi\)
\(60\) 0 0
\(61\) −0.346344 + 0.0610698i −0.0443448 + 0.00781919i −0.195777 0.980649i \(-0.562723\pi\)
0.151432 + 0.988468i \(0.451612\pi\)
\(62\) −6.23361 5.23062i −0.791670 0.664290i
\(63\) 0 0
\(64\) 0.500000 + 0.866025i 0.0625000 + 0.108253i
\(65\) −0.270651 + 1.53494i −0.0335702 + 0.190386i
\(66\) 0 0
\(67\) −2.25471 0.820647i −0.275457 0.100258i 0.200598 0.979674i \(-0.435711\pi\)
−0.476055 + 0.879416i \(0.657934\pi\)
\(68\) 3.49082i 0.423324i
\(69\) 0 0
\(70\) −0.0204685 0.116082i −0.00244645 0.0138745i
\(71\) −5.34953 + 4.48879i −0.634873 + 0.532721i −0.902439 0.430818i \(-0.858225\pi\)
0.267566 + 0.963539i \(0.413781\pi\)
\(72\) 0 0
\(73\) 1.13399 0.132724 0.0663618 0.997796i \(-0.478861\pi\)
0.0663618 + 0.997796i \(0.478861\pi\)
\(74\) 3.85043 4.70895i 0.447603 0.547404i
\(75\) 0 0
\(76\) −4.33625 + 5.16775i −0.497402 + 0.592781i
\(77\) −0.543037 + 0.455662i −0.0618848 + 0.0519275i
\(78\) 0 0
\(79\) 0.646510 1.77627i 0.0727380 0.199846i −0.897996 0.440004i \(-0.854977\pi\)
0.970734 + 0.240158i \(0.0771992\pi\)
\(80\) 0.800038i 0.0894470i
\(81\) 0 0
\(82\) −3.37547 1.94883i −0.372759 0.215212i
\(83\) 1.71997 9.75442i 0.188791 1.07069i −0.732196 0.681094i \(-0.761505\pi\)
0.920987 0.389593i \(-0.127384\pi\)
\(84\) 0 0
\(85\) −1.39639 + 2.41863i −0.151460 + 0.262337i
\(86\) 6.21149 + 5.21206i 0.669802 + 0.562031i
\(87\) 0 0
\(88\) −4.16679 + 2.40570i −0.444182 + 0.256448i
\(89\) 3.45924 + 9.50418i 0.366679 + 1.00744i 0.976616 + 0.214992i \(0.0689724\pi\)
−0.609937 + 0.792450i \(0.708805\pi\)
\(90\) 0 0
\(91\) −0.282673 0.0498429i −0.0296322 0.00522496i
\(92\) −2.68397 3.19863i −0.279823 0.333480i
\(93\) 0 0
\(94\) 8.21154 + 1.44792i 0.846956 + 0.149341i
\(95\) 5.07158 1.84591i 0.520333 0.189386i
\(96\) 0 0
\(97\) 5.08812 2.93763i 0.516620 0.298271i −0.218930 0.975740i \(-0.570257\pi\)
0.735551 + 0.677470i \(0.236923\pi\)
\(98\) −6.87228 + 1.21177i −0.694205 + 0.122407i
\(99\) 0 0
\(100\) 2.17997 3.77582i 0.217997 0.377582i
\(101\) 8.50866 + 14.7374i 0.846643 + 1.46643i 0.884187 + 0.467134i \(0.154713\pi\)
−0.0375439 + 0.999295i \(0.511953\pi\)
\(102\) 0 0
\(103\) 11.0391 + 6.37342i 1.08771 + 0.627992i 0.932967 0.359962i \(-0.117210\pi\)
0.154747 + 0.987954i \(0.450544\pi\)
\(104\) −1.83069 0.666317i −0.179514 0.0653377i
\(105\) 0 0
\(106\) −3.72440 + 10.2327i −0.361746 + 0.993889i
\(107\) −2.47252 14.0223i −0.239027 1.35559i −0.833964 0.551819i \(-0.813934\pi\)
0.594937 0.803773i \(-0.297177\pi\)
\(108\) 0 0
\(109\) −12.7198 + 15.1589i −1.21834 + 1.45196i −0.364674 + 0.931135i \(0.618819\pi\)
−0.853664 + 0.520823i \(0.825625\pi\)
\(110\) 3.84930 0.367017
\(111\) 0 0
\(112\) 0.147334 0.0139218
\(113\) −5.46470 + 6.51257i −0.514075 + 0.612651i −0.959169 0.282833i \(-0.908726\pi\)
0.445094 + 0.895484i \(0.353170\pi\)
\(114\) 0 0
\(115\) 0.580084 + 3.28982i 0.0540931 + 0.306777i
\(116\) −1.03920 + 2.85517i −0.0964871 + 0.265096i
\(117\) 0 0
\(118\) 8.14816 + 2.96569i 0.750099 + 0.273014i
\(119\) −0.445413 0.257159i −0.0408309 0.0235737i
\(120\) 0 0
\(121\) −6.07478 10.5218i −0.552252 0.956529i
\(122\) −0.175844 + 0.304570i −0.0159201 + 0.0275745i
\(123\) 0 0
\(124\) −8.01378 + 1.41305i −0.719659 + 0.126895i
\(125\) −6.48506 + 3.74415i −0.580042 + 0.334887i
\(126\) 0 0
\(127\) −5.19901 + 1.89229i −0.461338 + 0.167913i −0.562224 0.826985i \(-0.690054\pi\)
0.100887 + 0.994898i \(0.467832\pi\)
\(128\) 0.984808 + 0.173648i 0.0870455 + 0.0153485i
\(129\) 0 0
\(130\) 1.00186 + 1.19397i 0.0878690 + 0.104718i
\(131\) −0.810446 0.142903i −0.0708090 0.0124855i 0.138131 0.990414i \(-0.455890\pi\)
−0.208940 + 0.977928i \(0.567001\pi\)
\(132\) 0 0
\(133\) 0.339941 + 0.933979i 0.0294766 + 0.0809863i
\(134\) −2.07795 + 1.19971i −0.179508 + 0.103639i
\(135\) 0 0
\(136\) −2.67412 2.24386i −0.229304 0.192409i
\(137\) 3.37116 5.83902i 0.288018 0.498861i −0.685319 0.728243i \(-0.740337\pi\)
0.973336 + 0.229382i \(0.0736705\pi\)
\(138\) 0 0
\(139\) −2.08444 + 11.8214i −0.176800 + 1.00268i 0.759246 + 0.650804i \(0.225568\pi\)
−0.936046 + 0.351878i \(0.885543\pi\)
\(140\) −0.102081 0.0589366i −0.00862743 0.00498105i
\(141\) 0 0
\(142\) 6.98332i 0.586027i
\(143\) 3.20592 8.80818i 0.268092 0.736577i
\(144\) 0 0
\(145\) 1.86213 1.56252i 0.154642 0.129760i
\(146\) 0.728915 0.868687i 0.0603254 0.0718930i
\(147\) 0 0
\(148\) −1.13226 5.97645i −0.0930708 0.491261i
\(149\) 9.21354 0.754803 0.377401 0.926050i \(-0.376818\pi\)
0.377401 + 0.926050i \(0.376818\pi\)
\(150\) 0 0
\(151\) 9.02729 7.57480i 0.734631 0.616428i −0.196759 0.980452i \(-0.563042\pi\)
0.931390 + 0.364023i \(0.118597\pi\)
\(152\) 1.17143 + 6.64352i 0.0950157 + 0.538861i
\(153\) 0 0
\(154\) 0.708885i 0.0571235i
\(155\) 6.11762 + 2.22663i 0.491379 + 0.178847i
\(156\) 0 0
\(157\) −3.01657 + 17.1078i −0.240749 + 1.36535i 0.589414 + 0.807831i \(0.299359\pi\)
−0.830162 + 0.557522i \(0.811752\pi\)
\(158\) −0.945134 1.63702i −0.0751908 0.130234i
\(159\) 0 0
\(160\) −0.612865 0.514255i −0.0484512 0.0406554i
\(161\) −0.605851 + 0.106828i −0.0477477 + 0.00841921i
\(162\) 0 0
\(163\) 0.773358 + 2.12478i 0.0605741 + 0.166426i 0.966288 0.257464i \(-0.0828867\pi\)
−0.905714 + 0.423889i \(0.860665\pi\)
\(164\) −3.66260 + 1.33308i −0.286001 + 0.104096i
\(165\) 0 0
\(166\) −6.36675 7.58759i −0.494155 0.588912i
\(167\) 10.2563 + 12.2230i 0.793658 + 0.945845i 0.999464 0.0327478i \(-0.0104258\pi\)
−0.205805 + 0.978593i \(0.565981\pi\)
\(168\) 0 0
\(169\) −8.64949 + 3.14816i −0.665345 + 0.242166i
\(170\) 0.955190 + 2.62436i 0.0732598 + 0.201280i
\(171\) 0 0
\(172\) 7.98534 1.40803i 0.608876 0.107361i
\(173\) 2.35572 + 1.97668i 0.179102 + 0.150284i 0.727931 0.685650i \(-0.240482\pi\)
−0.548829 + 0.835934i \(0.684926\pi\)
\(174\) 0 0
\(175\) −0.321185 0.556308i −0.0242793 0.0420529i
\(176\) −0.835490 + 4.73830i −0.0629775 + 0.357163i
\(177\) 0 0
\(178\) 9.50418 + 3.45924i 0.712368 + 0.259281i
\(179\) 10.4466i 0.780819i −0.920641 0.390410i \(-0.872333\pi\)
0.920641 0.390410i \(-0.127667\pi\)
\(180\) 0 0
\(181\) 1.56392 + 8.86942i 0.116245 + 0.659259i 0.986126 + 0.165997i \(0.0530843\pi\)
−0.869881 + 0.493262i \(0.835805\pi\)
\(182\) −0.219881 + 0.184502i −0.0162986 + 0.0136762i
\(183\) 0 0
\(184\) −4.17551 −0.307823
\(185\) −1.60621 + 4.59373i −0.118091 + 0.337738i
\(186\) 0 0
\(187\) 10.7961 12.8663i 0.789488 0.940875i
\(188\) 6.38745 5.35970i 0.465852 0.390897i
\(189\) 0 0
\(190\) 1.84591 5.07158i 0.133916 0.367931i
\(191\) 1.00551i 0.0727558i −0.999338 0.0363779i \(-0.988418\pi\)
0.999338 0.0363779i \(-0.0115820\pi\)
\(192\) 0 0
\(193\) −9.52217 5.49763i −0.685421 0.395728i 0.116473 0.993194i \(-0.462841\pi\)
−0.801894 + 0.597466i \(0.796174\pi\)
\(194\) 1.02023 5.78600i 0.0732481 0.415410i
\(195\) 0 0
\(196\) −3.48915 + 6.04338i −0.249225 + 0.431670i
\(197\) −19.8444 16.6514i −1.41386 1.18637i −0.954537 0.298094i \(-0.903649\pi\)
−0.459319 0.888271i \(-0.651906\pi\)
\(198\) 0 0
\(199\) −13.4873 + 7.78692i −0.956092 + 0.552000i −0.894968 0.446130i \(-0.852802\pi\)
−0.0611237 + 0.998130i \(0.519468\pi\)
\(200\) −1.49119 4.09700i −0.105443 0.289702i
\(201\) 0 0
\(202\) 16.7588 + 2.95503i 1.17914 + 0.207915i
\(203\) 0.287752 + 0.342929i 0.0201962 + 0.0240689i
\(204\) 0 0
\(205\) 3.07090 + 0.541483i 0.214481 + 0.0378188i
\(206\) 11.9781 4.35968i 0.834555 0.303753i
\(207\) 0 0
\(208\) −1.68717 + 0.974090i −0.116984 + 0.0675410i
\(209\) −31.9646 + 5.63623i −2.21104 + 0.389866i
\(210\) 0 0
\(211\) 11.5871 20.0694i 0.797688 1.38164i −0.123430 0.992353i \(-0.539390\pi\)
0.921118 0.389283i \(-0.127277\pi\)
\(212\) 5.44471 + 9.43052i 0.373944 + 0.647691i
\(213\) 0 0
\(214\) −12.3310 7.11933i −0.842933 0.486667i
\(215\) −6.09591 2.21873i −0.415737 0.151316i
\(216\) 0 0
\(217\) −0.410055 + 1.12662i −0.0278363 + 0.0764797i
\(218\) 3.43624 + 19.4879i 0.232732 + 1.31989i
\(219\) 0 0
\(220\) 2.47428 2.94874i 0.166816 0.198804i
\(221\) 6.80075 0.457468
\(222\) 0 0
\(223\) 9.91195 0.663754 0.331877 0.943323i \(-0.392318\pi\)
0.331877 + 0.943323i \(0.392318\pi\)
\(224\) 0.0947047 0.112865i 0.00632773 0.00754109i
\(225\) 0 0
\(226\) 1.47628 + 8.37240i 0.0982007 + 0.556924i
\(227\) 0.684171 1.87974i 0.0454100 0.124763i −0.914915 0.403647i \(-0.867742\pi\)
0.960325 + 0.278884i \(0.0899646\pi\)
\(228\) 0 0
\(229\) 8.40320 + 3.05851i 0.555299 + 0.202112i 0.604399 0.796682i \(-0.293413\pi\)
−0.0491004 + 0.998794i \(0.515635\pi\)
\(230\) 2.89302 + 1.67028i 0.190760 + 0.110135i
\(231\) 0 0
\(232\) 1.51921 + 2.63134i 0.0997407 + 0.172756i
\(233\) −10.8675 + 18.8230i −0.711952 + 1.23314i 0.252171 + 0.967683i \(0.418855\pi\)
−0.964123 + 0.265455i \(0.914478\pi\)
\(234\) 0 0
\(235\) −6.56955 + 1.15839i −0.428550 + 0.0755649i
\(236\) 7.50939 4.33555i 0.488820 0.282220i
\(237\) 0 0
\(238\) −0.483301 + 0.175907i −0.0313278 + 0.0114024i
\(239\) 7.79702 + 1.37482i 0.504347 + 0.0889300i 0.420032 0.907509i \(-0.362019\pi\)
0.0843148 + 0.996439i \(0.473130\pi\)
\(240\) 0 0
\(241\) 19.1413 + 22.8117i 1.23300 + 1.46943i 0.833334 + 0.552769i \(0.186429\pi\)
0.399665 + 0.916661i \(0.369127\pi\)
\(242\) −11.9650 2.10975i −0.769137 0.135620i
\(243\) 0 0
\(244\) 0.120284 + 0.330478i 0.00770040 + 0.0211567i
\(245\) 4.83493 2.79145i 0.308893 0.178339i
\(246\) 0 0
\(247\) −10.0677 8.44780i −0.640592 0.537521i
\(248\) −4.06870 + 7.04720i −0.258363 + 0.447498i
\(249\) 0 0
\(250\) −1.30033 + 7.37454i −0.0822402 + 0.466407i
\(251\) −19.7765 11.4180i −1.24828 0.720695i −0.277514 0.960721i \(-0.589511\pi\)
−0.970766 + 0.240026i \(0.922844\pi\)
\(252\) 0 0
\(253\) 20.0901i 1.26305i
\(254\) −1.89229 + 5.19901i −0.118733 + 0.326215i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 10.5496 12.5726i 0.658068 0.784255i −0.329039 0.944316i \(-0.606725\pi\)
0.987107 + 0.160062i \(0.0511693\pi\)
\(258\) 0 0
\(259\) −0.845978 0.295798i −0.0525665 0.0183800i
\(260\) 1.55862 0.0966614
\(261\) 0 0
\(262\) −0.630415 + 0.528981i −0.0389472 + 0.0326806i
\(263\) −0.270840 1.53601i −0.0167007 0.0947145i 0.975318 0.220805i \(-0.0708683\pi\)
−0.992019 + 0.126090i \(0.959757\pi\)
\(264\) 0 0
\(265\) 8.71195i 0.535171i
\(266\) 0.933979 + 0.339941i 0.0572659 + 0.0208431i
\(267\) 0 0
\(268\) −0.416654 + 2.36296i −0.0254512 + 0.144341i
\(269\) 1.64927 + 2.85662i 0.100558 + 0.174171i 0.911915 0.410380i \(-0.134604\pi\)
−0.811357 + 0.584551i \(0.801271\pi\)
\(270\) 0 0
\(271\) 2.76033 + 2.31620i 0.167678 + 0.140699i 0.722766 0.691093i \(-0.242871\pi\)
−0.555087 + 0.831792i \(0.687315\pi\)
\(272\) −3.43779 + 0.606175i −0.208447 + 0.0367547i
\(273\) 0 0
\(274\) −2.30601 6.33571i −0.139311 0.382754i
\(275\) 19.7123 7.17469i 1.18870 0.432650i
\(276\) 0 0
\(277\) −10.0841 12.0177i −0.605894 0.722076i 0.372683 0.927959i \(-0.378438\pi\)
−0.978577 + 0.205883i \(0.933993\pi\)
\(278\) 7.71590 + 9.19545i 0.462769 + 0.551506i
\(279\) 0 0
\(280\) −0.110765 + 0.0403150i −0.00661945 + 0.00240928i
\(281\) 1.74041 + 4.78173i 0.103824 + 0.285254i 0.980718 0.195431i \(-0.0626105\pi\)
−0.876894 + 0.480684i \(0.840388\pi\)
\(282\) 0 0
\(283\) −9.02521 + 1.59139i −0.536493 + 0.0945982i −0.435329 0.900272i \(-0.643368\pi\)
−0.101164 + 0.994870i \(0.532257\pi\)
\(284\) 5.34953 + 4.48879i 0.317436 + 0.266361i
\(285\) 0 0
\(286\) −4.68673 8.11766i −0.277132 0.480007i
\(287\) −0.0997192 + 0.565536i −0.00588624 + 0.0333825i
\(288\) 0 0
\(289\) −4.52384 1.64654i −0.266108 0.0968554i
\(290\) 2.43084i 0.142744i
\(291\) 0 0
\(292\) −0.196915 1.11676i −0.0115236 0.0653536i
\(293\) 19.3966 16.2757i 1.13316 0.950838i 0.133970 0.990985i \(-0.457227\pi\)
0.999194 + 0.0401477i \(0.0127829\pi\)
\(294\) 0 0
\(295\) −6.93721 −0.403900
\(296\) −5.30603 2.97423i −0.308407 0.172874i
\(297\) 0 0
\(298\) 5.92235 7.05798i 0.343073 0.408858i
\(299\) 6.23150 5.22885i 0.360377 0.302392i
\(300\) 0 0
\(301\) 0.408599 1.12262i 0.0235513 0.0647066i
\(302\) 11.7843i 0.678110i
\(303\) 0 0
\(304\) 5.84222 + 3.37301i 0.335074 + 0.193455i
\(305\) 0.0488582 0.277089i 0.00279761 0.0158660i
\(306\) 0 0
\(307\) 4.35284 7.53934i 0.248430 0.430293i −0.714661 0.699471i \(-0.753419\pi\)
0.963090 + 0.269178i \(0.0867521\pi\)
\(308\) 0.543037 + 0.455662i 0.0309424 + 0.0259638i
\(309\) 0 0
\(310\) 5.63803 3.25512i 0.320218 0.184878i
\(311\) −1.98686 5.45885i −0.112664 0.309543i 0.870527 0.492121i \(-0.163778\pi\)
−0.983191 + 0.182578i \(0.941556\pi\)
\(312\) 0 0
\(313\) −7.74595 1.36582i −0.437827 0.0772007i −0.0496099 0.998769i \(-0.515798\pi\)
−0.388217 + 0.921568i \(0.626909\pi\)
\(314\) 11.1663 + 13.3075i 0.630153 + 0.750987i
\(315\) 0 0
\(316\) −1.86155 0.328242i −0.104720 0.0184650i
\(317\) −5.26133 + 1.91497i −0.295506 + 0.107555i −0.485519 0.874226i \(-0.661369\pi\)
0.190013 + 0.981782i \(0.439147\pi\)
\(318\) 0 0
\(319\) −12.6604 + 7.30950i −0.708848 + 0.409253i
\(320\) −0.787884 + 0.138925i −0.0440440 + 0.00776615i
\(321\) 0 0
\(322\) −0.307598 + 0.532776i −0.0171418 + 0.0296905i
\(323\) −11.7746 20.3941i −0.655154 1.13476i
\(324\) 0 0
\(325\) 7.35597 + 4.24697i 0.408036 + 0.235580i
\(326\) 2.12478 + 0.773358i 0.117681 + 0.0428323i
\(327\) 0 0
\(328\) −1.33308 + 3.66260i −0.0736070 + 0.202234i
\(329\) −0.213328 1.20984i −0.0117612 0.0667008i
\(330\) 0 0
\(331\) −11.6926 + 13.9348i −0.642686 + 0.765923i −0.984792 0.173738i \(-0.944415\pi\)
0.342106 + 0.939661i \(0.388860\pi\)
\(332\) −9.90490 −0.543602
\(333\) 0 0
\(334\) 15.9560 0.873074
\(335\) 1.23391 1.47052i 0.0674156 0.0803428i
\(336\) 0 0
\(337\) −5.73735 32.5381i −0.312533 1.77246i −0.585731 0.810505i \(-0.699193\pi\)
0.273198 0.961958i \(-0.411919\pi\)
\(338\) −3.14816 + 8.64949i −0.171237 + 0.470470i
\(339\) 0 0
\(340\) 2.62436 + 0.955190i 0.142326 + 0.0518025i
\(341\) −33.9069 19.5761i −1.83616 1.06011i
\(342\) 0 0
\(343\) 1.02974 + 1.78357i 0.0556008 + 0.0963035i
\(344\) 4.05426 7.02219i 0.218591 0.378611i
\(345\) 0 0
\(346\) 3.02845 0.533998i 0.162811 0.0287079i
\(347\) −27.9743 + 16.1510i −1.50174 + 0.867029i −0.501740 + 0.865018i \(0.667307\pi\)
−0.999998 + 0.00201032i \(0.999360\pi\)
\(348\) 0 0
\(349\) −2.14851 + 0.781994i −0.115007 + 0.0418592i −0.398883 0.917002i \(-0.630602\pi\)
0.283876 + 0.958861i \(0.408380\pi\)
\(350\) −0.632610 0.111546i −0.0338144 0.00596240i
\(351\) 0 0
\(352\) 3.09271 + 3.68574i 0.164842 + 0.196451i
\(353\) −6.32439 1.11516i −0.336613 0.0593540i 0.00278690 0.999996i \(-0.499113\pi\)
−0.339400 + 0.940642i \(0.610224\pi\)
\(354\) 0 0
\(355\) −1.91084 5.24999i −0.101417 0.278640i
\(356\) 8.75910 5.05707i 0.464231 0.268024i
\(357\) 0 0
\(358\) −8.00260 6.71498i −0.422950 0.354898i
\(359\) −3.66122 + 6.34142i −0.193232 + 0.334687i −0.946319 0.323233i \(-0.895230\pi\)
0.753088 + 0.657920i \(0.228564\pi\)
\(360\) 0 0
\(361\) −4.60318 + 26.1060i −0.242273 + 1.37400i
\(362\) 7.79964 + 4.50312i 0.409940 + 0.236679i
\(363\) 0 0
\(364\) 0.287034i 0.0150447i
\(365\) −0.310293 + 0.852522i −0.0162415 + 0.0446231i
\(366\) 0 0
\(367\) 24.1722 20.2829i 1.26178 1.05876i 0.266288 0.963893i \(-0.414203\pi\)
0.995490 0.0948646i \(-0.0302418\pi\)
\(368\) −2.68397 + 3.19863i −0.139912 + 0.166740i
\(369\) 0 0
\(370\) 2.48655 + 4.18322i 0.129270 + 0.217475i
\(371\) 1.60439 0.0832956
\(372\) 0 0
\(373\) −6.41137 + 5.37977i −0.331968 + 0.278554i −0.793501 0.608569i \(-0.791744\pi\)
0.461533 + 0.887123i \(0.347300\pi\)
\(374\) −2.91655 16.5406i −0.150811 0.855292i
\(375\) 0 0
\(376\) 8.33822i 0.430011i
\(377\) −5.56239 2.02454i −0.286478 0.104269i
\(378\) 0 0
\(379\) 4.89452 27.7582i 0.251415 1.42584i −0.553696 0.832719i \(-0.686783\pi\)
0.805111 0.593124i \(-0.202106\pi\)
\(380\) −2.69853 4.67400i −0.138432 0.239771i
\(381\) 0 0
\(382\) −0.770262 0.646327i −0.0394100 0.0330689i
\(383\) 8.95650 1.57927i 0.457656 0.0806970i 0.0599323 0.998202i \(-0.480912\pi\)
0.397723 + 0.917505i \(0.369800\pi\)
\(384\) 0 0
\(385\) −0.193971 0.532932i −0.00988570 0.0271607i
\(386\) −10.3322 + 3.76060i −0.525893 + 0.191409i
\(387\) 0 0
\(388\) −3.77654 4.50071i −0.191725 0.228489i
\(389\) 1.28903 + 1.53620i 0.0653563 + 0.0778886i 0.797732 0.603012i \(-0.206033\pi\)
−0.732376 + 0.680901i \(0.761589\pi\)
\(390\) 0 0
\(391\) 13.6969 4.98528i 0.692684 0.252116i
\(392\) 2.38672 + 6.55745i 0.120547 + 0.331201i
\(393\) 0 0
\(394\) −25.5115 + 4.49836i −1.28525 + 0.226624i
\(395\) 1.15848 + 0.972079i 0.0582894 + 0.0489106i
\(396\) 0 0
\(397\) −9.53782 16.5200i −0.478690 0.829115i 0.521012 0.853550i \(-0.325555\pi\)
−0.999701 + 0.0244346i \(0.992221\pi\)
\(398\) −2.70437 + 15.3372i −0.135558 + 0.768786i
\(399\) 0 0
\(400\) −4.09700 1.49119i −0.204850 0.0745593i
\(401\) 24.7444i 1.23568i 0.786305 + 0.617839i \(0.211992\pi\)
−0.786305 + 0.617839i \(0.788008\pi\)
\(402\) 0 0
\(403\) −2.75287 15.6123i −0.137130 0.777703i
\(404\) 13.0360 10.9385i 0.648566 0.544212i
\(405\) 0 0
\(406\) 0.447662 0.0222171
\(407\) 14.3102 25.5294i 0.709331 1.26545i
\(408\) 0 0
\(409\) −15.8423 + 18.8801i −0.783350 + 0.933560i −0.999080 0.0428927i \(-0.986343\pi\)
0.215729 + 0.976453i \(0.430787\pi\)
\(410\) 2.38874 2.00439i 0.117971 0.0989898i
\(411\) 0 0
\(412\) 4.35968 11.9781i 0.214786 0.590120i
\(413\) 1.27755i 0.0628642i
\(414\) 0 0
\(415\) 6.86264 + 3.96215i 0.336874 + 0.194494i
\(416\) −0.338298 + 1.91858i −0.0165864 + 0.0940663i
\(417\) 0 0
\(418\) −16.2289 + 28.1092i −0.793780 + 1.37487i
\(419\) 14.0011 + 11.7483i 0.683997 + 0.573942i 0.917171 0.398493i \(-0.130467\pi\)
−0.233174 + 0.972435i \(0.574911\pi\)
\(420\) 0 0
\(421\) 32.5605 18.7988i 1.58690 0.916198i 0.593087 0.805138i \(-0.297909\pi\)
0.993814 0.111060i \(-0.0354245\pi\)
\(422\) −7.92603 21.7766i −0.385833 1.06007i
\(423\) 0 0
\(424\) 10.7240 + 1.89093i 0.520803 + 0.0918316i
\(425\) 9.78308 + 11.6590i 0.474549 + 0.565545i
\(426\) 0 0
\(427\) 0.0510284 + 0.00899769i 0.00246944 + 0.000435429i
\(428\) −13.3800 + 4.86991i −0.646745 + 0.235396i
\(429\) 0 0
\(430\) −5.61802 + 3.24356i −0.270925 + 0.156419i
\(431\) 36.3170 6.40367i 1.74933 0.308454i 0.794867 0.606784i \(-0.207541\pi\)
0.954463 + 0.298330i \(0.0964295\pi\)
\(432\) 0 0
\(433\) −5.44689 + 9.43429i −0.261761 + 0.453383i −0.966710 0.255875i \(-0.917637\pi\)
0.704949 + 0.709258i \(0.250970\pi\)
\(434\) 0.599460 + 1.03829i 0.0287750 + 0.0498398i
\(435\) 0 0
\(436\) 17.1374 + 9.89427i 0.820731 + 0.473849i
\(437\) −26.4693 9.63404i −1.26620 0.460859i
\(438\) 0 0
\(439\) 6.39195 17.5617i 0.305071 0.838176i −0.688528 0.725210i \(-0.741743\pi\)
0.993599 0.112966i \(-0.0360351\pi\)
\(440\) −0.668424 3.79082i −0.0318659 0.180720i
\(441\) 0 0
\(442\) 4.37144 5.20968i 0.207928 0.247799i
\(443\) −18.1659 −0.863090 −0.431545 0.902092i \(-0.642031\pi\)
−0.431545 + 0.902092i \(0.642031\pi\)
\(444\) 0 0
\(445\) −8.09170 −0.383583
\(446\) 6.37128 7.59300i 0.301689 0.359539i
\(447\) 0 0
\(448\) −0.0255844 0.145096i −0.00120875 0.00685515i
\(449\) 5.32504 14.6304i 0.251304 0.690453i −0.748328 0.663329i \(-0.769143\pi\)
0.999632 0.0271236i \(-0.00863478\pi\)
\(450\) 0 0
\(451\) −17.6222 6.41397i −0.829799 0.302022i
\(452\) 7.36257 + 4.25078i 0.346306 + 0.199940i
\(453\) 0 0
\(454\) −1.00019 1.73238i −0.0469413 0.0813047i
\(455\) 0.114819 0.198872i 0.00538280 0.00932328i
\(456\) 0 0
\(457\) −10.8568 + 1.91434i −0.507858 + 0.0895491i −0.421705 0.906733i \(-0.638568\pi\)
−0.0861526 + 0.996282i \(0.527457\pi\)
\(458\) 7.74443 4.47125i 0.361873 0.208928i
\(459\) 0 0
\(460\) 3.13911 1.14254i 0.146362 0.0532713i
\(461\) 21.0232 + 3.70696i 0.979148 + 0.172650i 0.640245 0.768171i \(-0.278833\pi\)
0.338903 + 0.940821i \(0.389944\pi\)
\(462\) 0 0
\(463\) 21.3348 + 25.4258i 0.991512 + 1.18164i 0.983359 + 0.181671i \(0.0581506\pi\)
0.00815253 + 0.999967i \(0.497405\pi\)
\(464\) 2.99225 + 0.527614i 0.138912 + 0.0244939i
\(465\) 0 0
\(466\) 7.43379 + 20.4242i 0.344364 + 0.946132i
\(467\) −12.8279 + 7.40621i −0.593606 + 0.342719i −0.766522 0.642218i \(-0.778014\pi\)
0.172916 + 0.984937i \(0.444681\pi\)
\(468\) 0 0
\(469\) 0.270809 + 0.227236i 0.0125048 + 0.0104928i
\(470\) −3.33545 + 5.77716i −0.153853 + 0.266481i
\(471\) 0 0
\(472\) 1.50572 8.53936i 0.0693064 0.393056i
\(473\) 33.7865 + 19.5067i 1.55351 + 0.896917i
\(474\) 0 0
\(475\) 29.4122i 1.34952i
\(476\) −0.175907 + 0.483301i −0.00806269 + 0.0221521i
\(477\) 0 0
\(478\) 6.06500 5.08914i 0.277407 0.232772i
\(479\) −5.78865 + 6.89864i −0.264490 + 0.315207i −0.881902 0.471433i \(-0.843737\pi\)
0.617412 + 0.786640i \(0.288181\pi\)
\(480\) 0 0
\(481\) 11.6432 2.20584i 0.530885 0.100578i
\(482\) 29.7786 1.35638
\(483\) 0 0
\(484\) −9.30710 + 7.80958i −0.423050 + 0.354981i
\(485\) 0.816221 + 4.62902i 0.0370627 + 0.210193i
\(486\) 0 0
\(487\) 3.39198i 0.153705i −0.997042 0.0768525i \(-0.975513\pi\)
0.997042 0.0768525i \(-0.0244871\pi\)
\(488\) 0.330478 + 0.120284i 0.0149600 + 0.00544500i
\(489\) 0 0
\(490\) 0.969460 5.49808i 0.0437958 0.248378i
\(491\) −10.3671 17.9564i −0.467862 0.810361i 0.531463 0.847081i \(-0.321642\pi\)
−0.999326 + 0.0367202i \(0.988309\pi\)
\(492\) 0 0
\(493\) −8.12509 6.81776i −0.365935 0.307056i
\(494\) −12.9428 + 2.28216i −0.582323 + 0.102679i
\(495\) 0 0
\(496\) 2.78316 + 7.64666i 0.124967 + 0.343345i
\(497\) 0.966834 0.351899i 0.0433684 0.0157848i
\(498\) 0 0
\(499\) 15.8653 + 18.9076i 0.710229 + 0.846418i 0.993643 0.112579i \(-0.0359113\pi\)
−0.283413 + 0.958998i \(0.591467\pi\)
\(500\) 4.81339 + 5.73638i 0.215261 + 0.256539i
\(501\) 0 0
\(502\) −21.4587 + 7.81034i −0.957751 + 0.348593i
\(503\) 5.69356 + 15.6429i 0.253863 + 0.697484i 0.999515 + 0.0311477i \(0.00991621\pi\)
−0.745651 + 0.666336i \(0.767862\pi\)
\(504\) 0 0
\(505\) −13.4077 + 2.36413i −0.596633 + 0.105203i
\(506\) −15.3899 12.9136i −0.684163 0.574081i
\(507\) 0 0
\(508\) 2.76634 + 4.79144i 0.122736 + 0.212586i
\(509\) −4.36442 + 24.7519i −0.193450 + 1.09711i 0.721160 + 0.692769i \(0.243609\pi\)
−0.914609 + 0.404339i \(0.867502\pi\)
\(510\) 0 0
\(511\) −0.157000 0.0571433i −0.00694527 0.00252787i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −2.84997 16.1630i −0.125707 0.712918i
\(515\) −7.81209 + 6.55513i −0.344242 + 0.288853i
\(516\) 0 0
\(517\) 40.1185 1.76441
\(518\) −0.770379 + 0.457921i −0.0338485 + 0.0201199i
\(519\) 0 0
\(520\) 1.00186 1.19397i 0.0439345 0.0523591i
\(521\) 22.0872 18.5334i 0.967659 0.811962i −0.0145232 0.999895i \(-0.504623\pi\)
0.982182 + 0.187932i \(0.0601786\pi\)
\(522\) 0 0
\(523\) 1.23619 3.39641i 0.0540548 0.148514i −0.909727 0.415208i \(-0.863709\pi\)
0.963781 + 0.266693i \(0.0859311\pi\)
\(524\) 0.822948i 0.0359507i
\(525\) 0 0
\(526\) −1.35075 0.779853i −0.0588953 0.0340032i
\(527\) 4.93269 27.9747i 0.214871 1.21860i
\(528\) 0 0
\(529\) −2.78255 + 4.81951i −0.120980 + 0.209544i
\(530\) −6.67374 5.59994i −0.289889 0.243246i
\(531\) 0 0
\(532\) 0.860760 0.496960i 0.0373187 0.0215459i
\(533\) −2.59708 7.13541i −0.112492 0.309069i
\(534\) 0 0
\(535\) 11.2184 + 1.97811i 0.485014 + 0.0855211i
\(536\) 1.54231 + 1.83806i 0.0666178 + 0.0793920i
\(537\) 0 0
\(538\) 3.24843 + 0.572786i 0.140050 + 0.0246946i
\(539\) −31.5505 + 11.4834i −1.35898 + 0.494627i
\(540\) 0 0
\(541\) −9.89184 + 5.71106i −0.425284 + 0.245538i −0.697335 0.716745i \(-0.745631\pi\)
0.272052 + 0.962283i \(0.412298\pi\)
\(542\) 3.54862 0.625717i 0.152426 0.0268768i
\(543\) 0 0
\(544\) −1.74541 + 3.02314i −0.0748339 + 0.129616i
\(545\) −7.91579 13.7106i −0.339075 0.587295i
\(546\) 0 0
\(547\) 28.9864 + 16.7353i 1.23937 + 0.715550i 0.968965 0.247197i \(-0.0795094\pi\)
0.270404 + 0.962747i \(0.412843\pi\)
\(548\) −6.33571 2.30601i −0.270648 0.0985078i
\(549\) 0 0
\(550\) 7.17469 19.7123i 0.305930 0.840536i
\(551\) 3.55929 + 20.1858i 0.151631 + 0.859942i
\(552\) 0 0
\(553\) −0.179017 + 0.213345i −0.00761259 + 0.00907234i
\(554\) −15.6880 −0.666521
\(555\) 0 0
\(556\) 12.0038 0.509075
\(557\) −12.5025 + 14.8999i −0.529747 + 0.631328i −0.962857 0.270013i \(-0.912972\pi\)
0.433109 + 0.901341i \(0.357416\pi\)
\(558\) 0 0
\(559\) 2.74310 + 15.5569i 0.116021 + 0.657986i
\(560\) −0.0403150 + 0.110765i −0.00170362 + 0.00468066i
\(561\) 0 0
\(562\) 4.78173 + 1.74041i 0.201705 + 0.0734146i
\(563\) −16.3919 9.46387i −0.690837 0.398855i 0.113089 0.993585i \(-0.463926\pi\)
−0.803925 + 0.594730i \(0.797259\pi\)
\(564\) 0 0
\(565\) −3.40079 5.89033i −0.143072 0.247808i
\(566\) −4.58222 + 7.93663i −0.192605 + 0.333602i
\(567\) 0 0
\(568\) 6.87722 1.21264i 0.288562 0.0508813i
\(569\) −6.71294 + 3.87572i −0.281421 + 0.162479i −0.634067 0.773278i \(-0.718616\pi\)
0.352645 + 0.935757i \(0.385282\pi\)
\(570\) 0 0
\(571\) −4.66196 + 1.69681i −0.195097 + 0.0710094i −0.437721 0.899111i \(-0.644214\pi\)
0.242624 + 0.970120i \(0.421992\pi\)
\(572\) −9.23107 1.62769i −0.385970 0.0680570i
\(573\) 0 0
\(574\) 0.369127 + 0.439909i 0.0154071 + 0.0183614i
\(575\) 17.9284 + 3.16126i 0.747666 + 0.131834i
\(576\) 0 0
\(577\) 7.21587 + 19.8254i 0.300401 + 0.825344i 0.994430 + 0.105397i \(0.0336114\pi\)
−0.694030 + 0.719946i \(0.744166\pi\)
\(578\) −4.16919 + 2.40708i −0.173415 + 0.100121i
\(579\) 0 0
\(580\) −1.86213 1.56252i −0.0773209 0.0648800i
\(581\) −0.729667 + 1.26382i −0.0302717 + 0.0524321i
\(582\) 0 0
\(583\) −9.09801 + 51.5974i −0.376801 + 2.13694i
\(584\) −0.982064 0.566995i −0.0406381 0.0234624i
\(585\) 0 0
\(586\) 25.3205i 1.04598i
\(587\) 0.000238503 0 0.000655281i 9.84406e−6 0 2.70463e-5i −0.939688 0.342034i \(-0.888884\pi\)
0.939698 + 0.342007i \(0.111107\pi\)
\(588\) 0 0
\(589\) −42.0520 + 35.2858i −1.73272 + 1.45393i
\(590\) −4.45915 + 5.31421i −0.183580 + 0.218783i
\(591\) 0 0
\(592\) −5.68904 + 2.15285i −0.233818 + 0.0884818i
\(593\) 8.38840 0.344470 0.172235 0.985056i \(-0.444901\pi\)
0.172235 + 0.985056i \(0.444901\pi\)
\(594\) 0 0
\(595\) 0.315207 0.264490i 0.0129222 0.0108431i
\(596\) −1.59992 9.07357i −0.0655351 0.371668i
\(597\) 0 0
\(598\) 8.13465i 0.332651i
\(599\) 24.7128 + 8.99471i 1.00974 + 0.367514i 0.793332 0.608790i \(-0.208345\pi\)
0.216405 + 0.976304i \(0.430567\pi\)
\(600\) 0 0
\(601\) 7.49727 42.5191i 0.305820 1.73439i −0.313800 0.949489i \(-0.601602\pi\)
0.619620 0.784902i \(-0.287287\pi\)
\(602\) −0.597332 1.03461i −0.0243454 0.0421676i
\(603\) 0 0
\(604\) −9.02729 7.57480i −0.367315 0.308214i
\(605\) 9.57243 1.68788i 0.389175 0.0686220i
\(606\) 0 0
\(607\) 11.6866 + 32.1087i 0.474345 + 1.30325i 0.914229 + 0.405197i \(0.132797\pi\)
−0.439885 + 0.898054i \(0.644981\pi\)
\(608\) 6.33918 2.30727i 0.257088 0.0935722i
\(609\) 0 0
\(610\) −0.180857 0.215537i −0.00732267 0.00872682i
\(611\) 10.4417 + 12.4439i 0.422425 + 0.503426i
\(612\) 0 0
\(613\) −38.7066 + 14.0880i −1.56334 + 0.569011i −0.971499 0.237042i \(-0.923822\pi\)
−0.591844 + 0.806052i \(0.701600\pi\)
\(614\) −2.97752 8.18067i −0.120163 0.330145i
\(615\) 0 0
\(616\) 0.698115 0.123097i 0.0281279 0.00495970i
\(617\) 24.5087 + 20.5652i 0.986681 + 0.827924i 0.985084 0.172075i \(-0.0550471\pi\)
0.00159734 + 0.999999i \(0.499492\pi\)
\(618\) 0 0
\(619\) −3.10000 5.36936i −0.124600 0.215813i 0.796977 0.604010i \(-0.206431\pi\)
−0.921576 + 0.388197i \(0.873098\pi\)
\(620\) 1.13049 6.41133i 0.0454016 0.257485i
\(621\) 0 0
\(622\) −5.45885 1.98686i −0.218880 0.0796657i
\(623\) 1.49016i 0.0597020i
\(624\) 0 0
\(625\) 2.74516 + 15.5686i 0.109807 + 0.622744i
\(626\) −6.02528 + 5.05581i −0.240819 + 0.202071i
\(627\) 0 0
\(628\) 17.3717 0.693208
\(629\) 20.9564 + 3.42134i 0.835586 + 0.136418i
\(630\) 0 0
\(631\) −23.4724 + 27.9733i −0.934421 + 1.11360i 0.0589052 + 0.998264i \(0.481239\pi\)
−0.993326 + 0.115336i \(0.963205\pi\)
\(632\) −1.44803 + 1.21504i −0.0575995 + 0.0483317i
\(633\) 0 0
\(634\) −1.91497 + 5.26133i −0.0760531 + 0.208954i
\(635\) 4.42635i 0.175654i
\(636\) 0 0
\(637\) −11.7736 6.79748i −0.466487 0.269326i
\(638\) −2.53856 + 14.3969i −0.100503 + 0.569979i
\(639\) 0 0
\(640\) −0.400019 + 0.692853i −0.0158121 + 0.0273874i
\(641\) 15.2619 + 12.8063i 0.602810 + 0.505817i 0.892347 0.451349i \(-0.149057\pi\)
−0.289538 + 0.957167i \(0.593502\pi\)
\(642\) 0 0
\(643\) −28.9945 + 16.7400i −1.14343 + 0.660161i −0.947278 0.320412i \(-0.896179\pi\)
−0.196155 + 0.980573i \(0.562845\pi\)
\(644\) 0.210410 + 0.578096i 0.00829130 + 0.0227802i
\(645\) 0 0
\(646\) −23.1914 4.08926i −0.912452 0.160890i
\(647\) 7.67494 + 9.14664i 0.301733 + 0.359592i 0.895513 0.445036i \(-0.146809\pi\)
−0.593779 + 0.804628i \(0.702365\pi\)
\(648\) 0 0
\(649\) 41.0863 + 7.24462i 1.61278 + 0.284376i
\(650\) 7.98170 2.90510i 0.313068 0.113947i
\(651\) 0 0
\(652\) 1.95821 1.13057i 0.0766895 0.0442767i
\(653\) −13.4694 + 2.37501i −0.527097 + 0.0929414i −0.430863 0.902417i \(-0.641791\pi\)
−0.0962338 + 0.995359i \(0.530680\pi\)
\(654\) 0 0
\(655\) 0.329195 0.570182i 0.0128627 0.0222789i
\(656\) 1.94883 + 3.37547i 0.0760891 + 0.131790i
\(657\) 0 0
\(658\) −1.06392 0.614253i −0.0414758 0.0239461i
\(659\) −31.2934 11.3899i −1.21902 0.443686i −0.349194 0.937051i \(-0.613544\pi\)
−0.869822 + 0.493365i \(0.835767\pi\)
\(660\) 0 0
\(661\) −1.38912 + 3.81658i −0.0540305 + 0.148448i −0.963772 0.266728i \(-0.914058\pi\)
0.909741 + 0.415175i \(0.136280\pi\)
\(662\) 3.15875 + 17.9142i 0.122768 + 0.696254i
\(663\) 0 0
\(664\) −6.36675 + 7.58759i −0.247078 + 0.294456i
\(665\) −0.795174 −0.0308355
\(666\) 0 0
\(667\) −12.6869 −0.491240
\(668\) 10.2563 12.2230i 0.396829 0.472923i
\(669\) 0 0
\(670\) −0.333339 1.89046i −0.0128780 0.0730348i
\(671\) −0.578735 + 1.59006i −0.0223418 + 0.0613836i
\(672\) 0 0
\(673\) 17.0237 + 6.19612i 0.656216 + 0.238843i 0.648602 0.761128i \(-0.275354\pi\)
0.00761402 + 0.999971i \(0.497576\pi\)
\(674\) −28.6135 16.5200i −1.10215 0.636328i
\(675\) 0 0
\(676\) 4.60230 + 7.97141i 0.177011 + 0.306593i
\(677\) 10.1473 17.5756i 0.389991 0.675484i −0.602457 0.798151i \(-0.705811\pi\)
0.992448 + 0.122667i \(0.0391448\pi\)
\(678\) 0 0
\(679\) −0.852477 + 0.150315i −0.0327150 + 0.00576855i
\(680\) 2.41863 1.39639i 0.0927501 0.0535493i
\(681\) 0 0
\(682\) −36.7911 + 13.3909i −1.40880 + 0.512763i
\(683\) 23.3553 + 4.11816i 0.893665 + 0.157577i 0.601577 0.798814i \(-0.294539\pi\)
0.292087 + 0.956392i \(0.405650\pi\)
\(684\) 0 0
\(685\) 3.46727 + 4.13213i 0.132477 + 0.157881i
\(686\) 2.02820 + 0.357626i 0.0774369 + 0.0136542i
\(687\) 0 0
\(688\) −2.77328 7.61952i −0.105730 0.290491i
\(689\) −18.3723 + 10.6073i −0.699931 + 0.404105i
\(690\) 0 0
\(691\) −2.69427 2.26076i −0.102495 0.0860034i 0.590100 0.807330i \(-0.299088\pi\)
−0.692595 + 0.721327i \(0.743533\pi\)
\(692\) 1.53759 2.66318i 0.0584502 0.101239i
\(693\) 0 0
\(694\) −5.60917 + 31.8112i −0.212921 + 1.20754i
\(695\) −8.31688 4.80175i −0.315477 0.182141i
\(696\) 0 0
\(697\) 13.6060i 0.515366i
\(698\) −0.781994 + 2.14851i −0.0295989 + 0.0813224i
\(699\) 0 0
\(700\) −0.492083 + 0.412907i −0.0185990 + 0.0156064i
\(701\) −12.2023 + 14.5422i −0.460876 + 0.549251i −0.945564 0.325436i \(-0.894489\pi\)
0.484688 + 0.874687i \(0.338933\pi\)
\(702\) 0 0
\(703\) −26.7735 31.0966i −1.00978 1.17283i
\(704\) 4.81140 0.181336
\(705\) 0 0
\(706\) −4.91950 + 4.12795i −0.185148 + 0.155357i
\(707\) −0.435377 2.46915i −0.0163740 0.0928618i
\(708\) 0 0
\(709\) 13.0236i 0.489113i −0.969635 0.244556i \(-0.921358\pi\)
0.969635 0.244556i \(-0.0786423\pi\)
\(710\) −5.24999 1.91084i −0.197029 0.0717125i
\(711\) 0 0
\(712\) 1.75630 9.96048i 0.0658202 0.373285i
\(713\) −16.9889 29.4257i −0.636240 1.10200i
\(714\) 0 0
\(715\) 5.74467 + 4.82035i 0.214838 + 0.180271i
\(716\) −10.2879 + 1.81404i −0.384478 + 0.0677939i
\(717\) 0 0
\(718\) 2.50442 + 6.88084i 0.0934642 + 0.256791i
\(719\) −23.6018 + 8.59034i −0.880197 + 0.320366i −0.742289 0.670079i \(-0.766260\pi\)
−0.137908 + 0.990445i \(0.544038\pi\)
\(720\) 0 0
\(721\) −1.20719 1.43867i −0.0449580 0.0535789i
\(722\) 17.0394 + 20.3068i 0.634143 + 0.755742i
\(723\) 0 0
\(724\) 8.46310 3.08032i 0.314529 0.114479i
\(725\) −4.53084 12.4484i −0.168271 0.462321i
\(726\) 0 0
\(727\) −19.0823 + 3.36472i −0.707723 + 0.124791i −0.515913 0.856641i \(-0.672547\pi\)
−0.191811 + 0.981432i \(0.561436\pi\)
\(728\) 0.219881 + 0.184502i 0.00814932 + 0.00683810i
\(729\) 0 0
\(730\) 0.453618 + 0.785689i 0.0167891 + 0.0290796i
\(731\) −4.91518 + 27.8754i −0.181795 + 1.03101i
\(732\) 0 0
\(733\) 10.1457 + 3.69274i 0.374741 + 0.136395i 0.522523 0.852625i \(-0.324991\pi\)
−0.147781 + 0.989020i \(0.547213\pi\)
\(734\) 31.5546i 1.16470i
\(735\) 0 0
\(736\) 0.725070 + 4.11208i 0.0267264 + 0.151573i
\(737\) −8.84362 + 7.42068i −0.325759 + 0.273344i
\(738\) 0 0
\(739\) −28.0429 −1.03157 −0.515787 0.856717i \(-0.672500\pi\)
−0.515787 + 0.856717i \(0.672500\pi\)
\(740\) 4.80286 + 0.784114i 0.176556 + 0.0288246i
\(741\) 0 0
\(742\) 1.03128 1.22903i 0.0378595 0.0451192i
\(743\) −13.7013 + 11.4967i −0.502651 + 0.421774i −0.858534 0.512756i \(-0.828625\pi\)
0.355883 + 0.934530i \(0.384180\pi\)
\(744\) 0 0
\(745\) −2.52109 + 6.92665i −0.0923657 + 0.253773i
\(746\) 8.36944i 0.306427i
\(747\) 0 0
\(748\) −14.5455 8.39787i −0.531837 0.307056i
\(749\) −0.364287 + 2.06597i −0.0133108 + 0.0754891i
\(750\) 0 0
\(751\) 1.32138 2.28870i 0.0482179 0.0835159i −0.840909 0.541176i \(-0.817979\pi\)
0.889127 + 0.457660i \(0.151312\pi\)
\(752\) −6.38745 5.35970i −0.232926 0.195448i
\(753\) 0 0
\(754\) −5.12632 + 2.95969i −0.186690 + 0.107785i
\(755\) 3.22453 + 8.85931i 0.117353 + 0.322423i
\(756\) 0 0
\(757\) 47.2794 + 8.33663i 1.71840 + 0.303000i 0.944060 0.329773i \(-0.106972\pi\)
0.774337 + 0.632773i \(0.218083\pi\)
\(758\) −18.1179 21.5920i −0.658071 0.784258i
\(759\) 0 0
\(760\) −5.31507 0.937191i −0.192798 0.0339955i
\(761\) −3.02398 + 1.10064i −0.109619 + 0.0398981i −0.396247 0.918144i \(-0.629688\pi\)
0.286628 + 0.958042i \(0.407466\pi\)
\(762\) 0 0
\(763\) 2.52492 1.45777i 0.0914084 0.0527747i
\(764\) −0.990230 + 0.174604i −0.0358253 + 0.00631696i
\(765\) 0 0
\(766\) 4.54733 7.87621i 0.164302 0.284579i
\(767\) 8.44643 + 14.6296i 0.304983 + 0.528246i
\(768\) 0 0
\(769\) 17.4613 + 10.0813i 0.629671 + 0.363541i 0.780625 0.625000i \(-0.214901\pi\)
−0.150954 + 0.988541i \(0.548234\pi\)
\(770\) −0.532932 0.193971i −0.0192055 0.00699025i
\(771\) 0 0
\(772\) −3.76060 + 10.3322i −0.135347 + 0.371863i
\(773\) 3.61493 + 20.5013i 0.130020 + 0.737380i 0.978199 + 0.207670i \(0.0665881\pi\)
−0.848179 + 0.529710i \(0.822301\pi\)
\(774\) 0 0
\(775\) 22.8052 27.1782i 0.819187 0.976269i
\(776\) −5.87526 −0.210909
\(777\) 0 0
\(778\) 2.00537 0.0718960
\(779\) −16.9013 + 20.1421i −0.605550 + 0.721667i
\(780\) 0 0
\(781\) 5.83450 + 33.0891i 0.208775 + 1.18402i
\(782\) 4.98528 13.6969i 0.178273 0.489801i
\(783\) 0 0
\(784\) 6.55745 + 2.38672i 0.234195 + 0.0852399i