Properties

Label 666.2.bj.c.361.2
Level $666$
Weight $2$
Character 666.361
Analytic conductor $5.318$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bj (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 361.2
Root \(0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 666.361
Dual form 666.2.bj.c.559.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.984808 - 0.173648i) q^{2} +(0.939693 - 0.342020i) q^{4} +(1.97937 - 2.35892i) q^{5} +(0.153180 + 0.128533i) q^{7} +(0.866025 - 0.500000i) q^{8} +O(q^{10})\) \(q+(0.984808 - 0.173648i) q^{2} +(0.939693 - 0.342020i) q^{4} +(1.97937 - 2.35892i) q^{5} +(0.153180 + 0.128533i) q^{7} +(0.866025 - 0.500000i) q^{8} +(1.53967 - 2.66679i) q^{10} +(-2.17174 - 3.76157i) q^{11} +(-1.59735 - 4.38867i) q^{13} +(0.173172 + 0.0999810i) q^{14} +(0.766044 - 0.642788i) q^{16} +(-2.32445 + 6.38637i) q^{17} +(4.07964 + 0.719350i) q^{19} +(1.05320 - 2.89364i) q^{20} +(-2.79194 - 3.32730i) q^{22} +(0.896915 + 0.517834i) q^{23} +(-0.778357 - 4.41428i) q^{25} +(-2.33516 - 4.04462i) q^{26} +(0.187903 + 0.0683910i) q^{28} +(-1.25937 + 0.727100i) q^{29} +5.10852i q^{31} +(0.642788 - 0.766044i) q^{32} +(-1.18015 + 6.69298i) q^{34} +(0.606398 - 0.106924i) q^{35} +(5.64160 + 2.27429i) q^{37} +4.14257 q^{38} +(0.534723 - 3.03256i) q^{40} +(4.46505 - 1.62515i) q^{41} -0.399970i q^{43} +(-3.32730 - 2.79194i) q^{44} +(0.973210 + 0.354220i) q^{46} +(-4.10475 + 7.10963i) q^{47} +(-1.20859 - 6.85428i) q^{49} +(-1.53306 - 4.21206i) q^{50} +(-3.00203 - 3.57768i) q^{52} +(8.65606 - 7.26330i) q^{53} +(-13.1719 - 2.32256i) q^{55} +(0.196924 + 0.0347230i) q^{56} +(-1.11398 + 0.934742i) q^{58} +(2.69714 + 3.21433i) q^{59} +(-3.60153 - 9.89514i) q^{61} +(0.887086 + 5.03091i) q^{62} +(0.500000 - 0.866025i) q^{64} +(-13.5143 - 4.91879i) q^{65} +(6.67299 + 5.59930i) q^{67} +6.79623i q^{68} +(0.578618 - 0.210600i) q^{70} +(-2.45953 + 13.9487i) q^{71} +7.27588 q^{73} +(5.95081 + 1.26008i) q^{74} +(4.07964 - 0.719350i) q^{76} +(0.150819 - 0.855337i) q^{77} +(-4.04665 + 4.82261i) q^{79} -3.07935i q^{80} +(4.11502 - 2.37581i) q^{82} +(14.4861 + 5.27251i) q^{83} +(10.4640 + 18.1241i) q^{85} +(-0.0694540 - 0.393893i) q^{86} +(-3.76157 - 2.17174i) q^{88} +(-2.06611 - 2.46229i) q^{89} +(0.319409 - 0.877568i) q^{91} +(1.01993 + 0.179842i) q^{92} +(-2.80781 + 7.71440i) q^{94} +(9.77198 - 8.19967i) q^{95} +(2.07350 + 1.19713i) q^{97} +(-2.38047 - 6.54027i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{7} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 18 q^{14} - 18 q^{19} - 18 q^{25} - 12 q^{26} - 6 q^{28} - 18 q^{29} + 12 q^{34} - 18 q^{35} + 30 q^{37} + 24 q^{38} + 12 q^{40} - 24 q^{41} - 6 q^{44} + 30 q^{46} - 6 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 6 q^{58} - 36 q^{61} + 6 q^{64} - 36 q^{65} - 30 q^{67} - 12 q^{70} - 12 q^{71} + 48 q^{74} - 18 q^{76} - 12 q^{77} + 6 q^{79} + 48 q^{83} + 18 q^{85} + 36 q^{86} - 36 q^{88} + 18 q^{89} - 6 q^{91} - 18 q^{92} + 36 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984808 0.173648i 0.696364 0.122788i
\(3\) 0 0
\(4\) 0.939693 0.342020i 0.469846 0.171010i
\(5\) 1.97937 2.35892i 0.885199 1.05494i −0.112918 0.993604i \(-0.536020\pi\)
0.998117 0.0613353i \(-0.0195359\pi\)
\(6\) 0 0
\(7\) 0.153180 + 0.128533i 0.0578965 + 0.0485809i 0.671277 0.741207i \(-0.265746\pi\)
−0.613380 + 0.789788i \(0.710191\pi\)
\(8\) 0.866025 0.500000i 0.306186 0.176777i
\(9\) 0 0
\(10\) 1.53967 2.66679i 0.486888 0.843314i
\(11\) −2.17174 3.76157i −0.654805 1.13416i −0.981943 0.189179i \(-0.939417\pi\)
0.327137 0.944977i \(-0.393916\pi\)
\(12\) 0 0
\(13\) −1.59735 4.38867i −0.443024 1.21720i −0.937493 0.348004i \(-0.886860\pi\)
0.494469 0.869195i \(-0.335363\pi\)
\(14\) 0.173172 + 0.0999810i 0.0462822 + 0.0267210i
\(15\) 0 0
\(16\) 0.766044 0.642788i 0.191511 0.160697i
\(17\) −2.32445 + 6.38637i −0.563761 + 1.54892i 0.250316 + 0.968164i \(0.419466\pi\)
−0.814077 + 0.580757i \(0.802757\pi\)
\(18\) 0 0
\(19\) 4.07964 + 0.719350i 0.935933 + 0.165030i 0.620757 0.784003i \(-0.286825\pi\)
0.315176 + 0.949033i \(0.397936\pi\)
\(20\) 1.05320 2.89364i 0.235502 0.647038i
\(21\) 0 0
\(22\) −2.79194 3.32730i −0.595244 0.709384i
\(23\) 0.896915 + 0.517834i 0.187020 + 0.107976i 0.590587 0.806974i \(-0.298896\pi\)
−0.403567 + 0.914950i \(0.632230\pi\)
\(24\) 0 0
\(25\) −0.778357 4.41428i −0.155671 0.882856i
\(26\) −2.33516 4.04462i −0.457964 0.793216i
\(27\) 0 0
\(28\) 0.187903 + 0.0683910i 0.0355103 + 0.0129247i
\(29\) −1.25937 + 0.727100i −0.233860 + 0.135019i −0.612351 0.790586i \(-0.709776\pi\)
0.378492 + 0.925605i \(0.376443\pi\)
\(30\) 0 0
\(31\) 5.10852i 0.917518i 0.888561 + 0.458759i \(0.151706\pi\)
−0.888561 + 0.458759i \(0.848294\pi\)
\(32\) 0.642788 0.766044i 0.113630 0.135419i
\(33\) 0 0
\(34\) −1.18015 + 6.69298i −0.202395 + 1.14784i
\(35\) 0.606398 0.106924i 0.102500 0.0180735i
\(36\) 0 0
\(37\) 5.64160 + 2.27429i 0.927473 + 0.373891i
\(38\) 4.14257 0.672014
\(39\) 0 0
\(40\) 0.534723 3.03256i 0.0845471 0.479491i
\(41\) 4.46505 1.62515i 0.697324 0.253805i 0.0310562 0.999518i \(-0.490113\pi\)
0.666268 + 0.745712i \(0.267891\pi\)
\(42\) 0 0
\(43\) 0.399970i 0.0609948i −0.999535 0.0304974i \(-0.990291\pi\)
0.999535 0.0304974i \(-0.00970913\pi\)
\(44\) −3.32730 2.79194i −0.501610 0.420901i
\(45\) 0 0
\(46\) 0.973210 + 0.354220i 0.143492 + 0.0522268i
\(47\) −4.10475 + 7.10963i −0.598739 + 1.03705i 0.394269 + 0.918995i \(0.370998\pi\)
−0.993008 + 0.118051i \(0.962335\pi\)
\(48\) 0 0
\(49\) −1.20859 6.85428i −0.172656 0.979182i
\(50\) −1.53306 4.21206i −0.216808 0.595675i
\(51\) 0 0
\(52\) −3.00203 3.57768i −0.416307 0.496135i
\(53\) 8.65606 7.26330i 1.18900 0.997690i 0.189125 0.981953i \(-0.439435\pi\)
0.999876 0.0157372i \(-0.00500953\pi\)
\(54\) 0 0
\(55\) −13.1719 2.32256i −1.77610 0.313174i
\(56\) 0.196924 + 0.0347230i 0.0263151 + 0.00464006i
\(57\) 0 0
\(58\) −1.11398 + 0.934742i −0.146273 + 0.122738i
\(59\) 2.69714 + 3.21433i 0.351138 + 0.418470i 0.912485 0.409111i \(-0.134161\pi\)
−0.561347 + 0.827581i \(0.689717\pi\)
\(60\) 0 0
\(61\) −3.60153 9.89514i −0.461129 1.26694i −0.924637 0.380849i \(-0.875632\pi\)
0.463508 0.886093i \(-0.346591\pi\)
\(62\) 0.887086 + 5.03091i 0.112660 + 0.638927i
\(63\) 0 0
\(64\) 0.500000 0.866025i 0.0625000 0.108253i
\(65\) −13.5143 4.91879i −1.67624 0.610100i
\(66\) 0 0
\(67\) 6.67299 + 5.59930i 0.815235 + 0.684063i 0.951851 0.306561i \(-0.0991782\pi\)
−0.136616 + 0.990624i \(0.543623\pi\)
\(68\) 6.79623i 0.824164i
\(69\) 0 0
\(70\) 0.578618 0.210600i 0.0691581 0.0251715i
\(71\) −2.45953 + 13.9487i −0.291893 + 1.65541i 0.387675 + 0.921796i \(0.373278\pi\)
−0.679569 + 0.733612i \(0.737833\pi\)
\(72\) 0 0
\(73\) 7.27588 0.851577 0.425789 0.904823i \(-0.359997\pi\)
0.425789 + 0.904823i \(0.359997\pi\)
\(74\) 5.95081 + 1.26008i 0.691768 + 0.146482i
\(75\) 0 0
\(76\) 4.07964 0.719350i 0.467967 0.0825151i
\(77\) 0.150819 0.855337i 0.0171874 0.0974747i
\(78\) 0 0
\(79\) −4.04665 + 4.82261i −0.455284 + 0.542587i −0.944039 0.329835i \(-0.893007\pi\)
0.488754 + 0.872421i \(0.337451\pi\)
\(80\) 3.07935i 0.344281i
\(81\) 0 0
\(82\) 4.11502 2.37581i 0.454427 0.262364i
\(83\) 14.4861 + 5.27251i 1.59006 + 0.578733i 0.977360 0.211585i \(-0.0678626\pi\)
0.612696 + 0.790318i \(0.290085\pi\)
\(84\) 0 0
\(85\) 10.4640 + 18.1241i 1.13498 + 1.96584i
\(86\) −0.0694540 0.393893i −0.00748942 0.0424746i
\(87\) 0 0
\(88\) −3.76157 2.17174i −0.400985 0.231509i
\(89\) −2.06611 2.46229i −0.219007 0.261002i 0.645343 0.763893i \(-0.276714\pi\)
−0.864350 + 0.502890i \(0.832270\pi\)
\(90\) 0 0
\(91\) 0.319409 0.877568i 0.0334831 0.0919941i
\(92\) 1.01993 + 0.179842i 0.106336 + 0.0187498i
\(93\) 0 0
\(94\) −2.80781 + 7.71440i −0.289604 + 0.795680i
\(95\) 9.77198 8.19967i 1.00258 0.841268i
\(96\) 0 0
\(97\) 2.07350 + 1.19713i 0.210532 + 0.121551i 0.601559 0.798829i \(-0.294547\pi\)
−0.391027 + 0.920379i \(0.627880\pi\)
\(98\) −2.38047 6.54027i −0.240463 0.660668i
\(99\) 0 0
\(100\) −2.24119 3.88185i −0.224119 0.388185i
\(101\) −5.48150 + 9.49423i −0.545429 + 0.944711i 0.453150 + 0.891434i \(0.350300\pi\)
−0.998580 + 0.0532773i \(0.983033\pi\)
\(102\) 0 0
\(103\) −13.6274 + 7.86780i −1.34275 + 0.775238i −0.987210 0.159423i \(-0.949037\pi\)
−0.355541 + 0.934661i \(0.615703\pi\)
\(104\) −3.57768 3.00203i −0.350820 0.294373i
\(105\) 0 0
\(106\) 7.26330 8.65606i 0.705474 0.840751i
\(107\) −17.4933 + 6.36704i −1.69114 + 0.615525i −0.994769 0.102154i \(-0.967426\pi\)
−0.696373 + 0.717680i \(0.745204\pi\)
\(108\) 0 0
\(109\) 0.00691666 0.00121959i 0.000662495 0.000116816i −0.173317 0.984866i \(-0.555448\pi\)
0.173979 + 0.984749i \(0.444337\pi\)
\(110\) −13.3751 −1.27527
\(111\) 0 0
\(112\) 0.199962 0.0188946
\(113\) −2.52369 + 0.444994i −0.237408 + 0.0418615i −0.291086 0.956697i \(-0.594017\pi\)
0.0536779 + 0.998558i \(0.482906\pi\)
\(114\) 0 0
\(115\) 2.99685 1.09076i 0.279458 0.101714i
\(116\) −0.934742 + 1.11398i −0.0867886 + 0.103431i
\(117\) 0 0
\(118\) 3.21433 + 2.69714i 0.295903 + 0.248292i
\(119\) −1.17692 + 0.679493i −0.107888 + 0.0622891i
\(120\) 0 0
\(121\) −3.93294 + 6.81205i −0.357540 + 0.619277i
\(122\) −5.26509 9.11941i −0.476679 0.825632i
\(123\) 0 0
\(124\) 1.74722 + 4.80044i 0.156905 + 0.431092i
\(125\) 1.38039 + 0.796967i 0.123466 + 0.0712829i
\(126\) 0 0
\(127\) −4.44843 + 3.73268i −0.394735 + 0.331222i −0.818454 0.574572i \(-0.805169\pi\)
0.423720 + 0.905793i \(0.360724\pi\)
\(128\) 0.342020 0.939693i 0.0302306 0.0830579i
\(129\) 0 0
\(130\) −14.1631 2.49733i −1.24218 0.219031i
\(131\) 2.86257 7.86484i 0.250104 0.687154i −0.749578 0.661916i \(-0.769743\pi\)
0.999681 0.0252378i \(-0.00803431\pi\)
\(132\) 0 0
\(133\) 0.532457 + 0.634558i 0.0461699 + 0.0550232i
\(134\) 7.54392 + 4.35548i 0.651695 + 0.376256i
\(135\) 0 0
\(136\) 1.18015 + 6.69298i 0.101197 + 0.573918i
\(137\) −0.788995 1.36658i −0.0674084 0.116755i 0.830351 0.557240i \(-0.188140\pi\)
−0.897760 + 0.440485i \(0.854806\pi\)
\(138\) 0 0
\(139\) −9.32521 3.39410i −0.790954 0.287884i −0.0852214 0.996362i \(-0.527160\pi\)
−0.705733 + 0.708478i \(0.749382\pi\)
\(140\) 0.533257 0.307876i 0.0450684 0.0260203i
\(141\) 0 0
\(142\) 14.1639i 1.18861i
\(143\) −13.0393 + 15.5396i −1.09040 + 1.29949i
\(144\) 0 0
\(145\) −0.777594 + 4.40996i −0.0645757 + 0.366227i
\(146\) 7.16534 1.26344i 0.593008 0.104563i
\(147\) 0 0
\(148\) 6.07922 + 0.207592i 0.499709 + 0.0170640i
\(149\) −12.8504 −1.05274 −0.526372 0.850254i \(-0.676448\pi\)
−0.526372 + 0.850254i \(0.676448\pi\)
\(150\) 0 0
\(151\) 0.900597 5.10754i 0.0732895 0.415646i −0.925985 0.377560i \(-0.876763\pi\)
0.999274 0.0380852i \(-0.0121258\pi\)
\(152\) 3.89275 1.41684i 0.315743 0.114921i
\(153\) 0 0
\(154\) 0.868532i 0.0699883i
\(155\) 12.0506 + 10.1116i 0.967926 + 0.812186i
\(156\) 0 0
\(157\) −11.2421 4.09177i −0.897214 0.326559i −0.148078 0.988976i \(-0.547309\pi\)
−0.749136 + 0.662416i \(0.769531\pi\)
\(158\) −3.14774 + 5.45204i −0.250421 + 0.433741i
\(159\) 0 0
\(160\) −0.534723 3.03256i −0.0422736 0.239745i
\(161\) 0.0708304 + 0.194605i 0.00558222 + 0.0153370i
\(162\) 0 0
\(163\) −0.454390 0.541521i −0.0355906 0.0424152i 0.747956 0.663749i \(-0.231036\pi\)
−0.783546 + 0.621334i \(0.786591\pi\)
\(164\) 3.63995 3.05428i 0.284232 0.238499i
\(165\) 0 0
\(166\) 15.1816 + 2.67692i 1.17832 + 0.207770i
\(167\) 6.50943 + 1.14779i 0.503715 + 0.0888185i 0.419731 0.907649i \(-0.362124\pi\)
0.0839840 + 0.996467i \(0.473236\pi\)
\(168\) 0 0
\(169\) −6.75037 + 5.66423i −0.519259 + 0.435710i
\(170\) 13.4522 + 16.0317i 1.03174 + 1.22958i
\(171\) 0 0
\(172\) −0.136798 0.375848i −0.0104307 0.0286582i
\(173\) −2.67447 15.1676i −0.203336 1.15317i −0.900037 0.435813i \(-0.856461\pi\)
0.696701 0.717361i \(-0.254650\pi\)
\(174\) 0 0
\(175\) 0.448153 0.776223i 0.0338771 0.0586769i
\(176\) −4.08154 1.48556i −0.307658 0.111978i
\(177\) 0 0
\(178\) −2.46229 2.06611i −0.184557 0.154861i
\(179\) 2.55438i 0.190923i −0.995433 0.0954617i \(-0.969567\pi\)
0.995433 0.0954617i \(-0.0304328\pi\)
\(180\) 0 0
\(181\) −7.88211 + 2.86885i −0.585873 + 0.213240i −0.617913 0.786246i \(-0.712022\pi\)
0.0320404 + 0.999487i \(0.489799\pi\)
\(182\) 0.162168 0.919700i 0.0120207 0.0681727i
\(183\) 0 0
\(184\) 1.03567 0.0763505
\(185\) 16.5316 8.80641i 1.21543 0.647460i
\(186\) 0 0
\(187\) 29.0709 5.12598i 2.12587 0.374849i
\(188\) −1.42556 + 8.08477i −0.103970 + 0.589643i
\(189\) 0 0
\(190\) 8.19967 9.77198i 0.594866 0.708934i
\(191\) 6.48182i 0.469008i 0.972115 + 0.234504i \(0.0753466\pi\)
−0.972115 + 0.234504i \(0.924653\pi\)
\(192\) 0 0
\(193\) −18.1716 + 10.4914i −1.30802 + 0.755186i −0.981766 0.190096i \(-0.939120\pi\)
−0.326255 + 0.945282i \(0.605787\pi\)
\(194\) 2.24988 + 0.818888i 0.161532 + 0.0587927i
\(195\) 0 0
\(196\) −3.48001 6.02755i −0.248572 0.430539i
\(197\) 0.287925 + 1.63290i 0.0205138 + 0.116340i 0.993345 0.115175i \(-0.0367429\pi\)
−0.972831 + 0.231515i \(0.925632\pi\)
\(198\) 0 0
\(199\) 6.25254 + 3.60991i 0.443231 + 0.255900i 0.704967 0.709240i \(-0.250962\pi\)
−0.261736 + 0.965139i \(0.584295\pi\)
\(200\) −2.88122 3.43370i −0.203733 0.242799i
\(201\) 0 0
\(202\) −3.74956 + 10.3018i −0.263818 + 0.724835i
\(203\) −0.286367 0.0504942i −0.0200990 0.00354400i
\(204\) 0 0
\(205\) 5.00439 13.7495i 0.349522 0.960303i
\(206\) −12.0542 + 10.1147i −0.839854 + 0.704721i
\(207\) 0 0
\(208\) −4.04462 2.33516i −0.280444 0.161915i
\(209\) −6.15404 16.9081i −0.425684 1.16956i
\(210\) 0 0
\(211\) −2.25434 3.90463i −0.155195 0.268806i 0.777935 0.628345i \(-0.216267\pi\)
−0.933130 + 0.359539i \(0.882934\pi\)
\(212\) 5.64984 9.78581i 0.388033 0.672092i
\(213\) 0 0
\(214\) −16.1219 + 9.30799i −1.10207 + 0.636281i
\(215\) −0.943495 0.791686i −0.0643458 0.0539926i
\(216\) 0 0
\(217\) −0.656614 + 0.782522i −0.0445739 + 0.0531211i
\(218\) 0.00659980 0.00240213i 0.000446995 0.000162693i
\(219\) 0 0
\(220\) −13.1719 + 2.32256i −0.888050 + 0.156587i
\(221\) 31.7406 2.13511
\(222\) 0 0
\(223\) 13.6418 0.913526 0.456763 0.889588i \(-0.349009\pi\)
0.456763 + 0.889588i \(0.349009\pi\)
\(224\) 0.196924 0.0347230i 0.0131575 0.00232003i
\(225\) 0 0
\(226\) −2.40807 + 0.876467i −0.160183 + 0.0583017i
\(227\) 17.5084 20.8657i 1.16207 1.38490i 0.253414 0.967358i \(-0.418446\pi\)
0.908657 0.417544i \(-0.137109\pi\)
\(228\) 0 0
\(229\) 1.56117 + 1.30998i 0.103165 + 0.0865658i 0.692911 0.721023i \(-0.256328\pi\)
−0.589746 + 0.807589i \(0.700772\pi\)
\(230\) 2.76191 1.59459i 0.182115 0.105144i
\(231\) 0 0
\(232\) −0.727100 + 1.25937i −0.0477365 + 0.0826820i
\(233\) −1.94247 3.36446i −0.127256 0.220413i 0.795357 0.606142i \(-0.207284\pi\)
−0.922612 + 0.385728i \(0.873950\pi\)
\(234\) 0 0
\(235\) 8.64623 + 23.7553i 0.564018 + 1.54963i
\(236\) 3.63385 + 2.09801i 0.236544 + 0.136569i
\(237\) 0 0
\(238\) −1.04104 + 0.873540i −0.0674809 + 0.0566232i
\(239\) 6.35148 17.4506i 0.410843 1.12878i −0.545900 0.837850i \(-0.683812\pi\)
0.956744 0.290933i \(-0.0939656\pi\)
\(240\) 0 0
\(241\) 24.9528 + 4.39985i 1.60735 + 0.283420i 0.904036 0.427457i \(-0.140591\pi\)
0.703317 + 0.710877i \(0.251702\pi\)
\(242\) −2.69029 + 7.39151i −0.172938 + 0.475144i
\(243\) 0 0
\(244\) −6.76867 8.06659i −0.433320 0.516410i
\(245\) −18.5609 10.7162i −1.18581 0.684630i
\(246\) 0 0
\(247\) −3.35960 19.0533i −0.213766 1.21233i
\(248\) 2.55426 + 4.42411i 0.162196 + 0.280931i
\(249\) 0 0
\(250\) 1.49781 + 0.545158i 0.0947298 + 0.0344788i
\(251\) −11.0092 + 6.35615i −0.694893 + 0.401197i −0.805443 0.592674i \(-0.798072\pi\)
0.110549 + 0.993871i \(0.464739\pi\)
\(252\) 0 0
\(253\) 4.49841i 0.282813i
\(254\) −3.73268 + 4.44843i −0.234209 + 0.279119i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.0108530 0.0615505i
\(257\) −4.28106 + 0.754866i −0.267045 + 0.0470873i −0.305567 0.952170i \(-0.598846\pi\)
0.0385222 + 0.999258i \(0.487735\pi\)
\(258\) 0 0
\(259\) 0.571857 + 1.07351i 0.0355335 + 0.0667044i
\(260\) −14.3816 −0.891907
\(261\) 0 0
\(262\) 1.45336 8.24243i 0.0897891 0.509219i
\(263\) −6.11870 + 2.22703i −0.377295 + 0.137324i −0.523705 0.851900i \(-0.675451\pi\)
0.146409 + 0.989224i \(0.453228\pi\)
\(264\) 0 0
\(265\) 34.7956i 2.13748i
\(266\) 0.634558 + 0.532457i 0.0389073 + 0.0326471i
\(267\) 0 0
\(268\) 8.18563 + 2.97933i 0.500017 + 0.181991i
\(269\) −4.95106 + 8.57549i −0.301872 + 0.522857i −0.976560 0.215246i \(-0.930945\pi\)
0.674688 + 0.738103i \(0.264278\pi\)
\(270\) 0 0
\(271\) 1.56719 + 8.88797i 0.0951999 + 0.539906i 0.994686 + 0.102956i \(0.0328301\pi\)
−0.899486 + 0.436950i \(0.856059\pi\)
\(272\) 2.32445 + 6.38637i 0.140940 + 0.387230i
\(273\) 0 0
\(274\) −1.01431 1.20881i −0.0612768 0.0730269i
\(275\) −14.9142 + 12.5145i −0.899362 + 0.754655i
\(276\) 0 0
\(277\) −0.204926 0.0361340i −0.0123128 0.00217108i 0.167488 0.985874i \(-0.446434\pi\)
−0.179801 + 0.983703i \(0.557545\pi\)
\(278\) −9.77292 1.72323i −0.586141 0.103352i
\(279\) 0 0
\(280\) 0.471694 0.395798i 0.0281891 0.0236534i
\(281\) 17.3934 + 20.7286i 1.03760 + 1.23657i 0.971073 + 0.238781i \(0.0767478\pi\)
0.0665281 + 0.997785i \(0.478808\pi\)
\(282\) 0 0
\(283\) 0.278026 + 0.763870i 0.0165269 + 0.0454074i 0.947682 0.319217i \(-0.103420\pi\)
−0.931155 + 0.364624i \(0.881198\pi\)
\(284\) 2.45953 + 13.9487i 0.145947 + 0.827704i
\(285\) 0 0
\(286\) −10.1428 + 17.5678i −0.599754 + 1.03880i
\(287\) 0.892841 + 0.324967i 0.0527027 + 0.0191822i
\(288\) 0 0
\(289\) −22.3599 18.7621i −1.31529 1.10366i
\(290\) 4.47799i 0.262957i
\(291\) 0 0
\(292\) 6.83709 2.48850i 0.400110 0.145628i
\(293\) 1.52803 8.66589i 0.0892684 0.506266i −0.907085 0.420947i \(-0.861698\pi\)
0.996354 0.0853194i \(-0.0271911\pi\)
\(294\) 0 0
\(295\) 12.9210 0.752288
\(296\) 6.02291 0.851207i 0.350075 0.0494754i
\(297\) 0 0
\(298\) −12.6552 + 2.23145i −0.733094 + 0.129264i
\(299\) 0.839921 4.76343i 0.0485739 0.275476i
\(300\) 0 0
\(301\) 0.0514093 0.0612672i 0.00296318 0.00353138i
\(302\) 5.18633i 0.298440i
\(303\) 0 0
\(304\) 3.58757 2.07129i 0.205761 0.118796i
\(305\) −30.4706 11.0904i −1.74474 0.635033i
\(306\) 0 0
\(307\) −12.2271 21.1779i −0.697836 1.20869i −0.969215 0.246215i \(-0.920813\pi\)
0.271379 0.962472i \(-0.412520\pi\)
\(308\) −0.150819 0.855337i −0.00859371 0.0487374i
\(309\) 0 0
\(310\) 13.6234 + 7.86546i 0.773756 + 0.446728i
\(311\) −0.00816038 0.00972517i −0.000462733 0.000551464i 0.765813 0.643063i \(-0.222337\pi\)
−0.766276 + 0.642512i \(0.777892\pi\)
\(312\) 0 0
\(313\) 5.97456 16.4150i 0.337702 0.927829i −0.648343 0.761349i \(-0.724538\pi\)
0.986045 0.166480i \(-0.0532402\pi\)
\(314\) −11.7818 2.07745i −0.664885 0.117237i
\(315\) 0 0
\(316\) −2.15318 + 5.91581i −0.121126 + 0.332790i
\(317\) −2.09046 + 1.75410i −0.117412 + 0.0985203i −0.699603 0.714531i \(-0.746640\pi\)
0.582191 + 0.813052i \(0.302195\pi\)
\(318\) 0 0
\(319\) 5.47008 + 3.15815i 0.306266 + 0.176822i
\(320\) −1.05320 2.89364i −0.0588756 0.161759i
\(321\) 0 0
\(322\) 0.103547 + 0.179349i 0.00577046 + 0.00999472i
\(323\) −14.0769 + 24.3820i −0.783262 + 1.35665i
\(324\) 0 0
\(325\) −18.1295 + 10.4671i −1.00565 + 0.580610i
\(326\) −0.541521 0.454390i −0.0299921 0.0251663i
\(327\) 0 0
\(328\) 3.05428 3.63995i 0.168644 0.200982i
\(329\) −1.54259 + 0.561455i −0.0850455 + 0.0309540i
\(330\) 0 0
\(331\) −23.2573 + 4.10088i −1.27834 + 0.225405i −0.771273 0.636504i \(-0.780380\pi\)
−0.507062 + 0.861909i \(0.669269\pi\)
\(332\) 15.4158 0.846051
\(333\) 0 0
\(334\) 6.60985 0.361675
\(335\) 26.4166 4.65795i 1.44329 0.254491i
\(336\) 0 0
\(337\) 21.0920 7.67685i 1.14895 0.418185i 0.303814 0.952731i \(-0.401740\pi\)
0.845139 + 0.534546i \(0.179517\pi\)
\(338\) −5.66423 + 6.75037i −0.308094 + 0.367172i
\(339\) 0 0
\(340\) 16.0317 + 13.4522i 0.869443 + 0.729549i
\(341\) 19.2161 11.0944i 1.04061 0.600796i
\(342\) 0 0
\(343\) 1.39574 2.41749i 0.0753626 0.130532i
\(344\) −0.199985 0.346384i −0.0107825 0.0186758i
\(345\) 0 0
\(346\) −5.26767 14.4728i −0.283192 0.778063i
\(347\) 1.05232 + 0.607556i 0.0564914 + 0.0326153i 0.527980 0.849257i \(-0.322950\pi\)
−0.471488 + 0.881872i \(0.656283\pi\)
\(348\) 0 0
\(349\) 13.5892 11.4027i 0.727415 0.610374i −0.202011 0.979383i \(-0.564748\pi\)
0.929426 + 0.369010i \(0.120303\pi\)
\(350\) 0.306554 0.842251i 0.0163860 0.0450202i
\(351\) 0 0
\(352\) −4.27750 0.754239i −0.227991 0.0402011i
\(353\) −0.549304 + 1.50920i −0.0292365 + 0.0803266i −0.953452 0.301544i \(-0.902498\pi\)
0.924216 + 0.381871i \(0.124720\pi\)
\(354\) 0 0
\(355\) 28.0355 + 33.4115i 1.48797 + 1.77330i
\(356\) −2.78366 1.60715i −0.147534 0.0851786i
\(357\) 0 0
\(358\) −0.443564 2.51558i −0.0234431 0.132952i
\(359\) −16.0062 27.7236i −0.844775 1.46319i −0.885816 0.464037i \(-0.846401\pi\)
0.0410405 0.999157i \(-0.486933\pi\)
\(360\) 0 0
\(361\) −1.72818 0.629006i −0.0909568 0.0331056i
\(362\) −7.26419 + 4.19398i −0.381798 + 0.220431i
\(363\) 0 0
\(364\) 0.933888i 0.0489490i
\(365\) 14.4016 17.1632i 0.753816 0.898363i
\(366\) 0 0
\(367\) 2.78467 15.7927i 0.145359 0.824371i −0.821720 0.569892i \(-0.806985\pi\)
0.967078 0.254479i \(-0.0819038\pi\)
\(368\) 1.01993 0.179842i 0.0531678 0.00937491i
\(369\) 0 0
\(370\) 14.7513 11.5433i 0.766882 0.600108i
\(371\) 2.25951 0.117308
\(372\) 0 0
\(373\) −0.193859 + 1.09943i −0.0100376 + 0.0569262i −0.989415 0.145113i \(-0.953646\pi\)
0.979378 + 0.202039i \(0.0647567\pi\)
\(374\) 27.7391 10.0962i 1.43435 0.522062i
\(375\) 0 0
\(376\) 8.20949i 0.423372i
\(377\) 5.20266 + 4.36555i 0.267951 + 0.224837i
\(378\) 0 0
\(379\) −34.2433 12.4636i −1.75896 0.640210i −0.759021 0.651066i \(-0.774322\pi\)
−0.999941 + 0.0108561i \(0.996544\pi\)
\(380\) 6.37821 11.0474i 0.327195 0.566719i
\(381\) 0 0
\(382\) 1.12556 + 6.38335i 0.0575885 + 0.326601i
\(383\) −2.06267 5.66715i −0.105398 0.289578i 0.875772 0.482725i \(-0.160353\pi\)
−0.981170 + 0.193147i \(0.938131\pi\)
\(384\) 0 0
\(385\) −1.71914 2.04879i −0.0876156 0.104416i
\(386\) −16.0737 + 13.4875i −0.818131 + 0.686494i
\(387\) 0 0
\(388\) 2.35789 + 0.415760i 0.119704 + 0.0211070i
\(389\) −18.5468 3.27030i −0.940361 0.165811i −0.317601 0.948224i \(-0.602877\pi\)
−0.622759 + 0.782413i \(0.713988\pi\)
\(390\) 0 0
\(391\) −5.39191 + 4.52435i −0.272681 + 0.228806i
\(392\) −4.47381 5.33168i −0.225962 0.269291i
\(393\) 0 0
\(394\) 0.567102 + 1.55810i 0.0285702 + 0.0784959i
\(395\) 3.36634 + 19.0914i 0.169379 + 0.960595i
\(396\) 0 0
\(397\) −13.7557 + 23.8255i −0.690378 + 1.19577i 0.281336 + 0.959609i \(0.409222\pi\)
−0.971714 + 0.236160i \(0.924111\pi\)
\(398\) 6.78441 + 2.46932i 0.340072 + 0.123776i
\(399\) 0 0
\(400\) −3.43370 2.88122i −0.171685 0.144061i
\(401\) 22.0721i 1.10223i −0.834430 0.551114i \(-0.814203\pi\)
0.834430 0.551114i \(-0.185797\pi\)
\(402\) 0 0
\(403\) 22.4196 8.16008i 1.11680 0.406483i
\(404\) −1.90370 + 10.7964i −0.0947128 + 0.537143i
\(405\) 0 0
\(406\) −0.290785 −0.0144314
\(407\) −3.69721 26.1604i −0.183264 1.29672i
\(408\) 0 0
\(409\) −1.39932 + 0.246737i −0.0691917 + 0.0122004i −0.208137 0.978100i \(-0.566740\pi\)
0.138945 + 0.990300i \(0.455629\pi\)
\(410\) 2.54080 14.4096i 0.125481 0.711638i
\(411\) 0 0
\(412\) −10.1147 + 12.0542i −0.498313 + 0.593866i
\(413\) 0.839043i 0.0412866i
\(414\) 0 0
\(415\) 41.1107 23.7353i 2.01805 1.16512i
\(416\) −4.38867 1.59735i −0.215172 0.0783164i
\(417\) 0 0
\(418\) −8.99661 15.5826i −0.440038 0.762169i
\(419\) 2.36856 + 13.4328i 0.115712 + 0.656235i 0.986395 + 0.164391i \(0.0525658\pi\)
−0.870683 + 0.491844i \(0.836323\pi\)
\(420\) 0 0
\(421\) −24.2468 13.9989i −1.18172 0.682264i −0.225306 0.974288i \(-0.572338\pi\)
−0.956411 + 0.292024i \(0.905671\pi\)
\(422\) −2.89812 3.45385i −0.141078 0.168131i
\(423\) 0 0
\(424\) 3.86472 10.6182i 0.187687 0.515667i
\(425\) 30.0005 + 5.28989i 1.45524 + 0.256597i
\(426\) 0 0
\(427\) 0.720170 1.97865i 0.0348515 0.0957536i
\(428\) −14.2607 + 11.9661i −0.689316 + 0.578405i
\(429\) 0 0
\(430\) −1.06664 0.615823i −0.0514378 0.0296976i
\(431\) 0.974582 + 2.67764i 0.0469440 + 0.128977i 0.960949 0.276725i \(-0.0892491\pi\)
−0.914005 + 0.405703i \(0.867027\pi\)
\(432\) 0 0
\(433\) 15.5676 + 26.9638i 0.748130 + 1.29580i 0.948718 + 0.316123i \(0.102381\pi\)
−0.200588 + 0.979676i \(0.564285\pi\)
\(434\) −0.510755 + 0.884654i −0.0245170 + 0.0424647i
\(435\) 0 0
\(436\) 0.00608240 0.00351168i 0.000291294 0.000168179i
\(437\) 3.28659 + 2.75777i 0.157219 + 0.131922i
\(438\) 0 0
\(439\) −18.4994 + 22.0467i −0.882929 + 1.05223i 0.115335 + 0.993327i \(0.463206\pi\)
−0.998263 + 0.0589066i \(0.981239\pi\)
\(440\) −12.5685 + 4.57455i −0.599179 + 0.218083i
\(441\) 0 0
\(442\) 31.2584 5.51170i 1.48681 0.262165i
\(443\) 19.3903 0.921259 0.460630 0.887592i \(-0.347624\pi\)
0.460630 + 0.887592i \(0.347624\pi\)
\(444\) 0 0
\(445\) −9.89793 −0.469207
\(446\) 13.4346 2.36888i 0.636147 0.112170i
\(447\) 0 0
\(448\) 0.187903 0.0683910i 0.00887757 0.00323117i
\(449\) −10.9788 + 13.0840i −0.518120 + 0.617472i −0.960135 0.279536i \(-0.909819\pi\)
0.442015 + 0.897008i \(0.354264\pi\)
\(450\) 0 0
\(451\) −15.8101 13.2662i −0.744466 0.624681i
\(452\) −2.21929 + 1.28131i −0.104387 + 0.0602677i
\(453\) 0 0
\(454\) 13.6191 23.5890i 0.639175 1.10708i
\(455\) −1.43788 2.49049i −0.0674090 0.116756i
\(456\) 0 0
\(457\) −0.826507 2.27081i −0.0386623 0.106224i 0.918859 0.394585i \(-0.129112\pi\)
−0.957522 + 0.288361i \(0.906890\pi\)
\(458\) 1.76493 + 1.01898i 0.0824697 + 0.0476139i
\(459\) 0 0
\(460\) 2.44306 2.04997i 0.113908 0.0955802i
\(461\) 6.40945 17.6098i 0.298518 0.820171i −0.696230 0.717819i \(-0.745141\pi\)
0.994748 0.102353i \(-0.0326371\pi\)
\(462\) 0 0
\(463\) 5.08108 + 0.895932i 0.236138 + 0.0416375i 0.290465 0.956886i \(-0.406190\pi\)
−0.0543267 + 0.998523i \(0.517301\pi\)
\(464\) −0.497366 + 1.36650i −0.0230896 + 0.0634382i
\(465\) 0 0
\(466\) −2.49720 2.97604i −0.115680 0.137863i
\(467\) 26.7874 + 15.4657i 1.23957 + 0.715668i 0.969007 0.247034i \(-0.0794558\pi\)
0.270566 + 0.962701i \(0.412789\pi\)
\(468\) 0 0
\(469\) 0.302471 + 1.71540i 0.0139668 + 0.0792097i
\(470\) 12.6399 + 21.8930i 0.583037 + 1.00985i
\(471\) 0 0
\(472\) 3.94296 + 1.43512i 0.181490 + 0.0660568i
\(473\) −1.50451 + 0.868631i −0.0691776 + 0.0399397i
\(474\) 0 0
\(475\) 18.5686i 0.851985i
\(476\) −0.873540 + 1.04104i −0.0400386 + 0.0477162i
\(477\) 0 0
\(478\) 3.22473 18.2884i 0.147496 0.836491i
\(479\) −12.6827 + 2.23629i −0.579485 + 0.102179i −0.455705 0.890131i \(-0.650613\pi\)
−0.123780 + 0.992310i \(0.539502\pi\)
\(480\) 0 0
\(481\) 0.969525 28.3920i 0.0442065 1.29456i
\(482\) 25.3378 1.15410
\(483\) 0 0
\(484\) −1.36590 + 7.74638i −0.0620862 + 0.352108i
\(485\) 6.92815 2.52164i 0.314591 0.114502i
\(486\) 0 0
\(487\) 17.2601i 0.782130i 0.920363 + 0.391065i \(0.127893\pi\)
−0.920363 + 0.391065i \(0.872107\pi\)
\(488\) −8.06659 6.76867i −0.365157 0.306403i
\(489\) 0 0
\(490\) −20.1398 7.33028i −0.909822 0.331148i
\(491\) 8.55331 14.8148i 0.386005 0.668581i −0.605903 0.795539i \(-0.707188\pi\)
0.991908 + 0.126958i \(0.0405212\pi\)
\(492\) 0 0
\(493\) −1.71618 9.73293i −0.0772928 0.438349i
\(494\) −6.61713 18.1804i −0.297719 0.817975i
\(495\) 0 0
\(496\) 3.28370 + 3.91336i 0.147442 + 0.175715i
\(497\) −2.16962 + 1.82053i −0.0973208 + 0.0816619i
\(498\) 0 0
\(499\) −18.2596 3.21965i −0.817410 0.144131i −0.250717 0.968060i \(-0.580666\pi\)
−0.566693 + 0.823929i \(0.691777\pi\)
\(500\) 1.56972 + 0.276784i 0.0702000 + 0.0123782i
\(501\) 0 0
\(502\) −9.73819 + 8.17131i −0.434637 + 0.364703i
\(503\) −2.15713 2.57077i −0.0961818 0.114625i 0.715807 0.698299i \(-0.246059\pi\)
−0.811988 + 0.583674i \(0.801615\pi\)
\(504\) 0 0
\(505\) 11.5462 + 31.7230i 0.513800 + 1.41165i
\(506\) −0.781141 4.43007i −0.0347260 0.196941i
\(507\) 0 0
\(508\) −2.90351 + 5.02902i −0.128822 + 0.223127i
\(509\) −10.3552 3.76897i −0.458984 0.167057i 0.102171 0.994767i \(-0.467421\pi\)
−0.561156 + 0.827710i \(0.689643\pi\)
\(510\) 0 0
\(511\) 1.11452 + 0.935191i 0.0493033 + 0.0413704i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −4.08494 + 1.48680i −0.180179 + 0.0655798i
\(515\) −8.41419 + 47.7192i −0.370774 + 2.10276i
\(516\) 0 0
\(517\) 35.6578 1.56823
\(518\) 0.749582 + 0.957896i 0.0329347 + 0.0420875i
\(519\) 0 0
\(520\) −14.1631 + 2.49733i −0.621092 + 0.109515i
\(521\) 1.36004 7.71318i 0.0595845 0.337921i −0.940413 0.340034i \(-0.889561\pi\)
0.999998 + 0.00211306i \(0.000672610\pi\)
\(522\) 0 0
\(523\) 1.16527 1.38872i 0.0509538 0.0607244i −0.739966 0.672645i \(-0.765158\pi\)
0.790919 + 0.611920i \(0.209603\pi\)
\(524\) 8.36959i 0.365627i
\(525\) 0 0
\(526\) −5.63903 + 3.25569i −0.245873 + 0.141955i
\(527\) −32.6249 11.8745i −1.42116 0.517261i
\(528\) 0 0
\(529\) −10.9637 18.9897i −0.476682 0.825638i
\(530\) −6.04220 34.2670i −0.262456 1.48846i
\(531\) 0 0
\(532\) 0.717378 + 0.414178i 0.0311023 + 0.0179569i
\(533\) −14.2645 16.9997i −0.617863 0.736341i
\(534\) 0 0
\(535\) −19.6063 + 53.8680i −0.847656 + 2.32892i
\(536\) 8.57863 + 1.51264i 0.370540 + 0.0653362i
\(537\) 0 0
\(538\) −3.38673 + 9.30496i −0.146012 + 0.401165i
\(539\) −23.1581 + 19.4319i −0.997489 + 0.836993i
\(540\) 0 0
\(541\) −6.02197 3.47679i −0.258905 0.149479i 0.364930 0.931035i \(-0.381093\pi\)
−0.623835 + 0.781556i \(0.714426\pi\)
\(542\) 3.08676 + 8.48080i 0.132588 + 0.364282i
\(543\) 0 0
\(544\) 3.39811 + 5.88571i 0.145693 + 0.252348i
\(545\) 0.0108137 0.0187298i 0.000463207 0.000802298i
\(546\) 0 0
\(547\) 4.21435 2.43316i 0.180193 0.104034i −0.407191 0.913343i \(-0.633492\pi\)
0.587383 + 0.809309i \(0.300158\pi\)
\(548\) −1.20881 1.01431i −0.0516378 0.0433293i
\(549\) 0 0
\(550\) −12.5145 + 14.9142i −0.533621 + 0.635945i
\(551\) −5.66083 + 2.06037i −0.241160 + 0.0877749i
\(552\) 0 0
\(553\) −1.23973 + 0.218598i −0.0527187 + 0.00929573i
\(554\) −0.208088 −0.00884079
\(555\) 0 0
\(556\) −9.92368 −0.420858
\(557\) 7.17172 1.26457i 0.303876 0.0535815i −0.0196313 0.999807i \(-0.506249\pi\)
0.323507 + 0.946226i \(0.395138\pi\)
\(558\) 0 0
\(559\) −1.75534 + 0.638890i −0.0742428 + 0.0270222i
\(560\) 0.395798 0.471694i 0.0167255 0.0199327i
\(561\) 0 0
\(562\) 20.7286 + 17.3934i 0.874384 + 0.733695i
\(563\) −23.9124 + 13.8058i −1.00779 + 0.581845i −0.910543 0.413415i \(-0.864336\pi\)
−0.0972430 + 0.995261i \(0.531002\pi\)
\(564\) 0 0
\(565\) −3.94560 + 6.83397i −0.165992 + 0.287507i
\(566\) 0.406447 + 0.703987i 0.0170842 + 0.0295908i
\(567\) 0 0
\(568\) 4.84434 + 13.3097i 0.203264 + 0.558463i
\(569\) 4.89110 + 2.82388i 0.205046 + 0.118383i 0.599007 0.800744i \(-0.295562\pi\)
−0.393961 + 0.919127i \(0.628896\pi\)
\(570\) 0 0
\(571\) 10.3379 8.67450i 0.432626 0.363016i −0.400315 0.916377i \(-0.631099\pi\)
0.832942 + 0.553361i \(0.186655\pi\)
\(572\) −6.93805 + 19.0621i −0.290095 + 0.797029i
\(573\) 0 0
\(574\) 0.935706 + 0.164990i 0.0390556 + 0.00688656i
\(575\) 1.58775 4.36230i 0.0662136 0.181920i
\(576\) 0 0
\(577\) 27.0708 + 32.2617i 1.12697 + 1.34307i 0.932083 + 0.362246i \(0.117990\pi\)
0.194888 + 0.980825i \(0.437566\pi\)
\(578\) −25.2782 14.5944i −1.05143 0.607045i
\(579\) 0 0
\(580\) 0.777594 + 4.40996i 0.0322879 + 0.183114i
\(581\) 1.54128 + 2.66958i 0.0639433 + 0.110753i
\(582\) 0 0
\(583\) −46.1201 16.7864i −1.91010 0.695220i
\(584\) 6.30110 3.63794i 0.260741 0.150539i
\(585\) 0 0
\(586\) 8.79957i 0.363507i
\(587\) 26.6651 31.7782i 1.10059 1.31163i 0.154398 0.988009i \(-0.450656\pi\)
0.946188 0.323618i \(-0.104899\pi\)
\(588\) 0 0
\(589\) −3.67482 + 20.8409i −0.151418 + 0.858735i
\(590\) 12.7247 2.24370i 0.523867 0.0923718i
\(591\) 0 0
\(592\) 5.78360 1.88414i 0.237704 0.0774378i
\(593\) 29.6746 1.21859 0.609295 0.792944i \(-0.291452\pi\)
0.609295 + 0.792944i \(0.291452\pi\)
\(594\) 0 0
\(595\) −0.726682 + 4.12122i −0.0297910 + 0.168953i
\(596\) −12.0754 + 4.39509i −0.494628 + 0.180030i
\(597\) 0 0
\(598\) 4.83691i 0.197796i
\(599\) 3.43909 + 2.88574i 0.140517 + 0.117908i 0.710337 0.703862i \(-0.248543\pi\)
−0.569820 + 0.821770i \(0.692987\pi\)
\(600\) 0 0
\(601\) 13.3480 + 4.85827i 0.544476 + 0.198173i 0.599590 0.800307i \(-0.295330\pi\)
−0.0551145 + 0.998480i \(0.517552\pi\)
\(602\) 0.0399893 0.0692636i 0.00162984 0.00282297i
\(603\) 0 0
\(604\) −0.900597 5.10754i −0.0366448 0.207823i
\(605\) 8.28433 + 22.7610i 0.336806 + 0.925367i
\(606\) 0 0
\(607\) −16.2460 19.3612i −0.659405 0.785848i 0.327895 0.944714i \(-0.393661\pi\)
−0.987300 + 0.158866i \(0.949216\pi\)
\(608\) 3.17339 2.66279i 0.128698 0.107991i
\(609\) 0 0
\(610\) −31.9335 5.63073i −1.29295 0.227982i
\(611\) 37.7585 + 6.65785i 1.52755 + 0.269348i
\(612\) 0 0
\(613\) 1.12722 0.945851i 0.0455280 0.0382025i −0.619740 0.784807i \(-0.712762\pi\)
0.665268 + 0.746605i \(0.268317\pi\)
\(614\) −15.7188 18.7330i −0.634360 0.756001i
\(615\) 0 0
\(616\) −0.297055 0.816153i −0.0119687 0.0328837i
\(617\) 2.72180 + 15.4361i 0.109575 + 0.621433i 0.989294 + 0.145938i \(0.0466200\pi\)
−0.879718 + 0.475495i \(0.842269\pi\)
\(618\) 0 0
\(619\) −20.1519 + 34.9042i −0.809974 + 1.40292i 0.102907 + 0.994691i \(0.467186\pi\)
−0.912881 + 0.408226i \(0.866148\pi\)
\(620\) 14.7822 + 5.38029i 0.593669 + 0.216078i
\(621\) 0 0
\(622\) −0.00972517 0.00816038i −0.000389944 0.000327202i
\(623\) 0.642736i 0.0257507i
\(624\) 0 0
\(625\) 25.6726 9.34405i 1.02690 0.373762i
\(626\) 3.03336 17.2031i 0.121238 0.687572i
\(627\) 0 0
\(628\) −11.9635 −0.477398
\(629\) −27.6380 + 30.7428i −1.10200 + 1.22580i
\(630\) 0 0
\(631\) 29.0845 5.12838i 1.15783 0.204158i 0.438441 0.898760i \(-0.355531\pi\)
0.719394 + 0.694602i \(0.244420\pi\)
\(632\) −1.09320 + 6.19983i −0.0434851 + 0.246616i
\(633\) 0 0
\(634\) −1.75410 + 2.09046i −0.0696644 + 0.0830228i
\(635\) 17.8818i 0.709618i
\(636\) 0 0
\(637\) −28.1506 + 16.2528i −1.11537 + 0.643959i
\(638\) 5.93538 + 2.16030i 0.234984 + 0.0855272i
\(639\) 0 0
\(640\) −1.53967 2.66679i −0.0608609 0.105414i
\(641\) 4.14227 + 23.4920i 0.163610 + 0.927877i 0.950486 + 0.310767i \(0.100586\pi\)
−0.786876 + 0.617111i \(0.788303\pi\)
\(642\) 0 0
\(643\) 17.4120 + 10.0528i 0.686663 + 0.396445i 0.802361 0.596839i \(-0.203577\pi\)
−0.115698 + 0.993284i \(0.536910\pi\)
\(644\) 0.133118 + 0.158643i 0.00524557 + 0.00625143i
\(645\) 0 0
\(646\) −9.62919 + 26.4560i −0.378855 + 1.04090i
\(647\) −15.3079 2.69919i −0.601815 0.106116i −0.135564 0.990769i \(-0.543285\pi\)
−0.466251 + 0.884652i \(0.654396\pi\)
\(648\) 0 0
\(649\) 6.23343 17.1262i 0.244683 0.672262i
\(650\) −16.0365 + 13.4562i −0.629004 + 0.527797i
\(651\) 0 0
\(652\) −0.612198 0.353453i −0.0239755 0.0138423i
\(653\) −1.10893 3.04676i −0.0433958 0.119229i 0.916102 0.400946i \(-0.131318\pi\)
−0.959498 + 0.281717i \(0.909096\pi\)
\(654\) 0 0
\(655\) −12.8864 22.3199i −0.503514 0.872113i
\(656\) 2.37581 4.11502i 0.0927596 0.160664i
\(657\) 0 0
\(658\) −1.42166 + 0.820793i −0.0554219 + 0.0319978i
\(659\) 10.8426 + 9.09798i 0.422366 + 0.354407i 0.829062 0.559156i \(-0.188875\pi\)
−0.406696 + 0.913563i \(0.633319\pi\)
\(660\) 0 0
\(661\) 30.2776 36.0835i 1.17766 1.40348i 0.281614 0.959528i \(-0.409130\pi\)
0.896049 0.443956i \(-0.146425\pi\)
\(662\) −22.1918 + 8.07717i −0.862510 + 0.313928i
\(663\) 0 0
\(664\) 15.1816 2.67692i 0.589160 0.103885i
\(665\) 2.55080 0.0989157
\(666\) 0 0
\(667\) −1.50607 −0.0583153
\(668\) 6.50943 1.14779i 0.251857 0.0444093i
\(669\) 0 0
\(670\) 25.2064 9.17438i 0.973808 0.354437i
\(671\) −29.3996 + 35.0371i −1.13496 + 1.35259i
\(672\) 0 0
\(673\) −3.74538 3.14274i −0.144374 0.121144i 0.567740 0.823208i \(-0.307818\pi\)
−0.712114 + 0.702064i \(0.752262\pi\)
\(674\) 19.4385 11.2228i 0.748742 0.432287i
\(675\) 0 0
\(676\) −4.40599 + 7.63140i −0.169461 + 0.293515i
\(677\) 2.95124 + 5.11171i 0.113426 + 0.196459i 0.917149 0.398544i \(-0.130484\pi\)
−0.803724 + 0.595003i \(0.797151\pi\)
\(678\) 0 0
\(679\) 0.163746 + 0.449890i 0.00628401 + 0.0172652i
\(680\) 18.1241 + 10.4640i 0.695029 + 0.401275i
\(681\) 0 0
\(682\) 16.9976 14.2627i 0.650872 0.546147i
\(683\) −7.74555 + 21.2807i −0.296375 + 0.814285i 0.698723 + 0.715392i \(0.253752\pi\)
−0.995098 + 0.0988921i \(0.968470\pi\)
\(684\) 0 0
\(685\) −4.78536 0.843787i −0.182839 0.0322395i
\(686\) 0.954739 2.62313i 0.0364521 0.100151i
\(687\) 0 0
\(688\) −0.257095 0.306394i −0.00980167 0.0116812i
\(689\) −45.7030 26.3866i −1.74114 1.00525i
\(690\) 0 0
\(691\) 7.27318 + 41.2483i 0.276685 + 1.56916i 0.733559 + 0.679626i \(0.237858\pi\)
−0.456874 + 0.889531i \(0.651031\pi\)
\(692\) −7.70082 13.3382i −0.292741 0.507042i
\(693\) 0 0
\(694\) 1.14183 + 0.415593i 0.0433433 + 0.0157757i
\(695\) −26.4644 + 15.2792i −1.00385 + 0.579574i
\(696\) 0 0
\(697\) 32.2930i 1.22319i
\(698\) 11.4027 13.5892i 0.431599 0.514360i
\(699\) 0 0
\(700\) 0.155642 0.882688i 0.00588271 0.0333625i
\(701\) −8.72989 + 1.53931i −0.329723 + 0.0581391i −0.336059 0.941841i \(-0.609094\pi\)
0.00633605 + 0.999980i \(0.497983\pi\)
\(702\) 0 0
\(703\) 21.3797 + 13.3366i 0.806349 + 0.502998i
\(704\) −4.34349 −0.163701
\(705\) 0 0
\(706\) −0.278889 + 1.58166i −0.0104961 + 0.0595265i
\(707\) −2.05998 + 0.749770i −0.0774734 + 0.0281980i
\(708\) 0 0
\(709\) 45.8415i 1.72161i 0.508931 + 0.860807i \(0.330041\pi\)
−0.508931 + 0.860807i \(0.669959\pi\)
\(710\) 33.4115 + 28.0355i 1.25391 + 1.05216i
\(711\) 0 0
\(712\) −3.02045 1.09935i −0.113196 0.0412000i
\(713\) −2.64537 + 4.58191i −0.0990698 + 0.171594i
\(714\) 0 0
\(715\) 10.8471 + 61.5171i 0.405660 + 2.30061i
\(716\) −0.873650 2.40033i −0.0326498 0.0897047i
\(717\) 0 0
\(718\) −20.5772 24.5229i −0.767934 0.915188i
\(719\) 4.97255 4.17246i 0.185445 0.155607i −0.545339 0.838215i \(-0.683599\pi\)
0.730784 + 0.682609i \(0.239155\pi\)
\(720\) 0 0
\(721\) −3.09872 0.546388i −0.115402 0.0203485i
\(722\) −1.81115 0.319355i −0.0674041 0.0118852i
\(723\) 0 0
\(724\) −6.42556 + 5.39168i −0.238804 + 0.200380i
\(725\) 4.18987 + 4.99329i 0.155608 + 0.185446i
\(726\) 0 0
\(727\) 9.11998 + 25.0569i 0.338241 + 0.929310i 0.985893 + 0.167374i \(0.0535287\pi\)
−0.647652 + 0.761936i \(0.724249\pi\)
\(728\) −0.162168 0.919700i −0.00601034 0.0340864i
\(729\) 0 0
\(730\) 11.2025 19.4033i 0.414622 0.718147i
\(731\) 2.55435 + 0.929708i 0.0944761 + 0.0343865i
\(732\) 0 0
\(733\) −37.4593 31.4321i −1.38359 1.16097i −0.967862 0.251482i \(-0.919082\pi\)
−0.415729 0.909489i \(-0.636473\pi\)
\(734\) 16.0363i 0.591910i
\(735\) 0 0
\(736\) 0.973210 0.354220i 0.0358730 0.0130567i
\(737\) 6.57015 37.2611i 0.242014 1.37253i
\(738\) 0 0
\(739\) −53.7875 −1.97861 −0.989303 0.145878i \(-0.953399\pi\)
−0.989303 + 0.145878i \(0.953399\pi\)
\(740\) 12.5227 13.9295i 0.460343 0.512058i
\(741\) 0 0
\(742\) 2.22518 0.392359i 0.0816889 0.0144040i
\(743\) 3.90547 22.1490i 0.143278 0.812569i −0.825456 0.564467i \(-0.809082\pi\)
0.968734 0.248103i \(-0.0798070\pi\)
\(744\) 0 0
\(745\) −25.4356 + 30.3130i −0.931889 + 1.11058i
\(746\) 1.11639i 0.0408738i
\(747\) 0 0
\(748\) 25.5645 14.7597i 0.934730 0.539667i
\(749\) −3.49800 1.27317i −0.127814 0.0465205i
\(750\) 0 0
\(751\) −3.56277 6.17090i −0.130007 0.225179i 0.793672 0.608346i \(-0.208167\pi\)
−0.923679 + 0.383167i \(0.874833\pi\)
\(752\) 1.42556 + 8.08477i 0.0519849 + 0.294821i
\(753\) 0 0
\(754\) 5.88169 + 3.39580i 0.214199 + 0.123668i
\(755\) −10.2656 12.2341i −0.373605 0.445245i
\(756\) 0 0
\(757\) −1.85286 + 5.09070i −0.0673434 + 0.185024i −0.968799 0.247846i \(-0.920277\pi\)
0.901456 + 0.432871i \(0.142499\pi\)
\(758\) −35.8874 6.32791i −1.30349 0.229840i
\(759\) 0 0
\(760\) 4.36295 11.9871i 0.158261 0.434818i
\(761\) −19.7639 + 16.5839i −0.716440 + 0.601165i −0.926398 0.376546i \(-0.877112\pi\)
0.209958 + 0.977710i \(0.432667\pi\)
\(762\) 0 0
\(763\) 0.00121625 0.000702202i 4.40312e−5 2.54214e-5i
\(764\) 2.21691 + 6.09092i 0.0802051 + 0.220362i
\(765\) 0 0
\(766\) −3.01543 5.22288i −0.108952 0.188710i
\(767\) 9.79838 16.9713i 0.353799 0.612798i
\(768\) 0 0
\(769\) −1.66740 + 0.962671i −0.0601278 + 0.0347148i −0.529763 0.848146i \(-0.677719\pi\)
0.469635 + 0.882861i \(0.344386\pi\)
\(770\) −2.04879 1.71914i −0.0738334 0.0619536i
\(771\) 0 0
\(772\) −13.4875 + 16.0737i −0.485424 + 0.578506i
\(773\) 25.7461 9.37083i 0.926025 0.337045i 0.165392 0.986228i \(-0.447111\pi\)
0.760633 + 0.649183i \(0.224889\pi\)
\(774\) 0 0
\(775\) 22.5505 3.97625i 0.810036 0.142831i
\(776\) 2.39427 0.0859492
\(777\) 0 0
\(778\) −18.8329 −0.675193
\(779\) 19.3849 3.41807i 0.694534 0.122465i
\(780\) 0 0
\(781\) 57.8105 21.0413i 2.06862 0.752918i
\(782\) −4.52435 + 5.39191i −0.161790 + 0.192814i
\(783\) 0 0
\(784\) −5.33168 4.47381i −0.190417 0.159779i