Properties

Label 666.2.bj.c.289.2
Level $666$
Weight $2$
Character 666.289
Analytic conductor $5.318$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bj (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.2
Root \(0.342020 + 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 666.289
Dual form 666.2.bj.c.613.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.342020 + 0.939693i) q^{2} +(-0.766044 + 0.642788i) q^{4} +(-2.57176 + 0.453471i) q^{5} +(-0.361075 - 2.04776i) q^{7} +(-0.866025 - 0.500000i) q^{8} +O(q^{10})\) \(q+(0.342020 + 0.939693i) q^{2} +(-0.766044 + 0.642788i) q^{4} +(-2.57176 + 0.453471i) q^{5} +(-0.361075 - 2.04776i) q^{7} +(-0.866025 - 0.500000i) q^{8} +(-1.30572 - 2.26157i) q^{10} +(2.99810 - 5.19285i) q^{11} +(2.64632 + 3.15377i) q^{13} +(1.80077 - 1.03967i) q^{14} +(0.173648 - 0.984808i) q^{16} +(0.618710 - 0.737350i) q^{17} +(0.534946 - 1.46975i) q^{19} +(1.67860 - 2.00048i) q^{20} +(5.90509 + 1.04123i) q^{22} +(5.51705 - 3.18527i) q^{23} +(1.70986 - 0.622339i) q^{25} +(-2.05847 + 3.56538i) q^{26} +(1.59287 + 1.33658i) q^{28} +(3.51193 + 2.02761i) q^{29} -3.39997i q^{31} +(0.984808 - 0.173648i) q^{32} +(0.904494 + 0.329209i) q^{34} +(1.85720 + 5.10261i) q^{35} +(6.07068 - 0.383130i) q^{37} +1.56408 q^{38} +(2.45395 + 0.893164i) q^{40} +(-7.94502 + 6.66666i) q^{41} -3.76932i q^{43} +(1.04123 + 5.90509i) q^{44} +(4.88011 + 4.09490i) q^{46} +(-3.08750 - 5.34771i) q^{47} +(2.51491 - 0.915354i) q^{49} +(1.16962 + 1.39389i) q^{50} +(-4.05440 - 0.714901i) q^{52} +(1.39401 - 7.90585i) q^{53} +(-5.35558 + 14.7143i) q^{55} +(-0.711179 + 1.95395i) q^{56} +(-0.704183 + 3.99362i) q^{58} +(-5.02269 - 0.885636i) q^{59} +(-6.25519 - 7.45465i) q^{61} +(3.19493 - 1.16286i) q^{62} +(0.500000 + 0.866025i) q^{64} +(-8.23586 - 6.91071i) q^{65} +(-1.83263 - 10.3934i) q^{67} +0.962542i q^{68} +(-4.15968 + 3.49039i) q^{70} +(10.1503 + 3.69442i) q^{71} +3.55293 q^{73} +(2.43632 + 5.57354i) q^{74} +(0.534946 + 1.46975i) q^{76} +(-11.7162 - 4.26436i) q^{77} +(2.51098 - 0.442753i) q^{79} +2.61144i q^{80} +(-8.98197 - 5.18574i) q^{82} +(-5.29798 - 4.44553i) q^{83} +(-1.25681 + 2.17686i) q^{85} +(3.54200 - 1.28918i) q^{86} +(-5.19285 + 2.99810i) q^{88} +(16.0165 + 2.82414i) q^{89} +(5.50263 - 6.55778i) q^{91} +(-2.17885 + 5.98635i) q^{92} +(3.96922 - 4.73033i) q^{94} +(-0.709264 + 4.02243i) q^{95} +(-14.1175 + 8.15074i) q^{97} +(1.72030 + 2.05018i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{7} + 6 q^{10} + 6 q^{11} + 6 q^{13} + 18 q^{14} - 18 q^{19} - 18 q^{25} - 12 q^{26} - 6 q^{28} - 18 q^{29} + 12 q^{34} - 18 q^{35} + 30 q^{37} + 24 q^{38} + 12 q^{40} - 24 q^{41} - 6 q^{44} + 30 q^{46} - 6 q^{47} + 12 q^{49} + 36 q^{50} - 12 q^{52} + 12 q^{53} - 18 q^{55} + 6 q^{58} - 36 q^{61} + 6 q^{64} - 36 q^{65} - 30 q^{67} - 12 q^{70} - 12 q^{71} + 48 q^{74} - 18 q^{76} - 12 q^{77} + 6 q^{79} + 48 q^{83} + 18 q^{85} + 36 q^{86} - 36 q^{88} + 18 q^{89} - 6 q^{91} - 18 q^{92} + 36 q^{97} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.342020 + 0.939693i 0.241845 + 0.664463i
\(3\) 0 0
\(4\) −0.766044 + 0.642788i −0.383022 + 0.321394i
\(5\) −2.57176 + 0.453471i −1.15013 + 0.202798i −0.716031 0.698068i \(-0.754043\pi\)
−0.434096 + 0.900867i \(0.642932\pi\)
\(6\) 0 0
\(7\) −0.361075 2.04776i −0.136473 0.773979i −0.973822 0.227311i \(-0.927007\pi\)
0.837349 0.546669i \(-0.184104\pi\)
\(8\) −0.866025 0.500000i −0.306186 0.176777i
\(9\) 0 0
\(10\) −1.30572 2.26157i −0.412904 0.715171i
\(11\) 2.99810 5.19285i 0.903960 1.56570i 0.0816522 0.996661i \(-0.473980\pi\)
0.822308 0.569043i \(-0.192686\pi\)
\(12\) 0 0
\(13\) 2.64632 + 3.15377i 0.733958 + 0.874697i 0.995907 0.0903843i \(-0.0288095\pi\)
−0.261949 + 0.965082i \(0.584365\pi\)
\(14\) 1.80077 1.03967i 0.481275 0.277864i
\(15\) 0 0
\(16\) 0.173648 0.984808i 0.0434120 0.246202i
\(17\) 0.618710 0.737350i 0.150059 0.178834i −0.685778 0.727810i \(-0.740538\pi\)
0.835838 + 0.548977i \(0.184982\pi\)
\(18\) 0 0
\(19\) 0.534946 1.46975i 0.122725 0.337184i −0.863083 0.505063i \(-0.831469\pi\)
0.985808 + 0.167878i \(0.0536916\pi\)
\(20\) 1.67860 2.00048i 0.375346 0.447320i
\(21\) 0 0
\(22\) 5.90509 + 1.04123i 1.25897 + 0.221990i
\(23\) 5.51705 3.18527i 1.15038 0.664174i 0.201403 0.979508i \(-0.435450\pi\)
0.948981 + 0.315334i \(0.102117\pi\)
\(24\) 0 0
\(25\) 1.70986 0.622339i 0.341973 0.124468i
\(26\) −2.05847 + 3.56538i −0.403700 + 0.699229i
\(27\) 0 0
\(28\) 1.59287 + 1.33658i 0.301025 + 0.252590i
\(29\) 3.51193 + 2.02761i 0.652149 + 0.376519i 0.789279 0.614035i \(-0.210454\pi\)
−0.137130 + 0.990553i \(0.543788\pi\)
\(30\) 0 0
\(31\) 3.39997i 0.610653i −0.952248 0.305326i \(-0.901234\pi\)
0.952248 0.305326i \(-0.0987655\pi\)
\(32\) 0.984808 0.173648i 0.174091 0.0306970i
\(33\) 0 0
\(34\) 0.904494 + 0.329209i 0.155119 + 0.0564588i
\(35\) 1.85720 + 5.10261i 0.313924 + 0.862498i
\(36\) 0 0
\(37\) 6.07068 0.383130i 0.998014 0.0629862i
\(38\) 1.56408 0.253727
\(39\) 0 0
\(40\) 2.45395 + 0.893164i 0.388003 + 0.141222i
\(41\) −7.94502 + 6.66666i −1.24080 + 1.04116i −0.243343 + 0.969940i \(0.578244\pi\)
−0.997461 + 0.0712179i \(0.977311\pi\)
\(42\) 0 0
\(43\) 3.76932i 0.574816i −0.957808 0.287408i \(-0.907206\pi\)
0.957808 0.287408i \(-0.0927936\pi\)
\(44\) 1.04123 + 5.90509i 0.156971 + 0.890227i
\(45\) 0 0
\(46\) 4.88011 + 4.09490i 0.719534 + 0.603760i
\(47\) −3.08750 5.34771i −0.450359 0.780044i 0.548050 0.836446i \(-0.315371\pi\)
−0.998408 + 0.0564019i \(0.982037\pi\)
\(48\) 0 0
\(49\) 2.51491 0.915354i 0.359273 0.130765i
\(50\) 1.16962 + 1.39389i 0.165409 + 0.197126i
\(51\) 0 0
\(52\) −4.05440 0.714901i −0.562245 0.0991389i
\(53\) 1.39401 7.90585i 0.191483 1.08595i −0.725857 0.687846i \(-0.758556\pi\)
0.917339 0.398106i \(-0.130332\pi\)
\(54\) 0 0
\(55\) −5.35558 + 14.7143i −0.722146 + 1.98408i
\(56\) −0.711179 + 1.95395i −0.0950352 + 0.261107i
\(57\) 0 0
\(58\) −0.704183 + 3.99362i −0.0924638 + 0.524388i
\(59\) −5.02269 0.885636i −0.653899 0.115300i −0.163150 0.986601i \(-0.552166\pi\)
−0.490749 + 0.871301i \(0.663277\pi\)
\(60\) 0 0
\(61\) −6.25519 7.45465i −0.800895 0.954470i 0.198778 0.980045i \(-0.436303\pi\)
−0.999673 + 0.0255750i \(0.991858\pi\)
\(62\) 3.19493 1.16286i 0.405756 0.147683i
\(63\) 0 0
\(64\) 0.500000 + 0.866025i 0.0625000 + 0.108253i
\(65\) −8.23586 6.91071i −1.02153 0.857168i
\(66\) 0 0
\(67\) −1.83263 10.3934i −0.223892 1.26975i −0.864792 0.502130i \(-0.832550\pi\)
0.640901 0.767624i \(-0.278561\pi\)
\(68\) 0.962542i 0.116725i
\(69\) 0 0
\(70\) −4.15968 + 3.49039i −0.497177 + 0.417181i
\(71\) 10.1503 + 3.69442i 1.20462 + 0.438447i 0.864835 0.502056i \(-0.167423\pi\)
0.339787 + 0.940502i \(0.389645\pi\)
\(72\) 0 0
\(73\) 3.55293 0.415839 0.207920 0.978146i \(-0.433331\pi\)
0.207920 + 0.978146i \(0.433331\pi\)
\(74\) 2.43632 + 5.57354i 0.283217 + 0.647911i
\(75\) 0 0
\(76\) 0.534946 + 1.46975i 0.0613625 + 0.168592i
\(77\) −11.7162 4.26436i −1.33519 0.485969i
\(78\) 0 0
\(79\) 2.51098 0.442753i 0.282507 0.0498136i −0.0305991 0.999532i \(-0.509742\pi\)
0.313106 + 0.949718i \(0.398630\pi\)
\(80\) 2.61144i 0.291967i
\(81\) 0 0
\(82\) −8.98197 5.18574i −0.991893 0.572670i
\(83\) −5.29798 4.44553i −0.581529 0.487960i 0.303920 0.952698i \(-0.401704\pi\)
−0.885449 + 0.464737i \(0.846149\pi\)
\(84\) 0 0
\(85\) −1.25681 + 2.17686i −0.136320 + 0.236113i
\(86\) 3.54200 1.28918i 0.381944 0.139016i
\(87\) 0 0
\(88\) −5.19285 + 2.99810i −0.553560 + 0.319598i
\(89\) 16.0165 + 2.82414i 1.69774 + 0.299358i 0.936905 0.349584i \(-0.113677\pi\)
0.760838 + 0.648942i \(0.224788\pi\)
\(90\) 0 0
\(91\) 5.50263 6.55778i 0.576832 0.687442i
\(92\) −2.17885 + 5.98635i −0.227161 + 0.624120i
\(93\) 0 0
\(94\) 3.96922 4.73033i 0.409394 0.487896i
\(95\) −0.709264 + 4.02243i −0.0727689 + 0.412693i
\(96\) 0 0
\(97\) −14.1175 + 8.15074i −1.43342 + 0.827583i −0.997380 0.0723469i \(-0.976951\pi\)
−0.436036 + 0.899929i \(0.643618\pi\)
\(98\) 1.72030 + 2.05018i 0.173777 + 0.207099i
\(99\) 0 0
\(100\) −0.909799 + 1.57582i −0.0909799 + 0.157582i
\(101\) 2.05124 + 3.55285i 0.204106 + 0.353521i 0.949847 0.312714i \(-0.101238\pi\)
−0.745742 + 0.666235i \(0.767905\pi\)
\(102\) 0 0
\(103\) 9.35250 + 5.39967i 0.921530 + 0.532045i 0.884123 0.467255i \(-0.154757\pi\)
0.0374069 + 0.999300i \(0.488090\pi\)
\(104\) −0.714901 4.05440i −0.0701018 0.397567i
\(105\) 0 0
\(106\) 7.90585 1.39401i 0.767884 0.135399i
\(107\) −15.5549 + 13.0521i −1.50375 + 1.26180i −0.628823 + 0.777549i \(0.716463\pi\)
−0.874930 + 0.484249i \(0.839093\pi\)
\(108\) 0 0
\(109\) 2.13072 + 5.85411i 0.204086 + 0.560722i 0.998938 0.0460817i \(-0.0146734\pi\)
−0.794851 + 0.606804i \(0.792451\pi\)
\(110\) −15.6587 −1.49300
\(111\) 0 0
\(112\) −2.07935 −0.196480
\(113\) −2.09726 5.76217i −0.197294 0.542059i 0.801112 0.598515i \(-0.204242\pi\)
−0.998405 + 0.0564555i \(0.982020\pi\)
\(114\) 0 0
\(115\) −12.7441 + 10.6936i −1.18839 + 0.997181i
\(116\) −3.99362 + 0.704183i −0.370798 + 0.0653818i
\(117\) 0 0
\(118\) −0.885636 5.02269i −0.0815294 0.462376i
\(119\) −1.73331 1.00073i −0.158893 0.0917367i
\(120\) 0 0
\(121\) −12.4772 21.6111i −1.13429 1.96464i
\(122\) 4.86567 8.42760i 0.440517 0.762999i
\(123\) 0 0
\(124\) 2.18546 + 2.60453i 0.196260 + 0.233893i
\(125\) 7.19270 4.15271i 0.643335 0.371429i
\(126\) 0 0
\(127\) −1.10807 + 6.28420i −0.0983257 + 0.557633i 0.895352 + 0.445360i \(0.146924\pi\)
−0.993677 + 0.112273i \(0.964187\pi\)
\(128\) −0.642788 + 0.766044i −0.0568149 + 0.0677094i
\(129\) 0 0
\(130\) 3.67711 10.1028i 0.322504 0.886072i
\(131\) −6.71929 + 8.00774i −0.587067 + 0.699640i −0.975039 0.222032i \(-0.928731\pi\)
0.387972 + 0.921671i \(0.373176\pi\)
\(132\) 0 0
\(133\) −3.20285 0.564749i −0.277722 0.0489699i
\(134\) 9.13979 5.27686i 0.789557 0.455851i
\(135\) 0 0
\(136\) −0.904494 + 0.329209i −0.0775597 + 0.0282294i
\(137\) 3.12091 5.40557i 0.266637 0.461829i −0.701354 0.712813i \(-0.747421\pi\)
0.967991 + 0.250984i \(0.0807542\pi\)
\(138\) 0 0
\(139\) 5.27989 + 4.43035i 0.447834 + 0.375778i 0.838632 0.544699i \(-0.183356\pi\)
−0.390797 + 0.920477i \(0.627801\pi\)
\(140\) −4.70259 2.71504i −0.397441 0.229463i
\(141\) 0 0
\(142\) 10.8018i 0.906463i
\(143\) 24.3110 4.28668i 2.03299 0.358470i
\(144\) 0 0
\(145\) −9.95132 3.62198i −0.826412 0.300789i
\(146\) 1.21517 + 3.33866i 0.100569 + 0.276310i
\(147\) 0 0
\(148\) −4.40414 + 4.19566i −0.362018 + 0.344881i
\(149\) −3.49508 −0.286328 −0.143164 0.989699i \(-0.545728\pi\)
−0.143164 + 0.989699i \(0.545728\pi\)
\(150\) 0 0
\(151\) 8.84115 + 3.21791i 0.719482 + 0.261870i 0.675706 0.737171i \(-0.263839\pi\)
0.0437763 + 0.999041i \(0.486061\pi\)
\(152\) −1.19815 + 1.00537i −0.0971830 + 0.0815462i
\(153\) 0 0
\(154\) 12.4682i 1.00471i
\(155\) 1.54179 + 8.74391i 0.123839 + 0.702328i
\(156\) 0 0
\(157\) 1.94170 + 1.62928i 0.154964 + 0.130030i 0.716973 0.697101i \(-0.245527\pi\)
−0.562009 + 0.827131i \(0.689971\pi\)
\(158\) 1.27486 + 2.20812i 0.101422 + 0.175668i
\(159\) 0 0
\(160\) −2.45395 + 0.893164i −0.194002 + 0.0706108i
\(161\) −8.51472 10.1475i −0.671054 0.799731i
\(162\) 0 0
\(163\) −9.23549 1.62847i −0.723379 0.127551i −0.200177 0.979760i \(-0.564152\pi\)
−0.523202 + 0.852208i \(0.675263\pi\)
\(164\) 1.80099 10.2139i 0.140634 0.797573i
\(165\) 0 0
\(166\) 2.36542 6.49893i 0.183592 0.504415i
\(167\) 3.56469 9.79392i 0.275844 0.757876i −0.721978 0.691916i \(-0.756767\pi\)
0.997822 0.0659599i \(-0.0210110\pi\)
\(168\) 0 0
\(169\) −0.685785 + 3.88928i −0.0527527 + 0.299175i
\(170\) −2.47543 0.436485i −0.189857 0.0334769i
\(171\) 0 0
\(172\) 2.42287 + 2.88747i 0.184742 + 0.220167i
\(173\) 2.75312 1.00205i 0.209316 0.0761846i −0.235234 0.971939i \(-0.575586\pi\)
0.444550 + 0.895754i \(0.353364\pi\)
\(174\) 0 0
\(175\) −1.89179 3.27667i −0.143006 0.247693i
\(176\) −4.59335 3.85428i −0.346237 0.290527i
\(177\) 0 0
\(178\) 2.82414 + 16.0165i 0.211678 + 1.20049i
\(179\) 8.76703i 0.655279i 0.944803 + 0.327639i \(0.106253\pi\)
−0.944803 + 0.327639i \(0.893747\pi\)
\(180\) 0 0
\(181\) −20.4965 + 17.1986i −1.52349 + 1.27836i −0.693740 + 0.720225i \(0.744038\pi\)
−0.829750 + 0.558135i \(0.811517\pi\)
\(182\) 8.04430 + 2.92789i 0.596283 + 0.217029i
\(183\) 0 0
\(184\) −6.37054 −0.469642
\(185\) −15.4386 + 3.73820i −1.13507 + 0.274838i
\(186\) 0 0
\(187\) −1.97400 5.42352i −0.144353 0.396607i
\(188\) 5.80261 + 2.11198i 0.423199 + 0.154032i
\(189\) 0 0
\(190\) −4.02243 + 0.709264i −0.291818 + 0.0514554i
\(191\) 1.81758i 0.131515i −0.997836 0.0657577i \(-0.979054\pi\)
0.997836 0.0657577i \(-0.0209464\pi\)
\(192\) 0 0
\(193\) 0.922363 + 0.532526i 0.0663931 + 0.0383321i 0.532829 0.846223i \(-0.321129\pi\)
−0.466436 + 0.884555i \(0.654462\pi\)
\(194\) −12.4877 10.4784i −0.896562 0.752305i
\(195\) 0 0
\(196\) −1.33816 + 2.31776i −0.0955827 + 0.165554i
\(197\) −14.8064 + 5.38909i −1.05491 + 0.383957i −0.810515 0.585718i \(-0.800813\pi\)
−0.244398 + 0.969675i \(0.578590\pi\)
\(198\) 0 0
\(199\) 17.8722 10.3185i 1.26693 0.731461i 0.292523 0.956259i \(-0.405505\pi\)
0.974406 + 0.224797i \(0.0721719\pi\)
\(200\) −1.79195 0.315970i −0.126710 0.0223424i
\(201\) 0 0
\(202\) −2.63702 + 3.14268i −0.185540 + 0.221118i
\(203\) 2.88399 7.92370i 0.202417 0.556135i
\(204\) 0 0
\(205\) 17.4096 20.7479i 1.21594 1.44910i
\(206\) −1.87529 + 10.6353i −0.130657 + 0.740995i
\(207\) 0 0
\(208\) 3.56538 2.05847i 0.247215 0.142730i
\(209\) −6.02839 7.18435i −0.416992 0.496952i
\(210\) 0 0
\(211\) −3.10070 + 5.37057i −0.213461 + 0.369725i −0.952795 0.303613i \(-0.901807\pi\)
0.739335 + 0.673338i \(0.235140\pi\)
\(212\) 4.01391 + 6.95229i 0.275676 + 0.477485i
\(213\) 0 0
\(214\) −17.5851 10.1528i −1.20209 0.694029i
\(215\) 1.70928 + 9.69380i 0.116572 + 0.661112i
\(216\) 0 0
\(217\) −6.96231 + 1.22764i −0.472633 + 0.0833379i
\(218\) −4.77232 + 4.00445i −0.323222 + 0.271216i
\(219\) 0 0
\(220\) −5.35558 14.7143i −0.361073 0.992040i
\(221\) 3.96274 0.266563
\(222\) 0 0
\(223\) 0.839150 0.0561936 0.0280968 0.999605i \(-0.491055\pi\)
0.0280968 + 0.999605i \(0.491055\pi\)
\(224\) −0.711179 1.95395i −0.0475176 0.130554i
\(225\) 0 0
\(226\) 4.69737 3.94156i 0.312464 0.262188i
\(227\) −6.42458 + 1.13283i −0.426415 + 0.0751884i −0.382737 0.923857i \(-0.625019\pi\)
−0.0436775 + 0.999046i \(0.513907\pi\)
\(228\) 0 0
\(229\) 1.14680 + 6.50380i 0.0757824 + 0.429784i 0.998968 + 0.0454281i \(0.0144652\pi\)
−0.923185 + 0.384355i \(0.874424\pi\)
\(230\) −14.4074 8.31813i −0.949997 0.548481i
\(231\) 0 0
\(232\) −2.02761 3.51193i −0.133119 0.230570i
\(233\) −11.3047 + 19.5803i −0.740594 + 1.28275i 0.211632 + 0.977349i \(0.432122\pi\)
−0.952225 + 0.305396i \(0.901211\pi\)
\(234\) 0 0
\(235\) 10.3654 + 12.3530i 0.676161 + 0.805818i
\(236\) 4.41688 2.55009i 0.287515 0.165997i
\(237\) 0 0
\(238\) 0.347550 1.97105i 0.0225283 0.127764i
\(239\) 11.0221 13.1357i 0.712962 0.849675i −0.280965 0.959718i \(-0.590654\pi\)
0.993927 + 0.110043i \(0.0350988\pi\)
\(240\) 0 0
\(241\) 1.94526 5.34455i 0.125305 0.344273i −0.861139 0.508369i \(-0.830249\pi\)
0.986444 + 0.164096i \(0.0524708\pi\)
\(242\) 16.0403 19.1161i 1.03111 1.22883i
\(243\) 0 0
\(244\) 9.58351 + 1.68983i 0.613521 + 0.108180i
\(245\) −6.05267 + 3.49451i −0.386691 + 0.223256i
\(246\) 0 0
\(247\) 6.05089 2.20235i 0.385009 0.140132i
\(248\) −1.69998 + 2.94446i −0.107949 + 0.186973i
\(249\) 0 0
\(250\) 6.36232 + 5.33862i 0.402388 + 0.337644i
\(251\) 21.9528 + 12.6745i 1.38565 + 0.800006i 0.992821 0.119606i \(-0.0381630\pi\)
0.392829 + 0.919611i \(0.371496\pi\)
\(252\) 0 0
\(253\) 38.1990i 2.40155i
\(254\) −6.28420 + 1.10807i −0.394306 + 0.0695268i
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.0587308 0.0213763i
\(257\) −1.76857 4.85911i −0.110320 0.303103i 0.872231 0.489094i \(-0.162673\pi\)
−0.982551 + 0.185991i \(0.940450\pi\)
\(258\) 0 0
\(259\) −2.97653 12.2929i −0.184953 0.763847i
\(260\) 10.7512 0.666758
\(261\) 0 0
\(262\) −9.82295 3.57526i −0.606864 0.220880i
\(263\) −7.40923 + 6.21708i −0.456873 + 0.383362i −0.841979 0.539511i \(-0.818609\pi\)
0.385106 + 0.922872i \(0.374165\pi\)
\(264\) 0 0
\(265\) 20.9641i 1.28782i
\(266\) −0.564749 3.20285i −0.0346270 0.196379i
\(267\) 0 0
\(268\) 8.08462 + 6.78380i 0.493847 + 0.414386i
\(269\) −11.9383 20.6777i −0.727889 1.26074i −0.957774 0.287523i \(-0.907168\pi\)
0.229885 0.973218i \(-0.426165\pi\)
\(270\) 0 0
\(271\) −17.2047 + 6.26199i −1.04511 + 0.380389i −0.806815 0.590804i \(-0.798811\pi\)
−0.238295 + 0.971193i \(0.576589\pi\)
\(272\) −0.618710 0.737350i −0.0375148 0.0447084i
\(273\) 0 0
\(274\) 6.14698 + 1.08388i 0.371353 + 0.0654795i
\(275\) 1.89462 10.7449i 0.114250 0.647942i
\(276\) 0 0
\(277\) −6.06459 + 16.6623i −0.364386 + 1.00114i 0.613075 + 0.790025i \(0.289932\pi\)
−0.977461 + 0.211117i \(0.932290\pi\)
\(278\) −2.35734 + 6.47674i −0.141384 + 0.388449i
\(279\) 0 0
\(280\) 0.942924 5.34759i 0.0563505 0.319579i
\(281\) 15.0167 + 2.64786i 0.895824 + 0.157958i 0.602560 0.798074i \(-0.294147\pi\)
0.293264 + 0.956032i \(0.405259\pi\)
\(282\) 0 0
\(283\) 15.7182 + 18.7322i 0.934350 + 1.11351i 0.993336 + 0.115256i \(0.0367689\pi\)
−0.0589858 + 0.998259i \(0.518787\pi\)
\(284\) −10.1503 + 3.69442i −0.602311 + 0.219223i
\(285\) 0 0
\(286\) 12.3430 + 21.3787i 0.729857 + 1.26415i
\(287\) 16.5205 + 13.8623i 0.975172 + 0.818266i
\(288\) 0 0
\(289\) 2.79114 + 15.8293i 0.164184 + 0.931136i
\(290\) 10.5900i 0.621864i
\(291\) 0 0
\(292\) −2.72170 + 2.28378i −0.159276 + 0.133648i
\(293\) 11.8143 + 4.30005i 0.690199 + 0.251212i 0.663220 0.748424i \(-0.269189\pi\)
0.0269784 + 0.999636i \(0.491411\pi\)
\(294\) 0 0
\(295\) 13.3188 0.775450
\(296\) −5.44893 2.70354i −0.316713 0.157140i
\(297\) 0 0
\(298\) −1.19539 3.28430i −0.0692469 0.190254i
\(299\) 24.6455 + 8.97022i 1.42529 + 0.518761i
\(300\) 0 0
\(301\) −7.71866 + 1.36101i −0.444896 + 0.0784472i
\(302\) 9.40855i 0.541401i
\(303\) 0 0
\(304\) −1.35453 0.782038i −0.0776876 0.0448530i
\(305\) 19.4673 + 16.3350i 1.11470 + 0.935341i
\(306\) 0 0
\(307\) −4.70103 + 8.14242i −0.268302 + 0.464713i −0.968423 0.249311i \(-0.919796\pi\)
0.700122 + 0.714024i \(0.253129\pi\)
\(308\) 11.7162 4.26436i 0.667595 0.242985i
\(309\) 0 0
\(310\) −7.68927 + 4.43940i −0.436721 + 0.252141i
\(311\) 15.8568 + 2.79599i 0.899158 + 0.158546i 0.604077 0.796926i \(-0.293542\pi\)
0.295082 + 0.955472i \(0.404653\pi\)
\(312\) 0 0
\(313\) 0.370220 0.441211i 0.0209261 0.0249387i −0.755480 0.655172i \(-0.772596\pi\)
0.776406 + 0.630233i \(0.217041\pi\)
\(314\) −0.866920 + 2.38184i −0.0489231 + 0.134415i
\(315\) 0 0
\(316\) −1.63893 + 1.95319i −0.0921967 + 0.109876i
\(317\) −2.04083 + 11.5741i −0.114624 + 0.650067i 0.872311 + 0.488951i \(0.162620\pi\)
−0.986935 + 0.161116i \(0.948491\pi\)
\(318\) 0 0
\(319\) 21.0582 12.1580i 1.17903 0.680715i
\(320\) −1.67860 2.00048i −0.0938365 0.111830i
\(321\) 0 0
\(322\) 6.62328 11.4719i 0.369101 0.639302i
\(323\) −0.752745 1.30379i −0.0418838 0.0725449i
\(324\) 0 0
\(325\) 6.48757 + 3.74560i 0.359865 + 0.207768i
\(326\) −1.62847 9.23549i −0.0901924 0.511506i
\(327\) 0 0
\(328\) 10.2139 1.80099i 0.563970 0.0994430i
\(329\) −9.83600 + 8.25338i −0.542276 + 0.455024i
\(330\) 0 0
\(331\) 4.83530 + 13.2849i 0.265772 + 0.730202i 0.998752 + 0.0499518i \(0.0159068\pi\)
−0.732980 + 0.680250i \(0.761871\pi\)
\(332\) 6.91602 0.379566
\(333\) 0 0
\(334\) 10.4225 0.570292
\(335\) 9.42620 + 25.8983i 0.515008 + 1.41497i
\(336\) 0 0
\(337\) 8.21240 6.89102i 0.447358 0.375378i −0.391096 0.920350i \(-0.627904\pi\)
0.838454 + 0.544972i \(0.183460\pi\)
\(338\) −3.88928 + 0.685785i −0.211549 + 0.0373018i
\(339\) 0 0
\(340\) −0.436485 2.47543i −0.0236717 0.134249i
\(341\) −17.6555 10.1934i −0.956101 0.552005i
\(342\) 0 0
\(343\) −10.0602 17.4248i −0.543200 0.940850i
\(344\) −1.88466 + 3.26433i −0.101614 + 0.176001i
\(345\) 0 0
\(346\) 1.88324 + 2.24436i 0.101244 + 0.120658i
\(347\) 6.10989 3.52754i 0.327996 0.189368i −0.326955 0.945040i \(-0.606023\pi\)
0.654951 + 0.755671i \(0.272689\pi\)
\(348\) 0 0
\(349\) 4.45331 25.2560i 0.238380 1.35192i −0.596996 0.802244i \(-0.703639\pi\)
0.835376 0.549679i \(-0.185250\pi\)
\(350\) 2.43204 2.89839i 0.129998 0.154925i
\(351\) 0 0
\(352\) 2.05082 5.63458i 0.109309 0.300324i
\(353\) −4.22017 + 5.02940i −0.224617 + 0.267688i −0.866570 0.499056i \(-0.833680\pi\)
0.641953 + 0.766744i \(0.278125\pi\)
\(354\) 0 0
\(355\) −27.7795 4.89828i −1.47438 0.259974i
\(356\) −14.0847 + 8.13178i −0.746485 + 0.430983i
\(357\) 0 0
\(358\) −8.23831 + 2.99850i −0.435408 + 0.158476i
\(359\) 9.92813 17.1960i 0.523987 0.907572i −0.475623 0.879649i \(-0.657777\pi\)
0.999610 0.0279226i \(-0.00888919\pi\)
\(360\) 0 0
\(361\) 12.6808 + 10.6405i 0.667413 + 0.560026i
\(362\) −23.1716 13.3781i −1.21787 0.703138i
\(363\) 0 0
\(364\) 8.56057i 0.448696i
\(365\) −9.13730 + 1.61115i −0.478268 + 0.0843315i
\(366\) 0 0
\(367\) 20.2967 + 7.38739i 1.05948 + 0.385619i 0.812233 0.583334i \(-0.198252\pi\)
0.247246 + 0.968953i \(0.420474\pi\)
\(368\) −2.17885 5.98635i −0.113581 0.312060i
\(369\) 0 0
\(370\) −8.79308 13.2290i −0.457130 0.687744i
\(371\) −16.6926 −0.866637
\(372\) 0 0
\(373\) 29.3944 + 10.6987i 1.52198 + 0.553956i 0.961642 0.274306i \(-0.0884482\pi\)
0.560340 + 0.828263i \(0.310670\pi\)
\(374\) 4.42129 3.70990i 0.228619 0.191835i
\(375\) 0 0
\(376\) 6.17501i 0.318452i
\(377\) 2.89909 + 16.4415i 0.149311 + 0.846782i
\(378\) 0 0
\(379\) −15.3668 12.8943i −0.789339 0.662334i 0.156243 0.987719i \(-0.450062\pi\)
−0.945582 + 0.325384i \(0.894506\pi\)
\(380\) −2.04224 3.53727i −0.104765 0.181458i
\(381\) 0 0
\(382\) 1.70796 0.621648i 0.0873871 0.0318063i
\(383\) −10.6054 12.6391i −0.541913 0.645826i 0.423703 0.905801i \(-0.360730\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(384\) 0 0
\(385\) 32.0652 + 5.65395i 1.63419 + 0.288152i
\(386\) −0.184945 + 1.04887i −0.00941343 + 0.0533862i
\(387\) 0 0
\(388\) 5.57544 15.3184i 0.283050 0.777673i
\(389\) −0.282656 + 0.776592i −0.0143312 + 0.0393748i −0.946652 0.322258i \(-0.895558\pi\)
0.932321 + 0.361632i \(0.117780\pi\)
\(390\) 0 0
\(391\) 1.06479 6.03875i 0.0538490 0.305393i
\(392\) −2.63566 0.464737i −0.133121 0.0234728i
\(393\) 0 0
\(394\) −10.1282 12.0703i −0.510251 0.608093i
\(395\) −6.25687 + 2.27731i −0.314817 + 0.114584i
\(396\) 0 0
\(397\) −4.52451 7.83669i −0.227079 0.393312i 0.729862 0.683594i \(-0.239584\pi\)
−0.956941 + 0.290282i \(0.906251\pi\)
\(398\) 15.8089 + 13.2653i 0.792429 + 0.664927i
\(399\) 0 0
\(400\) −0.315970 1.79195i −0.0157985 0.0895977i
\(401\) 13.1254i 0.655452i −0.944773 0.327726i \(-0.893718\pi\)
0.944773 0.327726i \(-0.106282\pi\)
\(402\) 0 0
\(403\) 10.7227 8.99742i 0.534136 0.448194i
\(404\) −3.85506 1.40313i −0.191797 0.0698083i
\(405\) 0 0
\(406\) 8.43223 0.418484
\(407\) 16.2110 32.6728i 0.803547 1.61953i
\(408\) 0 0
\(409\) 2.70223 + 7.42432i 0.133617 + 0.367109i 0.988399 0.151877i \(-0.0485318\pi\)
−0.854783 + 0.518986i \(0.826310\pi\)
\(410\) 25.4511 + 9.26344i 1.25694 + 0.457489i
\(411\) 0 0
\(412\) −10.6353 + 1.87529i −0.523962 + 0.0923887i
\(413\) 10.6050i 0.521840i
\(414\) 0 0
\(415\) 15.6411 + 9.03037i 0.767789 + 0.443283i
\(416\) 3.15377 + 2.64632i 0.154626 + 0.129747i
\(417\) 0 0
\(418\) 4.68925 8.12202i 0.229359 0.397261i
\(419\) −30.0521 + 10.9381i −1.46814 + 0.534361i −0.947596 0.319472i \(-0.896494\pi\)
−0.520548 + 0.853832i \(0.674272\pi\)
\(420\) 0 0
\(421\) −4.86073 + 2.80634i −0.236897 + 0.136773i −0.613750 0.789501i \(-0.710340\pi\)
0.376853 + 0.926273i \(0.377006\pi\)
\(422\) −6.10718 1.07686i −0.297293 0.0524208i
\(423\) 0 0
\(424\) −5.16018 + 6.14966i −0.250600 + 0.298654i
\(425\) 0.599028 1.64581i 0.0290571 0.0798337i
\(426\) 0 0
\(427\) −13.0067 + 15.5008i −0.629439 + 0.750136i
\(428\) 3.52602 19.9970i 0.170437 0.966594i
\(429\) 0 0
\(430\) −8.52459 + 4.92167i −0.411092 + 0.237344i
\(431\) 12.8250 + 15.2842i 0.617757 + 0.736214i 0.980683 0.195604i \(-0.0626666\pi\)
−0.362926 + 0.931818i \(0.618222\pi\)
\(432\) 0 0
\(433\) 7.91046 13.7013i 0.380152 0.658443i −0.610931 0.791684i \(-0.709205\pi\)
0.991084 + 0.133240i \(0.0425382\pi\)
\(434\) −3.53486 6.12255i −0.169679 0.293892i
\(435\) 0 0
\(436\) −5.39518 3.11491i −0.258382 0.149177i
\(437\) −1.73023 9.81263i −0.0827682 0.469402i
\(438\) 0 0
\(439\) 3.01674 0.531932i 0.143981 0.0253878i −0.101193 0.994867i \(-0.532266\pi\)
0.245174 + 0.969479i \(0.421155\pi\)
\(440\) 11.9952 10.0652i 0.571850 0.479839i
\(441\) 0 0
\(442\) 1.35534 + 3.72375i 0.0644668 + 0.177121i
\(443\) 2.75923 0.131095 0.0655475 0.997849i \(-0.479121\pi\)
0.0655475 + 0.997849i \(0.479121\pi\)
\(444\) 0 0
\(445\) −42.4712 −2.01333
\(446\) 0.287006 + 0.788543i 0.0135901 + 0.0373386i
\(447\) 0 0
\(448\) 1.59287 1.33658i 0.0752561 0.0631474i
\(449\) 22.3120 3.93421i 1.05297 0.185667i 0.379735 0.925095i \(-0.376015\pi\)
0.673235 + 0.739428i \(0.264904\pi\)
\(450\) 0 0
\(451\) 10.7991 + 61.2446i 0.508509 + 2.88390i
\(452\) 5.31045 + 3.06599i 0.249782 + 0.144212i
\(453\) 0 0
\(454\) −3.26185 5.64968i −0.153086 0.265153i
\(455\) −11.1777 + 19.3603i −0.524018 + 0.907626i
\(456\) 0 0
\(457\) −18.9638 22.6002i −0.887089 1.05719i −0.997991 0.0633601i \(-0.979818\pi\)
0.110902 0.993831i \(-0.464626\pi\)
\(458\) −5.71935 + 3.30207i −0.267248 + 0.154296i
\(459\) 0 0
\(460\) 2.88885 16.3835i 0.134694 0.763885i
\(461\) −2.61917 + 3.12141i −0.121987 + 0.145378i −0.823581 0.567198i \(-0.808027\pi\)
0.701594 + 0.712576i \(0.252472\pi\)
\(462\) 0 0
\(463\) −1.00637 + 2.76497i −0.0467699 + 0.128499i −0.960879 0.276970i \(-0.910670\pi\)
0.914109 + 0.405469i \(0.132892\pi\)
\(464\) 2.60665 3.10649i 0.121011 0.144215i
\(465\) 0 0
\(466\) −22.2659 3.92607i −1.03145 0.181872i
\(467\) −4.59204 + 2.65121i −0.212494 + 0.122684i −0.602470 0.798142i \(-0.705817\pi\)
0.389976 + 0.920825i \(0.372483\pi\)
\(468\) 0 0
\(469\) −20.6214 + 7.50558i −0.952208 + 0.346575i
\(470\) −8.06282 + 13.9652i −0.371910 + 0.644167i
\(471\) 0 0
\(472\) 3.90696 + 3.27833i 0.179833 + 0.150897i
\(473\) −19.5735 11.3008i −0.899992 0.519611i
\(474\) 0 0
\(475\) 2.84599i 0.130583i
\(476\) 1.97105 0.347550i 0.0903430 0.0159299i
\(477\) 0 0
\(478\) 16.1133 + 5.86475i 0.737004 + 0.268248i
\(479\) 6.11079 + 16.7893i 0.279209 + 0.767121i 0.997453 + 0.0713293i \(0.0227241\pi\)
−0.718244 + 0.695792i \(0.755054\pi\)
\(480\) 0 0
\(481\) 17.2733 + 18.1316i 0.787595 + 0.826731i
\(482\) 5.68755 0.259061
\(483\) 0 0
\(484\) 23.4494 + 8.53487i 1.06588 + 0.387949i
\(485\) 32.6107 27.3637i 1.48078 1.24252i
\(486\) 0 0
\(487\) 31.2962i 1.41817i 0.705124 + 0.709084i \(0.250891\pi\)
−0.705124 + 0.709084i \(0.749109\pi\)
\(488\) 1.68983 + 9.58351i 0.0764951 + 0.433825i
\(489\) 0 0
\(490\) −5.35390 4.49246i −0.241865 0.202949i
\(491\) −6.72900 11.6550i −0.303676 0.525982i 0.673290 0.739379i \(-0.264881\pi\)
−0.976966 + 0.213397i \(0.931547\pi\)
\(492\) 0 0
\(493\) 3.66793 1.33502i 0.165195 0.0601261i
\(494\) 4.13905 + 4.93273i 0.186225 + 0.221934i
\(495\) 0 0
\(496\) −3.34832 0.590399i −0.150344 0.0265097i
\(497\) 3.90024 22.1194i 0.174950 0.992189i
\(498\) 0 0
\(499\) 12.5759 34.5520i 0.562974 1.54676i −0.252279 0.967654i \(-0.581180\pi\)
0.815253 0.579104i \(-0.196598\pi\)
\(500\) −2.84062 + 7.80454i −0.127036 + 0.349030i
\(501\) 0 0
\(502\) −4.40180 + 24.9638i −0.196462 + 1.11419i
\(503\) −6.15105 1.08460i −0.274262 0.0483597i 0.0348257 0.999393i \(-0.488912\pi\)
−0.309087 + 0.951034i \(0.600024\pi\)
\(504\) 0 0
\(505\) −6.88641 8.20690i −0.306441 0.365202i
\(506\) 35.8953 13.0648i 1.59574 0.580802i
\(507\) 0 0
\(508\) −3.19057 5.52624i −0.141559 0.245187i
\(509\) 6.29668 + 5.28355i 0.279096 + 0.234189i 0.771580 0.636132i \(-0.219467\pi\)
−0.492484 + 0.870321i \(0.663911\pi\)
\(510\) 0 0
\(511\) −1.28287 7.27554i −0.0567510 0.321851i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.96118 3.32383i 0.174720 0.146608i
\(515\) −26.5010 9.64558i −1.16777 0.425035i
\(516\) 0 0
\(517\) −37.0265 −1.62842
\(518\) 10.5336 7.00146i 0.462818 0.307626i
\(519\) 0 0
\(520\) 3.67711 + 10.1028i 0.161252 + 0.443036i
\(521\) 20.8518 + 7.58945i 0.913536 + 0.332500i 0.755664 0.654960i \(-0.227314\pi\)
0.157872 + 0.987460i \(0.449537\pi\)
\(522\) 0 0
\(523\) −13.7427 + 2.42321i −0.600927 + 0.105960i −0.465832 0.884873i \(-0.654245\pi\)
−0.135095 + 0.990833i \(0.543134\pi\)
\(524\) 10.4534i 0.456657i
\(525\) 0 0
\(526\) −8.37625 4.83603i −0.365222 0.210861i
\(527\) −2.50697 2.10360i −0.109205 0.0916340i
\(528\) 0 0
\(529\) 8.79187 15.2280i 0.382255 0.662086i
\(530\) −19.6998 + 7.17015i −0.855706 + 0.311451i
\(531\) 0 0
\(532\) 2.81654 1.62613i 0.122112 0.0705016i
\(533\) −42.0502 7.41459i −1.82140 0.321161i
\(534\) 0 0
\(535\) 34.0848 40.6207i 1.47362 1.75619i
\(536\) −3.60958 + 9.91725i −0.155910 + 0.428360i
\(537\) 0 0
\(538\) 15.3475 18.2905i 0.661679 0.788559i
\(539\) 2.78665 15.8039i 0.120030 0.680722i
\(540\) 0 0
\(541\) 20.9379 12.0885i 0.900192 0.519726i 0.0229292 0.999737i \(-0.492701\pi\)
0.877262 + 0.480011i \(0.159367\pi\)
\(542\) −11.7687 14.0254i −0.505509 0.602442i
\(543\) 0 0
\(544\) 0.481271 0.833586i 0.0206343 0.0357397i
\(545\) −8.13439 14.0892i −0.348439 0.603514i
\(546\) 0 0
\(547\) −32.2382 18.6127i −1.37840 0.795822i −0.386437 0.922316i \(-0.626294\pi\)
−0.991967 + 0.126494i \(0.959628\pi\)
\(548\) 1.08388 + 6.14698i 0.0463010 + 0.262586i
\(549\) 0 0
\(550\) 10.7449 1.89462i 0.458164 0.0807867i
\(551\) 4.85878 4.07700i 0.206991 0.173686i
\(552\) 0 0
\(553\) −1.81330 4.98201i −0.0771095 0.211857i
\(554\) −17.7317 −0.753347
\(555\) 0 0
\(556\) −6.89241 −0.292303
\(557\) −0.974054 2.67619i −0.0412720 0.113394i 0.917345 0.398094i \(-0.130328\pi\)
−0.958617 + 0.284700i \(0.908106\pi\)
\(558\) 0 0
\(559\) 11.8876 9.97485i 0.502790 0.421891i
\(560\) 5.34759 0.942924i 0.225977 0.0398458i
\(561\) 0 0
\(562\) 2.64786 + 15.0167i 0.111693 + 0.633443i
\(563\) 21.5088 + 12.4181i 0.906489 + 0.523362i 0.879300 0.476268i \(-0.158011\pi\)
0.0271895 + 0.999630i \(0.491344\pi\)
\(564\) 0 0
\(565\) 8.00663 + 13.8679i 0.336841 + 0.583427i
\(566\) −12.2266 + 21.1771i −0.513922 + 0.890139i
\(567\) 0 0
\(568\) −6.94323 8.27462i −0.291332 0.347195i
\(569\) 8.80519 5.08368i 0.369133 0.213119i −0.303947 0.952689i \(-0.598304\pi\)
0.673080 + 0.739570i \(0.264971\pi\)
\(570\) 0 0
\(571\) 3.25922 18.4839i 0.136394 0.773528i −0.837485 0.546460i \(-0.815975\pi\)
0.973879 0.227068i \(-0.0729140\pi\)
\(572\) −15.8679 + 18.9106i −0.663469 + 0.790691i
\(573\) 0 0
\(574\) −7.37598 + 20.2653i −0.307868 + 0.845859i
\(575\) 7.45108 8.87985i 0.310731 0.370315i
\(576\) 0 0
\(577\) −18.5265 3.26672i −0.771267 0.135995i −0.225852 0.974162i \(-0.572517\pi\)
−0.545415 + 0.838166i \(0.683628\pi\)
\(578\) −13.9201 + 8.03676i −0.578999 + 0.334285i
\(579\) 0 0
\(580\) 9.95132 3.62198i 0.413206 0.150395i
\(581\) −7.19040 + 12.4541i −0.298308 + 0.516685i
\(582\) 0 0
\(583\) −36.8745 30.9414i −1.52719 1.28146i
\(584\) −3.07693 1.77647i −0.127324 0.0735107i
\(585\) 0 0
\(586\) 12.5725i 0.519366i
\(587\) −30.2531 + 5.33444i −1.24868 + 0.220176i −0.758632 0.651520i \(-0.774132\pi\)
−0.490048 + 0.871696i \(0.663021\pi\)
\(588\) 0 0
\(589\) −4.99711 1.81880i −0.205902 0.0749423i
\(590\) 4.55529 + 12.5156i 0.187538 + 0.515258i
\(591\) 0 0
\(592\) 0.676854 6.04499i 0.0278185 0.248447i
\(593\) −6.18887 −0.254147 −0.127073 0.991893i \(-0.540558\pi\)
−0.127073 + 0.991893i \(0.540558\pi\)
\(594\) 0 0
\(595\) 4.91147 + 1.78763i 0.201351 + 0.0732857i
\(596\) 2.67738 2.24659i 0.109670 0.0920240i
\(597\) 0 0
\(598\) 26.2272i 1.07251i
\(599\) 0.183355 + 1.03986i 0.00749169 + 0.0424875i 0.988324 0.152364i \(-0.0486886\pi\)
−0.980833 + 0.194852i \(0.937578\pi\)
\(600\) 0 0
\(601\) −11.9378 10.0170i −0.486954 0.408603i 0.365979 0.930623i \(-0.380734\pi\)
−0.852933 + 0.522020i \(0.825179\pi\)
\(602\) −3.91887 6.78767i −0.159721 0.276645i
\(603\) 0 0
\(604\) −8.84115 + 3.21791i −0.359741 + 0.130935i
\(605\) 41.8883 + 49.9205i 1.70300 + 2.02956i
\(606\) 0 0
\(607\) −31.7497 5.59834i −1.28868 0.227229i −0.513020 0.858377i \(-0.671473\pi\)
−0.775663 + 0.631147i \(0.782584\pi\)
\(608\) 0.271599 1.54031i 0.0110148 0.0624680i
\(609\) 0 0
\(610\) −8.69169 + 23.8802i −0.351916 + 0.966882i
\(611\) 8.69490 23.8890i 0.351758 0.966447i
\(612\) 0 0
\(613\) −0.968237 + 5.49114i −0.0391067 + 0.221785i −0.998098 0.0616512i \(-0.980363\pi\)
0.958991 + 0.283436i \(0.0914745\pi\)
\(614\) −9.25922 1.63265i −0.373672 0.0658884i
\(615\) 0 0
\(616\) 8.01438 + 9.55117i 0.322909 + 0.384827i
\(617\) 3.80891 1.38633i 0.153341 0.0558116i −0.264209 0.964465i \(-0.585111\pi\)
0.417550 + 0.908654i \(0.362889\pi\)
\(618\) 0 0
\(619\) 3.68705 + 6.38616i 0.148195 + 0.256681i 0.930560 0.366138i \(-0.119320\pi\)
−0.782365 + 0.622820i \(0.785987\pi\)
\(620\) −6.80156 5.70718i −0.273157 0.229206i
\(621\) 0 0
\(622\) 2.79599 + 15.8568i 0.112109 + 0.635801i
\(623\) 33.8176i 1.35487i
\(624\) 0 0
\(625\) −23.5843 + 19.7895i −0.943370 + 0.791581i
\(626\) 0.541225 + 0.196990i 0.0216317 + 0.00787330i
\(627\) 0 0
\(628\) −2.53470 −0.101146
\(629\) 3.47349 4.71327i 0.138497 0.187930i
\(630\) 0 0
\(631\) 2.86348 + 7.86734i 0.113993 + 0.313194i 0.983549 0.180641i \(-0.0578171\pi\)
−0.869556 + 0.493834i \(0.835595\pi\)
\(632\) −2.39595 0.872054i −0.0953057 0.0346884i
\(633\) 0 0
\(634\) −11.5741 + 2.04083i −0.459667 + 0.0810517i
\(635\) 16.6640i 0.661289i
\(636\) 0 0
\(637\) 9.54209 + 5.50913i 0.378071 + 0.218280i
\(638\) 18.6271 + 15.6300i 0.737453 + 0.618797i
\(639\) 0 0
\(640\) 1.30572 2.26157i 0.0516130 0.0893964i
\(641\) −11.1583 + 4.06129i −0.440726 + 0.160411i −0.552846 0.833283i \(-0.686458\pi\)
0.112120 + 0.993695i \(0.464236\pi\)
\(642\) 0 0
\(643\) −33.5232 + 19.3547i −1.32203 + 0.763273i −0.984052 0.177882i \(-0.943076\pi\)
−0.337976 + 0.941155i \(0.609742\pi\)
\(644\) 13.0453 + 2.30024i 0.514057 + 0.0906422i
\(645\) 0 0
\(646\) 0.967710 1.15327i 0.0380740 0.0453749i
\(647\) −6.03672 + 16.5857i −0.237328 + 0.652053i 0.762658 + 0.646801i \(0.223894\pi\)
−0.999986 + 0.00525130i \(0.998328\pi\)
\(648\) 0 0
\(649\) −19.6575 + 23.4269i −0.771624 + 0.919586i
\(650\) −1.30083 + 7.37739i −0.0510228 + 0.289365i
\(651\) 0 0
\(652\) 8.12155 4.68898i 0.318065 0.183635i
\(653\) −9.49773 11.3189i −0.371675 0.442945i 0.547493 0.836810i \(-0.315582\pi\)
−0.919168 + 0.393865i \(0.871138\pi\)
\(654\) 0 0
\(655\) 13.6491 23.6410i 0.533316 0.923731i
\(656\) 5.18574 + 8.98197i 0.202469 + 0.350687i
\(657\) 0 0
\(658\) −11.1198 6.41999i −0.433493 0.250277i
\(659\) −1.14933 6.51815i −0.0447714 0.253911i 0.954205 0.299155i \(-0.0967047\pi\)
−0.998976 + 0.0452437i \(0.985594\pi\)
\(660\) 0 0
\(661\) 6.22992 1.09850i 0.242316 0.0427268i −0.0511712 0.998690i \(-0.516295\pi\)
0.293487 + 0.955963i \(0.405184\pi\)
\(662\) −10.8299 + 9.08738i −0.420917 + 0.353191i
\(663\) 0 0
\(664\) 2.36542 + 6.49893i 0.0917960 + 0.252207i
\(665\) 8.49307 0.329347
\(666\) 0 0
\(667\) 25.8340 1.00030
\(668\) 3.56469 + 9.79392i 0.137922 + 0.378938i
\(669\) 0 0
\(670\) −21.1125 + 17.7155i −0.815645 + 0.684408i
\(671\) −57.4645 + 10.1325i −2.21839 + 0.391163i
\(672\) 0 0
\(673\) 4.26450 + 24.1852i 0.164384 + 0.932269i 0.949697 + 0.313170i \(0.101391\pi\)
−0.785313 + 0.619099i \(0.787498\pi\)
\(674\) 9.28425 + 5.36027i 0.357616 + 0.206470i
\(675\) 0 0
\(676\) −1.97464 3.42017i −0.0759476 0.131545i
\(677\) −11.2322 + 19.4547i −0.431687 + 0.747704i −0.997019 0.0771600i \(-0.975415\pi\)
0.565332 + 0.824864i \(0.308748\pi\)
\(678\) 0 0
\(679\) 21.7882 + 25.9662i 0.836155 + 0.996491i
\(680\) 2.17686 1.25681i 0.0834786 0.0481964i
\(681\) 0 0
\(682\) 3.54014 20.0771i 0.135559 0.768794i
\(683\) −21.2410 + 25.3140i −0.812764 + 0.968614i −0.999906 0.0137189i \(-0.995633\pi\)
0.187142 + 0.982333i \(0.440077\pi\)
\(684\) 0 0
\(685\) −5.57496 + 15.3171i −0.213008 + 0.585235i
\(686\) 12.9332 15.4131i 0.493790 0.588476i
\(687\) 0 0
\(688\) −3.71206 0.654536i −0.141521 0.0249540i
\(689\) 28.6222 16.5251i 1.09042 0.629554i
\(690\) 0 0
\(691\) −32.8077 + 11.9410i −1.24806 + 0.454258i −0.879747 0.475442i \(-0.842288\pi\)
−0.368317 + 0.929700i \(0.620066\pi\)
\(692\) −1.46490 + 2.53729i −0.0556872 + 0.0964531i
\(693\) 0 0
\(694\) 5.40451 + 4.53492i 0.205152 + 0.172143i
\(695\) −15.5877 8.99954i −0.591274 0.341372i
\(696\) 0 0
\(697\) 9.98299i 0.378133i
\(698\) 25.2560 4.45331i 0.955954 0.168560i
\(699\) 0 0
\(700\) 3.55540 + 1.29406i 0.134381 + 0.0489108i
\(701\) −9.15308 25.1479i −0.345707 0.949823i −0.983706 0.179785i \(-0.942460\pi\)
0.637999 0.770037i \(-0.279763\pi\)
\(702\) 0 0
\(703\) 2.68438 9.12735i 0.101243 0.344245i
\(704\) 5.99619 0.225990
\(705\) 0 0
\(706\) −6.16948 2.24551i −0.232191 0.0845107i
\(707\) 6.53472 5.48328i 0.245763 0.206220i
\(708\) 0 0
\(709\) 6.67084i 0.250529i −0.992123 0.125264i \(-0.960022\pi\)
0.992123 0.125264i \(-0.0399779\pi\)
\(710\) −4.89828 27.7795i −0.183829 1.04255i
\(711\) 0 0
\(712\) −12.4586 10.4540i −0.466906 0.391781i
\(713\) −10.8298 18.7578i −0.405580 0.702485i
\(714\) 0 0
\(715\) −60.5782 + 22.0487i −2.26550 + 0.824573i
\(716\) −5.63534 6.71594i −0.210603 0.250986i
\(717\) 0 0
\(718\) 19.5546 + 3.44800i 0.729771 + 0.128678i
\(719\) −8.26991 + 46.9010i −0.308416 + 1.74911i 0.298559 + 0.954391i \(0.403494\pi\)
−0.606975 + 0.794721i \(0.707617\pi\)
\(720\) 0 0
\(721\) 7.68026 21.1013i 0.286028 0.785855i
\(722\) −5.66169 + 15.5554i −0.210706 + 0.578910i
\(723\) 0 0
\(724\) 4.64617 26.3498i 0.172674 0.979281i
\(725\) 7.26679 + 1.28133i 0.269882 + 0.0475874i
\(726\) 0 0
\(727\) −32.2308 38.4112i −1.19537 1.42459i −0.879572 0.475766i \(-0.842171\pi\)
−0.315802 0.948825i \(-0.602274\pi\)
\(728\) −8.04430 + 2.92789i −0.298142 + 0.108515i
\(729\) 0 0
\(730\) −4.63913 8.03520i −0.171702 0.297396i
\(731\) −2.77931 2.33212i −0.102796 0.0862565i
\(732\) 0 0
\(733\) 4.88298 + 27.6927i 0.180357 + 1.02285i 0.931777 + 0.363031i \(0.118258\pi\)
−0.751420 + 0.659824i \(0.770631\pi\)
\(734\) 21.5993i 0.797244i
\(735\) 0 0
\(736\) 4.88011 4.09490i 0.179883 0.150940i
\(737\) −59.4657 21.6438i −2.19045 0.797258i
\(738\) 0 0
\(739\) 32.3511 1.19006 0.595028 0.803705i \(-0.297141\pi\)
0.595028 + 0.803705i \(0.297141\pi\)
\(740\) 9.42380 12.7874i 0.346426 0.470073i
\(741\) 0 0
\(742\) −5.70921 15.6859i −0.209592 0.575848i
\(743\) 7.05630 + 2.56828i 0.258871 + 0.0942212i 0.468195 0.883625i \(-0.344904\pi\)
−0.209325 + 0.977846i \(0.567127\pi\)
\(744\) 0 0
\(745\) 8.98851 1.58492i 0.329313 0.0580668i
\(746\) 31.2808i 1.14527i
\(747\) 0 0
\(748\) 4.99834 + 2.88579i 0.182757 + 0.105515i
\(749\) 32.3441 + 27.1399i 1.18183 + 0.991672i
\(750\) 0 0
\(751\) −7.37086 + 12.7667i −0.268966 + 0.465863i −0.968595 0.248643i \(-0.920015\pi\)
0.699629 + 0.714506i \(0.253349\pi\)
\(752\) −5.80261 + 2.11198i −0.211599 + 0.0770159i
\(753\) 0 0
\(754\) −14.4584 + 8.34759i −0.526546 + 0.304001i
\(755\) −24.1966 4.26651i −0.880603 0.155274i
\(756\) 0 0
\(757\) −14.2111 + 16.9361i −0.516511 + 0.615553i −0.959752 0.280849i \(-0.909384\pi\)
0.443241 + 0.896402i \(0.353828\pi\)
\(758\) 6.86090 18.8502i 0.249199 0.684669i
\(759\) 0 0
\(760\) 2.62546 3.12890i 0.0952353 0.113497i
\(761\) −5.52983 + 31.3612i −0.200456 + 1.13684i 0.703975 + 0.710225i \(0.251407\pi\)
−0.904431 + 0.426619i \(0.859704\pi\)
\(762\) 0 0
\(763\) 11.2185 6.47698i 0.406135 0.234482i
\(764\) 1.16832 + 1.39235i 0.0422682 + 0.0503733i
\(765\) 0 0
\(766\) 8.24957 14.2887i 0.298069 0.516271i
\(767\) −10.4986 18.1841i −0.379082 0.656589i
\(768\) 0 0
\(769\) 19.6375 + 11.3377i 0.708148 + 0.408849i 0.810375 0.585912i \(-0.199263\pi\)
−0.102227 + 0.994761i \(0.532597\pi\)
\(770\) 5.65395 + 32.0652i 0.203754 + 1.15555i
\(771\) 0 0
\(772\) −1.04887 + 0.184945i −0.0377497 + 0.00665630i
\(773\) −9.05550 + 7.59846i −0.325704 + 0.273298i −0.790947 0.611885i \(-0.790411\pi\)
0.465243 + 0.885183i \(0.345967\pi\)
\(774\) 0 0
\(775\) −2.11593 5.81348i −0.0760066 0.208826i
\(776\) 16.3015 0.585189
\(777\) 0 0
\(778\) −0.826432 −0.0296290
\(779\) 5.54818 + 15.2435i 0.198784 + 0.546155i
\(780\) 0 0
\(781\) 49.6162 41.6329i 1.77541 1.48974i
\(782\) 6.03875 1.06479i 0.215945 0.0380770i
\(783\) 0 0
\(784\) −0.464737 2.63566i −0.0165978 0.0941306i
\(785\)