Properties

Label 666.2.bj.c.559.1
Level $666$
Weight $2$
Character 666.559
Analytic conductor $5.318$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bj (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 559.1
Root \(-0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 666.559
Dual form 666.2.bj.c.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.984808 - 0.173648i) q^{2} +(0.939693 + 0.342020i) q^{4} +(0.247315 + 0.294739i) q^{5} +(-2.50048 + 2.09815i) q^{7} +(-0.866025 - 0.500000i) q^{8} +O(q^{10})\) \(q+(-0.984808 - 0.173648i) q^{2} +(0.939693 + 0.342020i) q^{4} +(0.247315 + 0.294739i) q^{5} +(-2.50048 + 2.09815i) q^{7} +(-0.866025 - 0.500000i) q^{8} +(-0.192377 - 0.333207i) q^{10} +(1.29236 - 2.23843i) q^{11} +(-0.466831 + 1.28261i) q^{13} +(2.82683 - 1.63207i) q^{14} +(0.766044 + 0.642788i) q^{16} +(1.13965 + 3.13118i) q^{17} +(-5.89485 + 1.03942i) q^{19} +(0.131594 + 0.361551i) q^{20} +(-1.66142 + 1.98001i) q^{22} +(-6.53507 + 3.77303i) q^{23} +(0.842535 - 4.77825i) q^{25} +(0.682461 - 1.18206i) q^{26} +(-3.06729 + 1.11640i) q^{28} +(-2.78251 - 1.60649i) q^{29} +2.53737i q^{31} +(-0.642788 - 0.766044i) q^{32} +(-0.578618 - 3.28150i) q^{34} +(-1.23681 - 0.218083i) q^{35} +(0.543196 + 6.05846i) q^{37} +5.98578 q^{38} +(-0.0668119 - 0.378909i) q^{40} +(-7.77046 - 2.82822i) q^{41} -4.33920i q^{43} +(1.98001 - 1.66142i) q^{44} +(7.09097 - 2.58090i) q^{46} +(2.61455 + 4.52853i) q^{47} +(0.634616 - 3.59909i) q^{49} +(-1.65947 + 4.55935i) q^{50} +(-0.877355 + 1.04559i) q^{52} +(6.64254 + 5.57375i) q^{53} +(0.979373 - 0.172690i) q^{55} +(3.21455 - 0.566812i) q^{56} +(2.46128 + 2.06526i) q^{58} +(-8.33530 + 9.93362i) q^{59} +(-2.39847 + 6.58973i) q^{61} +(0.440610 - 2.49882i) q^{62} +(0.500000 + 0.866025i) q^{64} +(-0.493489 + 0.179615i) q^{65} +(-8.60881 + 7.22365i) q^{67} +3.33213i q^{68} +(1.18015 + 0.429540i) q^{70} +(-2.60464 - 14.7717i) q^{71} -15.0792 q^{73} +(0.517097 - 6.06074i) q^{74} +(-5.89485 - 1.03942i) q^{76} +(1.46505 + 8.30870i) q^{77} +(0.940587 + 1.12095i) q^{79} +0.384754i q^{80} +(7.16130 + 4.13458i) q^{82} +(-0.0104473 + 0.00380252i) q^{83} +(-0.641025 + 1.11029i) q^{85} +(-0.753494 + 4.27328i) q^{86} +(-2.23843 + 1.29236i) q^{88} +(0.612745 - 0.730241i) q^{89} +(-1.52380 - 4.18661i) q^{91} +(-7.43141 + 1.31036i) q^{92} +(-1.78845 - 4.91374i) q^{94} +(-1.76424 - 1.48038i) q^{95} +(12.8332 - 7.40927i) q^{97} +(-1.24995 + 3.43421i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{7} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 18 q^{14} - 18 q^{19} - 18 q^{25} - 12 q^{26} - 6 q^{28} - 18 q^{29} + 12 q^{34} - 18 q^{35} + 30 q^{37} + 24 q^{38} + 12 q^{40} - 24 q^{41} - 6 q^{44} + 30 q^{46} - 6 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 6 q^{58} - 36 q^{61} + 6 q^{64} - 36 q^{65} - 30 q^{67} - 12 q^{70} - 12 q^{71} + 48 q^{74} - 18 q^{76} - 12 q^{77} + 6 q^{79} + 48 q^{83} + 18 q^{85} + 36 q^{86} - 36 q^{88} + 18 q^{89} - 6 q^{91} - 18 q^{92} + 36 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.984808 0.173648i −0.696364 0.122788i
\(3\) 0 0
\(4\) 0.939693 + 0.342020i 0.469846 + 0.171010i
\(5\) 0.247315 + 0.294739i 0.110603 + 0.131811i 0.818506 0.574499i \(-0.194803\pi\)
−0.707903 + 0.706310i \(0.750359\pi\)
\(6\) 0 0
\(7\) −2.50048 + 2.09815i −0.945091 + 0.793026i −0.978464 0.206417i \(-0.933820\pi\)
0.0333729 + 0.999443i \(0.489375\pi\)
\(8\) −0.866025 0.500000i −0.306186 0.176777i
\(9\) 0 0
\(10\) −0.192377 0.333207i −0.0608350 0.105369i
\(11\) 1.29236 2.23843i 0.389661 0.674912i −0.602743 0.797935i \(-0.705926\pi\)
0.992404 + 0.123023i \(0.0392590\pi\)
\(12\) 0 0
\(13\) −0.466831 + 1.28261i −0.129476 + 0.355731i −0.987444 0.157972i \(-0.949504\pi\)
0.857968 + 0.513703i \(0.171727\pi\)
\(14\) 2.82683 1.63207i 0.755502 0.436189i
\(15\) 0 0
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) 1.13965 + 3.13118i 0.276407 + 0.759422i 0.997763 + 0.0668568i \(0.0212971\pi\)
−0.721356 + 0.692565i \(0.756481\pi\)
\(18\) 0 0
\(19\) −5.89485 + 1.03942i −1.35237 + 0.238459i −0.802431 0.596745i \(-0.796460\pi\)
−0.549939 + 0.835205i \(0.685349\pi\)
\(20\) 0.131594 + 0.361551i 0.0294253 + 0.0808452i
\(21\) 0 0
\(22\) −1.66142 + 1.98001i −0.354217 + 0.422139i
\(23\) −6.53507 + 3.77303i −1.36266 + 0.786730i −0.989977 0.141230i \(-0.954894\pi\)
−0.372680 + 0.927960i \(0.621561\pi\)
\(24\) 0 0
\(25\) 0.842535 4.77825i 0.168507 0.955650i
\(26\) 0.682461 1.18206i 0.133842 0.231821i
\(27\) 0 0
\(28\) −3.06729 + 1.11640i −0.579663 + 0.210980i
\(29\) −2.78251 1.60649i −0.516700 0.298317i 0.218883 0.975751i \(-0.429759\pi\)
−0.735583 + 0.677434i \(0.763092\pi\)
\(30\) 0 0
\(31\) 2.53737i 0.455726i 0.973693 + 0.227863i \(0.0731738\pi\)
−0.973693 + 0.227863i \(0.926826\pi\)
\(32\) −0.642788 0.766044i −0.113630 0.135419i
\(33\) 0 0
\(34\) −0.578618 3.28150i −0.0992321 0.562773i
\(35\) −1.23681 0.218083i −0.209059 0.0368628i
\(36\) 0 0
\(37\) 0.543196 + 6.05846i 0.0893009 + 0.996005i
\(38\) 5.98578 0.971022
\(39\) 0 0
\(40\) −0.0668119 0.378909i −0.0105639 0.0599108i
\(41\) −7.77046 2.82822i −1.21354 0.441693i −0.345611 0.938378i \(-0.612328\pi\)
−0.867931 + 0.496685i \(0.834551\pi\)
\(42\) 0 0
\(43\) 4.33920i 0.661722i −0.943680 0.330861i \(-0.892661\pi\)
0.943680 0.330861i \(-0.107339\pi\)
\(44\) 1.98001 1.66142i 0.298497 0.250469i
\(45\) 0 0
\(46\) 7.09097 2.58090i 1.04551 0.380533i
\(47\) 2.61455 + 4.52853i 0.381371 + 0.660554i 0.991258 0.131934i \(-0.0421188\pi\)
−0.609888 + 0.792488i \(0.708785\pi\)
\(48\) 0 0
\(49\) 0.634616 3.59909i 0.0906594 0.514155i
\(50\) −1.65947 + 4.55935i −0.234684 + 0.644790i
\(51\) 0 0
\(52\) −0.877355 + 1.04559i −0.121667 + 0.144997i
\(53\) 6.64254 + 5.57375i 0.912423 + 0.765614i 0.972578 0.232575i \(-0.0747151\pi\)
−0.0601551 + 0.998189i \(0.519160\pi\)
\(54\) 0 0
\(55\) 0.979373 0.172690i 0.132059 0.0232855i
\(56\) 3.21455 0.566812i 0.429562 0.0757434i
\(57\) 0 0
\(58\) 2.46128 + 2.06526i 0.323182 + 0.271182i
\(59\) −8.33530 + 9.93362i −1.08516 + 1.29325i −0.131849 + 0.991270i \(0.542091\pi\)
−0.953315 + 0.301978i \(0.902353\pi\)
\(60\) 0 0
\(61\) −2.39847 + 6.58973i −0.307092 + 0.843728i 0.686128 + 0.727481i \(0.259309\pi\)
−0.993220 + 0.116248i \(0.962913\pi\)
\(62\) 0.440610 2.49882i 0.0559576 0.317351i
\(63\) 0 0
\(64\) 0.500000 + 0.866025i 0.0625000 + 0.108253i
\(65\) −0.493489 + 0.179615i −0.0612098 + 0.0222785i
\(66\) 0 0
\(67\) −8.60881 + 7.22365i −1.05173 + 0.882509i −0.993275 0.115781i \(-0.963063\pi\)
−0.0584586 + 0.998290i \(0.518619\pi\)
\(68\) 3.33213i 0.404080i
\(69\) 0 0
\(70\) 1.18015 + 0.429540i 0.141055 + 0.0513399i
\(71\) −2.60464 14.7717i −0.309114 1.75307i −0.603477 0.797380i \(-0.706219\pi\)
0.294363 0.955694i \(-0.404893\pi\)
\(72\) 0 0
\(73\) −15.0792 −1.76489 −0.882445 0.470416i \(-0.844104\pi\)
−0.882445 + 0.470416i \(0.844104\pi\)
\(74\) 0.517097 6.06074i 0.0601113 0.704547i
\(75\) 0 0
\(76\) −5.89485 1.03942i −0.676185 0.119230i
\(77\) 1.46505 + 8.30870i 0.166958 + 0.946864i
\(78\) 0 0
\(79\) 0.940587 + 1.12095i 0.105824 + 0.126117i 0.816357 0.577548i \(-0.195990\pi\)
−0.710532 + 0.703664i \(0.751546\pi\)
\(80\) 0.384754i 0.0430169i
\(81\) 0 0
\(82\) 7.16130 + 4.13458i 0.790833 + 0.456588i
\(83\) −0.0104473 + 0.00380252i −0.00114674 + 0.000417381i −0.342593 0.939484i \(-0.611305\pi\)
0.341447 + 0.939901i \(0.389083\pi\)
\(84\) 0 0
\(85\) −0.641025 + 1.11029i −0.0695290 + 0.120428i
\(86\) −0.753494 + 4.27328i −0.0812514 + 0.460799i
\(87\) 0 0
\(88\) −2.23843 + 1.29236i −0.238617 + 0.137766i
\(89\) 0.612745 0.730241i 0.0649509 0.0774054i −0.732591 0.680669i \(-0.761689\pi\)
0.797542 + 0.603264i \(0.206133\pi\)
\(90\) 0 0
\(91\) −1.52380 4.18661i −0.159738 0.438876i
\(92\) −7.43141 + 1.31036i −0.774778 + 0.136614i
\(93\) 0 0
\(94\) −1.78845 4.91374i −0.184465 0.506814i
\(95\) −1.76424 1.48038i −0.181008 0.151883i
\(96\) 0 0
\(97\) 12.8332 7.40927i 1.30302 0.752297i 0.322097 0.946707i \(-0.395612\pi\)
0.980920 + 0.194410i \(0.0622791\pi\)
\(98\) −1.24995 + 3.43421i −0.126264 + 0.346907i
\(99\) 0 0
\(100\) 2.42598 4.20192i 0.242598 0.420192i
\(101\) 0.636260 + 1.10204i 0.0633103 + 0.109657i 0.895943 0.444169i \(-0.146501\pi\)
−0.832633 + 0.553825i \(0.813168\pi\)
\(102\) 0 0
\(103\) 9.39301 + 5.42306i 0.925521 + 0.534350i 0.885392 0.464845i \(-0.153890\pi\)
0.0401287 + 0.999195i \(0.487223\pi\)
\(104\) 1.04559 0.877355i 0.102529 0.0860318i
\(105\) 0 0
\(106\) −5.57375 6.64254i −0.541371 0.645181i
\(107\) −4.47254 1.62787i −0.432377 0.157372i 0.116657 0.993172i \(-0.462782\pi\)
−0.549034 + 0.835800i \(0.685004\pi\)
\(108\) 0 0
\(109\) 9.49102 + 1.67352i 0.909075 + 0.160294i 0.608583 0.793490i \(-0.291738\pi\)
0.300492 + 0.953784i \(0.402849\pi\)
\(110\) −0.994481 −0.0948201
\(111\) 0 0
\(112\) −3.26414 −0.308432
\(113\) 12.7581 + 2.24960i 1.20018 + 0.211624i 0.737777 0.675044i \(-0.235876\pi\)
0.462405 + 0.886669i \(0.346987\pi\)
\(114\) 0 0
\(115\) −2.72828 0.993013i −0.254414 0.0925990i
\(116\) −2.06526 2.46128i −0.191754 0.228524i
\(117\) 0 0
\(118\) 9.93362 8.33530i 0.914464 0.767327i
\(119\) −9.41935 5.43826i −0.863470 0.498525i
\(120\) 0 0
\(121\) 2.15962 + 3.74057i 0.196329 + 0.340052i
\(122\) 3.50632 6.07313i 0.317447 0.549835i
\(123\) 0 0
\(124\) −0.867833 + 2.38435i −0.0779337 + 0.214121i
\(125\) 3.28274 1.89529i 0.293618 0.169520i
\(126\) 0 0
\(127\) 8.61094 + 7.22543i 0.764097 + 0.641154i 0.939190 0.343398i \(-0.111578\pi\)
−0.175093 + 0.984552i \(0.556023\pi\)
\(128\) −0.342020 0.939693i −0.0302306 0.0830579i
\(129\) 0 0
\(130\) 0.517182 0.0911931i 0.0453598 0.00799816i
\(131\) −2.86257 7.86484i −0.250104 0.687154i −0.999681 0.0252378i \(-0.991966\pi\)
0.749578 0.661916i \(-0.230257\pi\)
\(132\) 0 0
\(133\) 12.5591 14.9673i 1.08901 1.29783i
\(134\) 9.73239 5.61900i 0.840751 0.485408i
\(135\) 0 0
\(136\) 0.578618 3.28150i 0.0496161 0.281387i
\(137\) −1.99206 + 3.45036i −0.170194 + 0.294784i −0.938487 0.345313i \(-0.887773\pi\)
0.768294 + 0.640097i \(0.221106\pi\)
\(138\) 0 0
\(139\) −4.80315 + 1.74820i −0.407398 + 0.148281i −0.537586 0.843209i \(-0.680664\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(140\) −1.08763 0.627946i −0.0919219 0.0530711i
\(141\) 0 0
\(142\) 14.9995i 1.25873i
\(143\) 2.26771 + 2.70256i 0.189636 + 0.225999i
\(144\) 0 0
\(145\) −0.214665 1.21742i −0.0178269 0.101102i
\(146\) 14.8501 + 2.61848i 1.22901 + 0.216707i
\(147\) 0 0
\(148\) −1.56168 + 5.87887i −0.128369 + 0.483240i
\(149\) 15.8700 1.30012 0.650060 0.759883i \(-0.274744\pi\)
0.650060 + 0.759883i \(0.274744\pi\)
\(150\) 0 0
\(151\) −3.77998 21.4373i −0.307611 1.74455i −0.610955 0.791665i \(-0.709214\pi\)
0.303344 0.952881i \(-0.401897\pi\)
\(152\) 5.62480 + 2.04726i 0.456231 + 0.166055i
\(153\) 0 0
\(154\) 8.43688i 0.679863i
\(155\) −0.747863 + 0.627531i −0.0600698 + 0.0504045i
\(156\) 0 0
\(157\) 9.16333 3.33518i 0.731314 0.266176i 0.0505928 0.998719i \(-0.483889\pi\)
0.680721 + 0.732543i \(0.261667\pi\)
\(158\) −0.731647 1.26725i −0.0582067 0.100817i
\(159\) 0 0
\(160\) 0.0668119 0.378909i 0.00528195 0.0299554i
\(161\) 8.42442 23.1459i 0.663937 1.82415i
\(162\) 0 0
\(163\) 8.46213 10.0848i 0.662805 0.789901i −0.324980 0.945721i \(-0.605358\pi\)
0.987785 + 0.155820i \(0.0498021\pi\)
\(164\) −6.33454 5.31531i −0.494644 0.415056i
\(165\) 0 0
\(166\) 0.0109489 0.00193059i 0.000849801 0.000149843i
\(167\) −5.51717 + 0.972826i −0.426932 + 0.0752796i −0.382986 0.923754i \(-0.625104\pi\)
−0.0439461 + 0.999034i \(0.513993\pi\)
\(168\) 0 0
\(169\) 8.53143 + 7.15872i 0.656264 + 0.550671i
\(170\) 0.824086 0.982108i 0.0632045 0.0753242i
\(171\) 0 0
\(172\) 1.48409 4.07751i 0.113161 0.310908i
\(173\) 1.88155 10.6708i 0.143051 0.811285i −0.825860 0.563876i \(-0.809310\pi\)
0.968911 0.247409i \(-0.0795791\pi\)
\(174\) 0 0
\(175\) 7.91874 + 13.7157i 0.598601 + 1.03681i
\(176\) 2.42884 0.884025i 0.183081 0.0666359i
\(177\) 0 0
\(178\) −0.730241 + 0.612745i −0.0547339 + 0.0459272i
\(179\) 6.07192i 0.453837i 0.973914 + 0.226918i \(0.0728651\pi\)
−0.973914 + 0.226918i \(0.927135\pi\)
\(180\) 0 0
\(181\) −20.2540 7.37185i −1.50547 0.547945i −0.547997 0.836480i \(-0.684610\pi\)
−0.957469 + 0.288535i \(0.906832\pi\)
\(182\) 0.773654 + 4.38761i 0.0573471 + 0.325231i
\(183\) 0 0
\(184\) 7.54605 0.556302
\(185\) −1.65132 + 1.65845i −0.121408 + 0.121932i
\(186\) 0 0
\(187\) 8.48176 + 1.49556i 0.620248 + 0.109366i
\(188\) 0.908022 + 5.14965i 0.0662243 + 0.375577i
\(189\) 0 0
\(190\) 1.48038 + 1.76424i 0.107398 + 0.127992i
\(191\) 6.62693i 0.479508i 0.970834 + 0.239754i \(0.0770668\pi\)
−0.970834 + 0.239754i \(0.922933\pi\)
\(192\) 0 0
\(193\) −19.7925 11.4272i −1.42469 0.822548i −0.428000 0.903779i \(-0.640782\pi\)
−0.996695 + 0.0812309i \(0.974115\pi\)
\(194\) −13.9249 + 5.06824i −0.999747 + 0.363878i
\(195\) 0 0
\(196\) 1.82730 3.16498i 0.130522 0.226070i
\(197\) 2.56236 14.5319i 0.182561 1.03535i −0.746488 0.665398i \(-0.768262\pi\)
0.929049 0.369956i \(-0.120627\pi\)
\(198\) 0 0
\(199\) −1.27720 + 0.737389i −0.0905380 + 0.0522721i −0.544585 0.838705i \(-0.683313\pi\)
0.454047 + 0.890978i \(0.349980\pi\)
\(200\) −3.11878 + 3.71682i −0.220531 + 0.262819i
\(201\) 0 0
\(202\) −0.435228 1.19578i −0.0306225 0.0841347i
\(203\) 10.3283 1.82115i 0.724901 0.127820i
\(204\) 0 0
\(205\) −1.08817 2.98972i −0.0760010 0.208811i
\(206\) −8.30861 6.97175i −0.578888 0.485745i
\(207\) 0 0
\(208\) −1.18206 + 0.682461i −0.0819609 + 0.0473202i
\(209\) −5.29158 + 14.5385i −0.366026 + 1.00565i
\(210\) 0 0
\(211\) 1.20976 2.09537i 0.0832835 0.144251i −0.821375 0.570389i \(-0.806793\pi\)
0.904658 + 0.426137i \(0.140126\pi\)
\(212\) 4.33561 + 7.50950i 0.297771 + 0.515755i
\(213\) 0 0
\(214\) 4.12192 + 2.37979i 0.281769 + 0.162679i
\(215\) 1.27893 1.07315i 0.0872224 0.0731883i
\(216\) 0 0
\(217\) −5.32379 6.34464i −0.361402 0.430702i
\(218\) −9.05623 3.29620i −0.613365 0.223247i
\(219\) 0 0
\(220\) 0.979373 + 0.172690i 0.0660293 + 0.0116427i
\(221\) −4.54809 −0.305938
\(222\) 0 0
\(223\) −6.94726 −0.465223 −0.232611 0.972570i \(-0.574727\pi\)
−0.232611 + 0.972570i \(0.574727\pi\)
\(224\) 3.21455 + 0.566812i 0.214781 + 0.0378717i
\(225\) 0 0
\(226\) −12.1736 4.43084i −0.809779 0.294735i
\(227\) 14.0443 + 16.7373i 0.932150 + 1.11089i 0.993619 + 0.112785i \(0.0359770\pi\)
−0.0614692 + 0.998109i \(0.519579\pi\)
\(228\) 0 0
\(229\) −3.25576 + 2.73191i −0.215147 + 0.180530i −0.743992 0.668189i \(-0.767070\pi\)
0.528845 + 0.848719i \(0.322625\pi\)
\(230\) 2.51440 + 1.45169i 0.165794 + 0.0957215i
\(231\) 0 0
\(232\) 1.60649 + 2.78251i 0.105471 + 0.182681i
\(233\) 8.67215 15.0206i 0.568131 0.984032i −0.428619 0.903485i \(-0.641000\pi\)
0.996751 0.0805473i \(-0.0256668\pi\)
\(234\) 0 0
\(235\) −0.688116 + 1.89058i −0.0448877 + 0.123328i
\(236\) −11.2301 + 6.48371i −0.731019 + 0.422054i
\(237\) 0 0
\(238\) 8.33190 + 6.99130i 0.540077 + 0.453178i
\(239\) 6.27893 + 17.2512i 0.406150 + 1.11589i 0.959197 + 0.282738i \(0.0912428\pi\)
−0.553047 + 0.833150i \(0.686535\pi\)
\(240\) 0 0
\(241\) 23.1096 4.07485i 1.48862 0.262484i 0.630604 0.776105i \(-0.282807\pi\)
0.858017 + 0.513621i \(0.171696\pi\)
\(242\) −1.47727 4.05876i −0.0949624 0.260907i
\(243\) 0 0
\(244\) −4.50764 + 5.37200i −0.288572 + 0.343907i
\(245\) 1.21774 0.703063i 0.0777986 0.0449171i
\(246\) 0 0
\(247\) 1.41873 8.04601i 0.0902715 0.511955i
\(248\) 1.26869 2.19743i 0.0805617 0.139537i
\(249\) 0 0
\(250\) −3.56199 + 1.29646i −0.225280 + 0.0819951i
\(251\) −5.28405 3.05074i −0.333526 0.192561i 0.323879 0.946098i \(-0.395013\pi\)
−0.657405 + 0.753537i \(0.728346\pi\)
\(252\) 0 0
\(253\) 19.5044i 1.22623i
\(254\) −7.22543 8.61094i −0.453364 0.540298i
\(255\) 0 0
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) −4.28106 0.754866i −0.267045 0.0470873i 0.0385222 0.999258i \(-0.487735\pi\)
−0.305567 + 0.952170i \(0.598846\pi\)
\(258\) 0 0
\(259\) −14.0698 14.0093i −0.874255 0.870497i
\(260\) −0.525160 −0.0325690
\(261\) 0 0
\(262\) 1.45336 + 8.24243i 0.0897891 + 0.509219i
\(263\) −3.81031 1.38684i −0.234954 0.0855163i 0.221860 0.975079i \(-0.428787\pi\)
−0.456814 + 0.889562i \(0.651009\pi\)
\(264\) 0 0
\(265\) 3.33629i 0.204947i
\(266\) −14.9673 + 12.5591i −0.917704 + 0.770045i
\(267\) 0 0
\(268\) −10.5603 + 3.84362i −0.645071 + 0.234787i
\(269\) 4.39669 + 7.61528i 0.268071 + 0.464312i 0.968364 0.249544i \(-0.0802806\pi\)
−0.700293 + 0.713856i \(0.746947\pi\)
\(270\) 0 0
\(271\) −2.24218 + 12.7160i −0.136203 + 0.772444i 0.837812 + 0.545959i \(0.183835\pi\)
−0.974015 + 0.226485i \(0.927276\pi\)
\(272\) −1.13965 + 3.13118i −0.0691017 + 0.189855i
\(273\) 0 0
\(274\) 2.56095 3.05202i 0.154713 0.184379i
\(275\) −9.60693 8.06117i −0.579319 0.486107i
\(276\) 0 0
\(277\) 7.65829 1.35036i 0.460142 0.0811355i 0.0612280 0.998124i \(-0.480498\pi\)
0.398914 + 0.916988i \(0.369387\pi\)
\(278\) 5.03375 0.887586i 0.301904 0.0532338i
\(279\) 0 0
\(280\) 0.962069 + 0.807272i 0.0574946 + 0.0482437i
\(281\) −0.149454 + 0.178113i −0.00891569 + 0.0106253i −0.770484 0.637459i \(-0.779985\pi\)
0.761568 + 0.648085i \(0.224430\pi\)
\(282\) 0 0
\(283\) −4.38915 + 12.0591i −0.260908 + 0.716838i 0.738199 + 0.674583i \(0.235676\pi\)
−0.999107 + 0.0422550i \(0.986546\pi\)
\(284\) 2.60464 14.7717i 0.154557 0.876537i
\(285\) 0 0
\(286\) −1.76397 3.05528i −0.104306 0.180663i
\(287\) 25.3639 9.23169i 1.49718 0.544930i
\(288\) 0 0
\(289\) 4.51731 3.79047i 0.265724 0.222969i
\(290\) 1.23620i 0.0725925i
\(291\) 0 0
\(292\) −14.1698 5.15740i −0.829227 0.301814i
\(293\) 4.27944 + 24.2699i 0.250007 + 1.41786i 0.808570 + 0.588400i \(0.200242\pi\)
−0.558563 + 0.829462i \(0.688647\pi\)
\(294\) 0 0
\(295\) −4.98927 −0.290487
\(296\) 2.55881 5.51838i 0.148728 0.320749i
\(297\) 0 0
\(298\) −15.6289 2.75579i −0.905357 0.159639i
\(299\) −1.78854 10.1433i −0.103434 0.586602i
\(300\) 0 0
\(301\) 9.10429 + 10.8501i 0.524762 + 0.625387i
\(302\) 21.7680i 1.25261i
\(303\) 0 0
\(304\) −5.18384 2.99289i −0.297314 0.171654i
\(305\) −2.53543 + 0.922820i −0.145178 + 0.0528405i
\(306\) 0 0
\(307\) −3.45566 + 5.98538i −0.197225 + 0.341604i −0.947628 0.319377i \(-0.896526\pi\)
0.750403 + 0.660981i \(0.229860\pi\)
\(308\) −1.46505 + 8.30870i −0.0834789 + 0.473432i
\(309\) 0 0
\(310\) 0.845471 0.488133i 0.0480195 0.0277241i
\(311\) −1.06612 + 1.27056i −0.0604542 + 0.0720466i −0.795424 0.606053i \(-0.792752\pi\)
0.734970 + 0.678100i \(0.237196\pi\)
\(312\) 0 0
\(313\) 8.87573 + 24.3859i 0.501686 + 1.37837i 0.889628 + 0.456687i \(0.150964\pi\)
−0.387942 + 0.921684i \(0.626814\pi\)
\(314\) −9.60327 + 1.69332i −0.541944 + 0.0955593i
\(315\) 0 0
\(316\) 0.500476 + 1.37505i 0.0281540 + 0.0773524i
\(317\) 8.69447 + 7.29553i 0.488330 + 0.409758i 0.853427 0.521212i \(-0.174520\pi\)
−0.365097 + 0.930969i \(0.618964\pi\)
\(318\) 0 0
\(319\) −7.19201 + 4.15231i −0.402675 + 0.232485i
\(320\) −0.131594 + 0.361551i −0.00735632 + 0.0202113i
\(321\) 0 0
\(322\) −12.3157 + 21.3314i −0.686326 + 1.18875i
\(323\) −9.97269 17.2732i −0.554896 0.961107i
\(324\) 0 0
\(325\) 5.73530 + 3.31128i 0.318137 + 0.183677i
\(326\) −10.0848 + 8.46213i −0.558544 + 0.468674i
\(327\) 0 0
\(328\) 5.31531 + 6.33454i 0.293489 + 0.349766i
\(329\) −16.0391 5.83777i −0.884266 0.321847i
\(330\) 0 0
\(331\) −12.6426 2.22924i −0.694903 0.122530i −0.184970 0.982744i \(-0.559219\pi\)
−0.509933 + 0.860214i \(0.670330\pi\)
\(332\) −0.0111178 −0.000610170
\(333\) 0 0
\(334\) 5.60228 0.306543
\(335\) −4.25818 0.750832i −0.232649 0.0410224i
\(336\) 0 0
\(337\) −5.36736 1.95356i −0.292379 0.106417i 0.191666 0.981460i \(-0.438611\pi\)
−0.484045 + 0.875043i \(0.660833\pi\)
\(338\) −7.15872 8.53143i −0.389383 0.464048i
\(339\) 0 0
\(340\) −0.982108 + 0.824086i −0.0532623 + 0.0446924i
\(341\) 5.67973 + 3.27919i 0.307575 + 0.177578i
\(342\) 0 0
\(343\) −5.45991 9.45685i −0.294808 0.510622i
\(344\) −2.16960 + 3.75786i −0.116977 + 0.202610i
\(345\) 0 0
\(346\) −3.70592 + 10.1819i −0.199232 + 0.547385i
\(347\) −28.0087 + 16.1708i −1.50358 + 0.868095i −0.503593 + 0.863941i \(0.667989\pi\)
−0.999991 + 0.00415382i \(0.998678\pi\)
\(348\) 0 0
\(349\) −19.0990 16.0260i −1.02235 0.857852i −0.0324270 0.999474i \(-0.510324\pi\)
−0.989921 + 0.141622i \(0.954768\pi\)
\(350\) −5.41674 14.8824i −0.289537 0.795496i
\(351\) 0 0
\(352\) −2.54545 + 0.448831i −0.135673 + 0.0239228i
\(353\) −2.95544 8.12001i −0.157302 0.432185i 0.835858 0.548946i \(-0.184971\pi\)
−0.993160 + 0.116762i \(0.962749\pi\)
\(354\) 0 0
\(355\) 3.70962 4.42095i 0.196886 0.234640i
\(356\) 0.825549 0.476631i 0.0437540 0.0252614i
\(357\) 0 0
\(358\) 1.05438 5.97968i 0.0557256 0.316036i
\(359\) 1.92924 3.34154i 0.101821 0.176360i −0.810614 0.585581i \(-0.800866\pi\)
0.912435 + 0.409221i \(0.134200\pi\)
\(360\) 0 0
\(361\) 15.8146 5.75606i 0.832350 0.302951i
\(362\) 18.6662 + 10.7769i 0.981072 + 0.566422i
\(363\) 0 0
\(364\) 4.45530i 0.233521i
\(365\) −3.72932 4.44444i −0.195202 0.232632i
\(366\) 0 0
\(367\) 1.81571 + 10.2974i 0.0947794 + 0.537521i 0.994815 + 0.101704i \(0.0324294\pi\)
−0.900035 + 0.435817i \(0.856460\pi\)
\(368\) −7.43141 1.31036i −0.387389 0.0683071i
\(369\) 0 0
\(370\) 1.91422 1.34651i 0.0995157 0.0700015i
\(371\) −28.3041 −1.46947
\(372\) 0 0
\(373\) 1.71315 + 9.71578i 0.0887038 + 0.503064i 0.996496 + 0.0836434i \(0.0266557\pi\)
−0.907792 + 0.419421i \(0.862233\pi\)
\(374\) −8.09320 2.94568i −0.418489 0.152318i
\(375\) 0 0
\(376\) 5.22909i 0.269670i
\(377\) 3.35945 2.81892i 0.173021 0.145182i
\(378\) 0 0
\(379\) −2.33157 + 0.848623i −0.119765 + 0.0435908i −0.401207 0.915987i \(-0.631409\pi\)
0.281443 + 0.959578i \(0.409187\pi\)
\(380\) −1.15153 1.99451i −0.0590722 0.102316i
\(381\) 0 0
\(382\) 1.15075 6.52625i 0.0588777 0.333912i
\(383\) −8.74336 + 24.0222i −0.446765 + 1.22748i 0.488199 + 0.872733i \(0.337654\pi\)
−0.934963 + 0.354744i \(0.884568\pi\)
\(384\) 0 0
\(385\) −2.08657 + 2.48668i −0.106341 + 0.126733i
\(386\) 17.5075 + 14.6905i 0.891108 + 0.747728i
\(387\) 0 0
\(388\) 14.5934 2.57321i 0.740868 0.130635i
\(389\) 6.27824 1.10702i 0.318319 0.0561283i −0.0122057 0.999926i \(-0.503885\pi\)
0.330525 + 0.943797i \(0.392774\pi\)
\(390\) 0 0
\(391\) −19.2617 16.1625i −0.974107 0.817373i
\(392\) −2.34914 + 2.79959i −0.118649 + 0.141401i
\(393\) 0 0
\(394\) −5.04687 + 13.8662i −0.254258 + 0.698567i
\(395\) −0.0977655 + 0.554456i −0.00491911 + 0.0278977i
\(396\) 0 0
\(397\) 18.7489 + 32.4740i 0.940979 + 1.62982i 0.763609 + 0.645679i \(0.223426\pi\)
0.177370 + 0.984144i \(0.443241\pi\)
\(398\) 1.38584 0.504404i 0.0694658 0.0252835i
\(399\) 0 0
\(400\) 3.71682 3.11878i 0.185841 0.155939i
\(401\) 35.1464i 1.75513i 0.479462 + 0.877563i \(0.340832\pi\)
−0.479462 + 0.877563i \(0.659168\pi\)
\(402\) 0 0
\(403\) −3.25445 1.18452i −0.162116 0.0590054i
\(404\) 0.220971 + 1.25319i 0.0109937 + 0.0623484i
\(405\) 0 0
\(406\) −10.4876 −0.520490
\(407\) 14.2634 + 6.61379i 0.707013 + 0.327834i
\(408\) 0 0
\(409\) 0.443894 + 0.0782704i 0.0219491 + 0.00387022i 0.184612 0.982811i \(-0.440897\pi\)
−0.162663 + 0.986682i \(0.552008\pi\)
\(410\) 0.552478 + 3.13326i 0.0272849 + 0.154741i
\(411\) 0 0
\(412\) 6.97175 + 8.30861i 0.343473 + 0.409336i
\(413\) 42.3275i 2.08280i
\(414\) 0 0
\(415\) −0.00370454 0.00213882i −0.000181849 0.000104990i
\(416\) 1.28261 0.466831i 0.0628850 0.0228883i
\(417\) 0 0
\(418\) 7.73578 13.3988i 0.378369 0.655355i
\(419\) 2.65878 15.0787i 0.129890 0.736642i −0.848393 0.529367i \(-0.822429\pi\)
0.978283 0.207275i \(-0.0664594\pi\)
\(420\) 0 0
\(421\) −19.3959 + 11.1982i −0.945299 + 0.545769i −0.891617 0.452789i \(-0.850429\pi\)
−0.0536815 + 0.998558i \(0.517096\pi\)
\(422\) −1.55524 + 1.85346i −0.0757079 + 0.0902252i
\(423\) 0 0
\(424\) −2.96573 8.14828i −0.144029 0.395716i
\(425\) 15.9217 2.80743i 0.772318 0.136180i
\(426\) 0 0
\(427\) −7.82893 21.5098i −0.378868 1.04093i
\(428\) −3.64605 3.05940i −0.176239 0.147882i
\(429\) 0 0
\(430\) −1.44585 + 0.834763i −0.0697252 + 0.0402559i
\(431\) 0.0349134 0.0959236i 0.00168172 0.00462048i −0.938849 0.344329i \(-0.888106\pi\)
0.940531 + 0.339709i \(0.110329\pi\)
\(432\) 0 0
\(433\) −3.96357 + 6.86510i −0.190477 + 0.329916i −0.945408 0.325888i \(-0.894337\pi\)
0.754931 + 0.655804i \(0.227670\pi\)
\(434\) 4.14117 + 7.17272i 0.198783 + 0.344301i
\(435\) 0 0
\(436\) 8.34627 + 4.81872i 0.399714 + 0.230775i
\(437\) 34.6015 29.0341i 1.65521 1.38889i
\(438\) 0 0
\(439\) 4.86630 + 5.79944i 0.232256 + 0.276792i 0.869567 0.493815i \(-0.164398\pi\)
−0.637311 + 0.770607i \(0.719953\pi\)
\(440\) −0.934507 0.340133i −0.0445509 0.0162152i
\(441\) 0 0
\(442\) 4.47900 + 0.789768i 0.213044 + 0.0375654i
\(443\) −15.9856 −0.759499 −0.379749 0.925089i \(-0.623990\pi\)
−0.379749 + 0.925089i \(0.623990\pi\)
\(444\) 0 0
\(445\) 0.366772 0.0173867
\(446\) 6.84171 + 1.20638i 0.323964 + 0.0571237i
\(447\) 0 0
\(448\) −3.06729 1.11640i −0.144916 0.0527450i
\(449\) 18.4321 + 21.9666i 0.869866 + 1.03667i 0.998985 + 0.0450373i \(0.0143407\pi\)
−0.129119 + 0.991629i \(0.541215\pi\)
\(450\) 0 0
\(451\) −16.3730 + 13.7386i −0.770974 + 0.646924i
\(452\) 11.2193 + 6.47746i 0.527711 + 0.304674i
\(453\) 0 0
\(454\) −10.9245 18.9218i −0.512712 0.888043i
\(455\) 0.857098 1.48454i 0.0401814 0.0695962i
\(456\) 0 0
\(457\) 0.0359519 0.0987770i 0.00168176 0.00462059i −0.938849 0.344329i \(-0.888106\pi\)
0.940531 + 0.339709i \(0.110329\pi\)
\(458\) 3.68069 2.12505i 0.171987 0.0992970i
\(459\) 0 0
\(460\) −2.22412 1.86625i −0.103700 0.0870146i
\(461\) −8.19825 22.5245i −0.381831 1.04907i −0.970585 0.240759i \(-0.922604\pi\)
0.588754 0.808312i \(-0.299619\pi\)
\(462\) 0 0
\(463\) −20.4361 + 3.60344i −0.949747 + 0.167466i −0.627000 0.779019i \(-0.715717\pi\)
−0.322747 + 0.946485i \(0.604606\pi\)
\(464\) −1.09890 3.01921i −0.0510152 0.140163i
\(465\) 0 0
\(466\) −11.1487 + 13.2865i −0.516454 + 0.615485i
\(467\) −15.1492 + 8.74642i −0.701023 + 0.404736i −0.807728 0.589555i \(-0.799303\pi\)
0.106705 + 0.994291i \(0.465970\pi\)
\(468\) 0 0
\(469\) 6.36983 36.1251i 0.294132 1.66810i
\(470\) 1.00596 1.74237i 0.0464014 0.0803696i
\(471\) 0 0
\(472\) 12.1854 4.43512i 0.560878 0.204143i
\(473\) −9.71300 5.60780i −0.446604 0.257847i
\(474\) 0 0
\(475\) 29.0428i 1.33258i
\(476\) −6.99130 8.33190i −0.320446 0.381892i
\(477\) 0 0
\(478\) −3.18790 18.0795i −0.145811 0.826935i
\(479\) 6.77593 + 1.19478i 0.309600 + 0.0545909i 0.326290 0.945270i \(-0.394202\pi\)
−0.0166894 + 0.999861i \(0.505313\pi\)
\(480\) 0 0
\(481\) −8.02421 2.13157i −0.365872 0.0971912i
\(482\) −23.4661 −1.06885
\(483\) 0 0
\(484\) 0.750028 + 4.25362i 0.0340922 + 0.193346i
\(485\) 5.35766 + 1.95003i 0.243279 + 0.0885462i
\(486\) 0 0
\(487\) 1.70810i 0.0774014i −0.999251 0.0387007i \(-0.987678\pi\)
0.999251 0.0387007i \(-0.0123219\pi\)
\(488\) 5.37200 4.50764i 0.243179 0.204051i
\(489\) 0 0
\(490\) −1.32133 + 0.480924i −0.0596915 + 0.0217259i
\(491\) 5.31153 + 9.19983i 0.239706 + 0.415183i 0.960630 0.277831i \(-0.0896157\pi\)
−0.720924 + 0.693014i \(0.756282\pi\)
\(492\) 0 0
\(493\) 1.85908 10.5434i 0.0837288 0.474850i
\(494\) −2.79435 + 7.67741i −0.125724 + 0.345423i
\(495\) 0 0
\(496\) −1.63099 + 1.94374i −0.0732337 + 0.0872765i
\(497\) 37.5060 + 31.4713i 1.68237 + 1.41168i
\(498\) 0 0
\(499\) 34.9319 6.15943i 1.56376 0.275734i 0.676306 0.736621i \(-0.263580\pi\)
0.887459 + 0.460887i \(0.152469\pi\)
\(500\) 3.73300 0.658229i 0.166945 0.0294369i
\(501\) 0 0
\(502\) 4.67401 + 3.92196i 0.208611 + 0.175046i
\(503\) 19.3402 23.0487i 0.862336 1.02769i −0.136975 0.990574i \(-0.543738\pi\)
0.999311 0.0371171i \(-0.0118174\pi\)
\(504\) 0 0
\(505\) −0.167456 + 0.460081i −0.00745168 + 0.0204733i
\(506\) 3.38690 19.2081i 0.150566 0.853903i
\(507\) 0 0
\(508\) 5.62039 + 9.73480i 0.249364 + 0.431912i
\(509\) −22.6380 + 8.23957i −1.00341 + 0.365213i −0.790900 0.611946i \(-0.790387\pi\)
−0.212513 + 0.977158i \(0.568165\pi\)
\(510\) 0 0
\(511\) 37.7052 31.6385i 1.66798 1.39960i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.08494 + 1.48680i 0.180179 + 0.0655798i
\(515\) 0.724650 + 4.10969i 0.0319319 + 0.181095i
\(516\) 0 0
\(517\) 13.5157 0.594421
\(518\) 11.4234 + 16.2397i 0.501913 + 0.713531i
\(519\) 0 0
\(520\) 0.517182 + 0.0911931i 0.0226799 + 0.00399908i
\(521\) 0.130158 + 0.738160i 0.00570231 + 0.0323394i 0.987526 0.157455i \(-0.0503289\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(522\) 0 0
\(523\) 1.31038 + 1.56165i 0.0572989 + 0.0682862i 0.793933 0.608006i \(-0.208030\pi\)
−0.736634 + 0.676292i \(0.763586\pi\)
\(524\) 8.36959i 0.365627i
\(525\) 0 0
\(526\) 3.51160 + 2.02743i 0.153113 + 0.0884000i
\(527\) −7.94496 + 2.89173i −0.346088 + 0.125966i
\(528\) 0 0
\(529\) 16.9714 29.3954i 0.737889 1.27806i
\(530\) 0.579341 3.28561i 0.0251650 0.142718i
\(531\) 0 0
\(532\) 16.9208 9.76922i 0.733609 0.423549i
\(533\) 7.25498 8.64615i 0.314248 0.374506i
\(534\) 0 0
\(535\) −0.626331 1.72083i −0.0270787 0.0743980i
\(536\) 11.0673 1.95146i 0.478033 0.0842902i
\(537\) 0 0
\(538\) −3.00751 8.26307i −0.129663 0.356246i
\(539\) −7.23615 6.07185i −0.311683 0.261533i
\(540\) 0 0
\(541\) −27.1442 + 15.6717i −1.16702 + 0.673778i −0.952976 0.303046i \(-0.901996\pi\)
−0.214042 + 0.976824i \(0.568663\pi\)
\(542\) 4.41623 12.1335i 0.189694 0.521179i
\(543\) 0 0
\(544\) 1.66606 2.88571i 0.0714319 0.123724i
\(545\) 1.85402 + 3.21126i 0.0794176 + 0.137555i
\(546\) 0 0
\(547\) 15.7325 + 9.08317i 0.672674 + 0.388368i 0.797089 0.603862i \(-0.206372\pi\)
−0.124415 + 0.992230i \(0.539706\pi\)
\(548\) −3.05202 + 2.56095i −0.130376 + 0.109398i
\(549\) 0 0
\(550\) 8.06117 + 9.60693i 0.343729 + 0.409641i
\(551\) 18.0723 + 6.57778i 0.769906 + 0.280223i
\(552\) 0 0
\(553\) −4.70383 0.829413i −0.200027 0.0352702i
\(554\) −7.77643 −0.330389
\(555\) 0 0
\(556\) −5.11140 −0.216772
\(557\) −32.4061 5.71408i −1.37309 0.242113i −0.562051 0.827102i \(-0.689988\pi\)
−0.811041 + 0.584989i \(0.801099\pi\)
\(558\) 0 0
\(559\) 5.56549 + 2.02567i 0.235395 + 0.0856768i
\(560\) −0.807272 0.962069i −0.0341135 0.0406548i
\(561\) 0 0
\(562\) 0.178113 0.149454i 0.00751323 0.00630435i
\(563\) −29.7054 17.1504i −1.25193 0.722804i −0.280440 0.959872i \(-0.590480\pi\)
−0.971493 + 0.237068i \(0.923814\pi\)
\(564\) 0 0
\(565\) 2.49223 + 4.31667i 0.104849 + 0.181604i
\(566\) 6.41650 11.1137i 0.269706 0.467144i
\(567\) 0 0
\(568\) −5.13014 + 14.0950i −0.215256 + 0.591411i
\(569\) −18.3769 + 10.6099i −0.770398 + 0.444789i −0.833017 0.553248i \(-0.813388\pi\)
0.0626186 + 0.998038i \(0.480055\pi\)
\(570\) 0 0
\(571\) 12.5989 + 10.5717i 0.527247 + 0.442413i 0.867150 0.498048i \(-0.165950\pi\)
−0.339902 + 0.940461i \(0.610394\pi\)
\(572\) 1.20663 + 3.31518i 0.0504516 + 0.138614i
\(573\) 0 0
\(574\) −26.5816 + 4.68705i −1.10949 + 0.195634i
\(575\) 12.5224 + 34.4051i 0.522222 + 1.43479i
\(576\) 0 0
\(577\) −23.3471 + 27.8240i −0.971952 + 1.15833i 0.0154162 + 0.999881i \(0.495093\pi\)
−0.987368 + 0.158446i \(0.949352\pi\)
\(578\) −5.10689 + 2.94846i −0.212419 + 0.122640i
\(579\) 0 0
\(580\) 0.214665 1.21742i 0.00891347 0.0505508i
\(581\) 0.0181451 0.0314282i 0.000752784 0.00130386i
\(582\) 0 0
\(583\) 21.0610 7.66558i 0.872258 0.317476i
\(584\) 13.0590 + 7.53961i 0.540385 + 0.311991i
\(585\) 0 0
\(586\) 24.6443i 1.01805i
\(587\) −24.1202 28.7453i −0.995547 1.18645i −0.982449 0.186532i \(-0.940275\pi\)
−0.0130981 0.999914i \(-0.504169\pi\)
\(588\) 0 0
\(589\) −2.63740 14.9574i −0.108672 0.616310i
\(590\) 4.91348 + 0.866378i 0.202285 + 0.0356682i
\(591\) 0 0
\(592\) −3.47819 + 4.99021i −0.142953 + 0.205096i
\(593\) 10.0159 0.411302 0.205651 0.978625i \(-0.434069\pi\)
0.205651 + 0.978625i \(0.434069\pi\)
\(594\) 0 0
\(595\) −0.726682 4.12122i −0.0297910 0.168953i
\(596\) 14.9129 + 5.42786i 0.610857 + 0.222334i
\(597\) 0 0
\(598\) 10.2998i 0.421189i
\(599\) 25.7808 21.6326i 1.05337 0.883886i 0.0599300 0.998203i \(-0.480912\pi\)
0.993444 + 0.114317i \(0.0364678\pi\)
\(600\) 0 0
\(601\) 40.2252 14.6408i 1.64082 0.597209i 0.653637 0.756808i \(-0.273242\pi\)
0.987182 + 0.159599i \(0.0510202\pi\)
\(602\) −7.08188 12.2662i −0.288636 0.499932i
\(603\) 0 0
\(604\) 3.77998 21.4373i 0.153805 0.872273i
\(605\) −0.568385 + 1.56163i −0.0231081 + 0.0634891i
\(606\) 0 0
\(607\) 3.45545 4.11804i 0.140252 0.167146i −0.691346 0.722524i \(-0.742982\pi\)
0.831598 + 0.555378i \(0.187426\pi\)
\(608\) 4.58538 + 3.84759i 0.185962 + 0.156040i
\(609\) 0 0
\(610\) 2.65715 0.468528i 0.107585 0.0189701i
\(611\) −7.02887 + 1.23938i −0.284358 + 0.0501400i
\(612\) 0 0
\(613\) −25.6002 21.4811i −1.03398 0.867614i −0.0426623 0.999090i \(-0.513584\pi\)
−0.991319 + 0.131476i \(0.958028\pi\)
\(614\) 4.44251 5.29438i 0.179285 0.213664i
\(615\) 0 0
\(616\) 2.88558 7.92807i 0.116263 0.319431i
\(617\) 0.878588 4.98272i 0.0353706 0.200597i −0.962002 0.273044i \(-0.911970\pi\)
0.997372 + 0.0724469i \(0.0230808\pi\)
\(618\) 0 0
\(619\) −17.8909 30.9879i −0.719096 1.24551i −0.961358 0.275300i \(-0.911223\pi\)
0.242263 0.970211i \(-0.422110\pi\)
\(620\) −0.917390 + 0.333902i −0.0368433 + 0.0134098i
\(621\) 0 0
\(622\) 1.27056 1.06612i 0.0509446 0.0427476i
\(623\) 3.11158i 0.124663i
\(624\) 0 0
\(625\) −21.4263 7.79853i −0.857051 0.311941i
\(626\) −4.50633 25.5566i −0.180109 1.02145i
\(627\) 0 0
\(628\) 9.75142 0.389124
\(629\) −18.3510 + 8.60539i −0.731704 + 0.343119i
\(630\) 0 0
\(631\) 6.52046 + 1.14973i 0.259576 + 0.0457702i 0.301921 0.953333i \(-0.402372\pi\)
−0.0423458 + 0.999103i \(0.513483\pi\)
\(632\) −0.254098 1.44106i −0.0101075 0.0573224i
\(633\) 0 0
\(634\) −7.29553 8.69447i −0.289742 0.345301i
\(635\) 4.32494i 0.171630i
\(636\) 0 0
\(637\) 4.31996 + 2.49413i 0.171163 + 0.0988210i
\(638\) 7.80379 2.84035i 0.308955 0.112450i
\(639\) 0 0
\(640\) 0.192377 0.333207i 0.00760438 0.0131712i
\(641\) 6.18098 35.0541i 0.244134 1.38455i −0.578361 0.815781i \(-0.696307\pi\)
0.822495 0.568772i \(-0.192582\pi\)
\(642\) 0 0
\(643\) 4.34087 2.50620i 0.171187 0.0988350i −0.411958 0.911203i \(-0.635155\pi\)
0.583146 + 0.812368i \(0.301822\pi\)
\(644\) 15.8327 18.8687i 0.623897 0.743532i
\(645\) 0 0
\(646\) 6.82172 + 18.7425i 0.268397 + 0.737415i
\(647\) 34.7348 6.12469i 1.36557 0.240786i 0.557647 0.830078i \(-0.311704\pi\)
0.807920 + 0.589292i \(0.200593\pi\)
\(648\) 0 0
\(649\) 11.4635 + 31.4958i 0.449983 + 1.23632i
\(650\) −5.07317 4.25690i −0.198986 0.166969i
\(651\) 0 0
\(652\) 11.4010 6.58237i 0.446498 0.257785i
\(653\) −0.925218 + 2.54201i −0.0362066 + 0.0994767i −0.956479 0.291802i \(-0.905745\pi\)
0.920272 + 0.391279i \(0.127967\pi\)
\(654\) 0 0
\(655\) 1.61012 2.78881i 0.0629125 0.108968i
\(656\) −4.13458 7.16130i −0.161428 0.279602i
\(657\) 0 0
\(658\) 14.7817 + 8.53424i 0.576252 + 0.332699i
\(659\) −21.3419 + 17.9080i −0.831363 + 0.697597i −0.955604 0.294655i \(-0.904795\pi\)
0.124240 + 0.992252i \(0.460351\pi\)
\(660\) 0 0
\(661\) −6.82156 8.12962i −0.265328 0.316205i 0.616888 0.787051i \(-0.288393\pi\)
−0.882216 + 0.470846i \(0.843949\pi\)
\(662\) 12.0635 + 4.39075i 0.468860 + 0.170651i
\(663\) 0 0
\(664\) 0.0109489 + 0.00193059i 0.000424900 + 7.49214e-5i
\(665\) 7.51750 0.291516
\(666\) 0 0
\(667\) 24.2452 0.938779
\(668\) −5.51717 0.972826i −0.213466 0.0376398i
\(669\) 0 0
\(670\) 4.06311 + 1.47885i 0.156972 + 0.0571330i
\(671\) 11.6510 + 13.8851i 0.449781 + 0.536028i
\(672\) 0 0
\(673\) −0.503594 + 0.422565i −0.0194121 + 0.0162887i −0.652442 0.757839i \(-0.726255\pi\)
0.633030 + 0.774127i \(0.281811\pi\)
\(674\) 4.94659 + 2.85591i 0.190535 + 0.110006i
\(675\) 0 0
\(676\) 5.56849 + 9.64491i 0.214173 + 0.370958i
\(677\) −16.0036 + 27.7190i −0.615067 + 1.06533i 0.375306 + 0.926901i \(0.377538\pi\)
−0.990373 + 0.138426i \(0.955796\pi\)
\(678\) 0 0
\(679\) −16.5434 + 45.4527i −0.634879 + 1.74432i
\(680\) 1.11029 0.641025i 0.0425776 0.0245822i
\(681\) 0 0
\(682\) −5.02402 4.21565i −0.192380 0.161426i
\(683\) 1.36647 + 3.75435i 0.0522866 + 0.143656i 0.963087 0.269191i \(-0.0867564\pi\)
−0.910800 + 0.412848i \(0.864534\pi\)
\(684\) 0 0
\(685\) −1.50962 + 0.266187i −0.0576797 + 0.0101705i
\(686\) 3.73480 + 10.2613i 0.142595 + 0.391778i
\(687\) 0 0
\(688\) 2.78918 3.32402i 0.106337 0.126727i
\(689\) −10.2499 + 5.91777i −0.390489 + 0.225449i
\(690\) 0 0
\(691\) −0.763380 + 4.32934i −0.0290404 + 0.164696i −0.995879 0.0906920i \(-0.971092\pi\)
0.966839 + 0.255388i \(0.0822032\pi\)
\(692\) 5.41770 9.38373i 0.205950 0.356716i
\(693\) 0 0
\(694\) 30.3912 11.0615i 1.15363 0.419888i
\(695\) −1.70316 0.983317i −0.0646044 0.0372993i
\(696\) 0 0
\(697\) 27.5539i 1.04368i
\(698\) 16.0260 + 19.0990i 0.606593 + 0.722909i
\(699\) 0 0
\(700\) 2.75015 + 15.5969i 0.103946 + 0.589507i
\(701\) −14.1350 2.49237i −0.533870 0.0941356i −0.0997873 0.995009i \(-0.531816\pi\)
−0.434082 + 0.900873i \(0.642927\pi\)
\(702\) 0 0
\(703\) −9.49934 35.1491i −0.358274 1.32567i
\(704\) 2.58472 0.0974152
\(705\) 0 0
\(706\) 1.50052 + 8.50986i 0.0564727 + 0.320273i
\(707\) −3.90319 1.42064i −0.146794 0.0534288i
\(708\) 0 0
\(709\) 6.87475i 0.258187i −0.991632 0.129093i \(-0.958793\pi\)
0.991632 0.129093i \(-0.0412067\pi\)
\(710\) −4.42095 + 3.70962i −0.165915 + 0.139219i
\(711\) 0 0
\(712\) −0.895774 + 0.326035i −0.0335705 + 0.0122187i
\(713\) −9.57357 16.5819i −0.358533 0.620998i
\(714\) 0 0
\(715\) −0.235708 + 1.33677i −0.00881499 + 0.0499923i
\(716\) −2.07672 + 5.70574i −0.0776107 + 0.213234i
\(717\) 0 0
\(718\) −2.48018 + 2.95577i −0.0925596 + 0.110308i
\(719\) 13.0967 + 10.9894i 0.488424 + 0.409836i 0.853461 0.521157i \(-0.174499\pi\)
−0.365037 + 0.930993i \(0.618944\pi\)
\(720\) 0 0
\(721\) −34.8654 + 6.14771i −1.29845 + 0.228953i
\(722\) −16.5739 + 2.92243i −0.616817 + 0.108762i
\(723\) 0 0
\(724\) −16.5112 13.8545i −0.613634 0.514900i
\(725\) −10.0206 + 11.9420i −0.372154 + 0.443516i
\(726\) 0 0
\(727\) −14.5792 + 40.0561i −0.540713 + 1.48560i 0.305206 + 0.952286i \(0.401275\pi\)
−0.845919 + 0.533311i \(0.820948\pi\)
\(728\) −0.773654 + 4.38761i −0.0286735 + 0.162616i
\(729\) 0 0
\(730\) 2.90090 + 5.02451i 0.107367 + 0.185965i
\(731\) 13.5868 4.94519i 0.502526 0.182904i
\(732\) 0 0
\(733\) 32.6482 27.3951i 1.20589 1.01186i 0.206447 0.978458i \(-0.433810\pi\)
0.999442 0.0334033i \(-0.0106346\pi\)
\(734\) 10.4563i 0.385948i
\(735\) 0 0
\(736\) 7.09097 + 2.58090i 0.261377 + 0.0951333i
\(737\) 5.04397 + 28.6058i 0.185797 + 1.05371i
\(738\) 0 0
\(739\) 1.69175 0.0622321 0.0311161 0.999516i \(-0.490094\pi\)
0.0311161 + 0.999516i \(0.490094\pi\)
\(740\) −2.11896 + 0.993649i −0.0778945 + 0.0365272i
\(741\) 0 0
\(742\) 27.8741 + 4.91495i 1.02329 + 0.180434i
\(743\) 2.22382 + 12.6119i 0.0815839 + 0.462685i 0.998042 + 0.0625538i \(0.0199245\pi\)
−0.916458 + 0.400132i \(0.868964\pi\)
\(744\) 0 0
\(745\) 3.92489 + 4.67751i 0.143797 + 0.171371i
\(746\) 9.86566i 0.361208i
\(747\) 0 0
\(748\) 7.45873 + 4.30630i 0.272718 + 0.157454i
\(749\) 14.5990 5.31360i 0.533436 0.194155i
\(750\) 0 0
\(751\) 24.2360 41.9780i 0.884384 1.53180i 0.0379668 0.999279i \(-0.487912\pi\)
0.846418 0.532520i \(-0.178755\pi\)
\(752\) −0.908022 + 5.14965i −0.0331122 + 0.187788i
\(753\) 0 0
\(754\) −3.79792 + 2.19273i −0.138312 + 0.0798544i
\(755\) 5.38357 6.41589i 0.195928 0.233498i
\(756\) 0 0
\(757\) 10.9913 + 30.1984i 0.399486 + 1.09758i 0.962535 + 0.271156i \(0.0874060\pi\)
−0.563049 + 0.826424i \(0.690372\pi\)
\(758\) 2.44351 0.430857i 0.0887524 0.0156494i
\(759\) 0 0
\(760\) 0.787692 + 2.16417i 0.0285726 + 0.0785025i
\(761\) −7.94619 6.66765i −0.288049 0.241702i 0.487300 0.873235i \(-0.337982\pi\)
−0.775349 + 0.631533i \(0.782426\pi\)
\(762\) 0 0
\(763\) −27.2434 + 15.7290i −0.986277 + 0.569427i
\(764\) −2.26654 + 6.22728i −0.0820007 + 0.225295i
\(765\) 0 0
\(766\) 12.7819 22.1390i 0.461830 0.799913i
\(767\) −8.84976 15.3282i −0.319546 0.553471i
\(768\) 0 0
\(769\) 29.3819 + 16.9637i 1.05954 + 0.611725i 0.925305 0.379225i \(-0.123809\pi\)
0.134234 + 0.990950i \(0.457143\pi\)
\(770\) 2.48668 2.08657i 0.0896136 0.0751947i
\(771\) 0 0
\(772\) −14.6905 17.5075i −0.528724 0.630108i
\(773\) −27.2363 9.91322i −0.979623 0.356554i −0.197930 0.980216i \(-0.563422\pi\)
−0.781694 + 0.623662i \(0.785644\pi\)
\(774\) 0 0
\(775\) 12.1242 + 2.13782i 0.435514 + 0.0767929i
\(776\) −14.8185 −0.531954
\(777\) 0 0
\(778\) −6.37509 −0.228558
\(779\) 48.7454 + 8.59512i 1.74648 + 0.307952i
\(780\) 0 0
\(781\) −36.4315 13.2600i −1.30362 0.474479i
\(782\) 16.1625 + 19.2617i 0.577970 + 0.688798i
\(783\) 0 0
\(784\) 2.79959 2.34914i 0.0999854 0.0838977i
\(785\)