Properties

Label 666.2.be.d.341.2
Level $666$
Weight $2$
Character 666.341
Analytic conductor $5.318$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(125,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.125");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.be (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.6040479020157644046336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} - 32x^{8} - 567x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 341.2
Root \(1.47240 + 0.912166i\) of defining polynomial
Character \(\chi\) \(=\) 666.341
Dual form 666.2.be.d.125.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(0.653347 + 2.43832i) q^{5} +(-1.76217 + 3.05217i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(0.653347 + 2.43832i) q^{5} +(-1.76217 + 3.05217i) q^{7} +(0.707107 - 0.707107i) q^{8} -2.52434 q^{10} +2.53468 q^{11} +(-2.84445 + 0.762169i) q^{13} +(-2.49208 - 2.49208i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.73122 - 0.463878i) q^{17} +(-3.53059 + 0.946020i) q^{19} +(0.653347 - 2.43832i) q^{20} +(-0.656023 + 2.44831i) q^{22} +(3.15983 - 3.15983i) q^{23} +(-1.18843 + 0.686141i) q^{25} -2.94479i q^{26} +(3.05217 - 1.76217i) q^{28} +(0.0393551 + 0.0393551i) q^{29} +(-3.02663 + 3.02663i) q^{31} +(-0.965926 + 0.258819i) q^{32} +(0.896143 - 1.55217i) q^{34} +(-8.59347 - 2.30261i) q^{35} +(-6.08276 - 0.00578029i) q^{37} -3.65514i q^{38} +(2.18614 + 1.26217i) q^{40} +(-4.63342 + 8.02531i) q^{41} +(0.234341 + 0.234341i) q^{43} +(-2.19509 - 1.26734i) q^{44} +(2.23434 + 3.86999i) q^{46} -4.39019i q^{47} +(-2.71048 - 4.69469i) q^{49} +(-0.355173 - 1.32552i) q^{50} +(2.84445 + 0.762169i) q^{52} +(-3.09167 + 1.78498i) q^{53} +(1.65602 + 6.18036i) q^{55} +(0.912166 + 3.40425i) q^{56} +(-0.0482000 + 0.0278283i) q^{58} +(9.18421 + 2.46090i) q^{59} +(2.55217 + 9.52481i) q^{61} +(-2.14015 - 3.70685i) q^{62} -1.00000i q^{64} +(-3.71683 - 6.43773i) q^{65} +(-13.5208 - 7.80626i) q^{67} +(1.26734 + 1.26734i) q^{68} +(4.44831 - 7.70470i) q^{70} +(3.56178 + 2.05639i) q^{71} +4.09182i q^{73} +(1.57992 - 5.87400i) q^{74} +(3.53059 + 0.946020i) q^{76} +(-4.46653 + 7.73625i) q^{77} +(2.84445 - 0.762169i) q^{79} +(-1.78498 + 1.78498i) q^{80} +(-6.55264 - 6.55264i) q^{82} +(7.86403 - 4.54030i) q^{83} -4.52434i q^{85} +(-0.287007 + 0.165704i) q^{86} +(1.79229 - 1.79229i) q^{88} +(-3.78437 + 14.1235i) q^{89} +(2.68614 - 10.0248i) q^{91} +(-4.31641 + 1.15658i) q^{92} +(4.24060 + 1.13626i) q^{94} +(-4.61340 - 7.99065i) q^{95} +(-0.841688 - 0.841688i) q^{97} +(5.23624 - 1.40305i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{7} + 4 q^{13} + 8 q^{16} + 16 q^{19} + 20 q^{22} + 12 q^{28} - 12 q^{31} + 8 q^{34} + 12 q^{37} + 12 q^{40} - 20 q^{43} + 12 q^{46} + 20 q^{49} - 4 q^{52} - 4 q^{55} + 4 q^{61} - 132 q^{67} + 28 q^{70} - 16 q^{76} - 4 q^{79} + 12 q^{82} + 16 q^{88} + 20 q^{91} + 12 q^{94} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 0.653347 + 2.43832i 0.292186 + 1.09045i 0.943427 + 0.331581i \(0.107582\pi\)
−0.651241 + 0.758871i \(0.725751\pi\)
\(6\) 0 0
\(7\) −1.76217 + 3.05217i −0.666037 + 1.15361i 0.312966 + 0.949764i \(0.398677\pi\)
−0.979003 + 0.203846i \(0.934656\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.52434 −0.798266
\(11\) 2.53468 0.764234 0.382117 0.924114i \(-0.375195\pi\)
0.382117 + 0.924114i \(0.375195\pi\)
\(12\) 0 0
\(13\) −2.84445 + 0.762169i −0.788909 + 0.211388i −0.630709 0.776019i \(-0.717236\pi\)
−0.158200 + 0.987407i \(0.550569\pi\)
\(14\) −2.49208 2.49208i −0.666037 0.666037i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.73122 0.463878i −0.419882 0.112507i 0.0426910 0.999088i \(-0.486407\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(18\) 0 0
\(19\) −3.53059 + 0.946020i −0.809974 + 0.217032i −0.639958 0.768410i \(-0.721048\pi\)
−0.170015 + 0.985441i \(0.554382\pi\)
\(20\) 0.653347 2.43832i 0.146093 0.545226i
\(21\) 0 0
\(22\) −0.656023 + 2.44831i −0.139864 + 0.521981i
\(23\) 3.15983 3.15983i 0.658871 0.658871i −0.296242 0.955113i \(-0.595733\pi\)
0.955113 + 0.296242i \(0.0957334\pi\)
\(24\) 0 0
\(25\) −1.18843 + 0.686141i −0.237686 + 0.137228i
\(26\) 2.94479i 0.577522i
\(27\) 0 0
\(28\) 3.05217 1.76217i 0.576805 0.333019i
\(29\) 0.0393551 + 0.0393551i 0.00730806 + 0.00730806i 0.710751 0.703443i \(-0.248355\pi\)
−0.703443 + 0.710751i \(0.748355\pi\)
\(30\) 0 0
\(31\) −3.02663 + 3.02663i −0.543598 + 0.543598i −0.924582 0.380983i \(-0.875585\pi\)
0.380983 + 0.924582i \(0.375585\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 0.896143 1.55217i 0.153687 0.266194i
\(35\) −8.59347 2.30261i −1.45256 0.389213i
\(36\) 0 0
\(37\) −6.08276 0.00578029i −1.00000 0.000950274i
\(38\) 3.65514i 0.592942i
\(39\) 0 0
\(40\) 2.18614 + 1.26217i 0.345659 + 0.199566i
\(41\) −4.63342 + 8.02531i −0.723618 + 1.25334i 0.235922 + 0.971772i \(0.424189\pi\)
−0.959540 + 0.281572i \(0.909144\pi\)
\(42\) 0 0
\(43\) 0.234341 + 0.234341i 0.0357366 + 0.0357366i 0.724749 0.689013i \(-0.241956\pi\)
−0.689013 + 0.724749i \(0.741956\pi\)
\(44\) −2.19509 1.26734i −0.330923 0.191058i
\(45\) 0 0
\(46\) 2.23434 + 3.86999i 0.329436 + 0.570599i
\(47\) 4.39019i 0.640375i −0.947354 0.320187i \(-0.896254\pi\)
0.947354 0.320187i \(-0.103746\pi\)
\(48\) 0 0
\(49\) −2.71048 4.69469i −0.387211 0.670669i
\(50\) −0.355173 1.32552i −0.0502290 0.187457i
\(51\) 0 0
\(52\) 2.84445 + 0.762169i 0.394455 + 0.105694i
\(53\) −3.09167 + 1.78498i −0.424674 + 0.245185i −0.697075 0.716998i \(-0.745515\pi\)
0.272401 + 0.962184i \(0.412182\pi\)
\(54\) 0 0
\(55\) 1.65602 + 6.18036i 0.223298 + 0.833360i
\(56\) 0.912166 + 3.40425i 0.121893 + 0.454912i
\(57\) 0 0
\(58\) −0.0482000 + 0.0278283i −0.00632897 + 0.00365403i
\(59\) 9.18421 + 2.46090i 1.19568 + 0.320382i 0.801130 0.598491i \(-0.204233\pi\)
0.394553 + 0.918873i \(0.370899\pi\)
\(60\) 0 0
\(61\) 2.55217 + 9.52481i 0.326771 + 1.21953i 0.912519 + 0.409034i \(0.134134\pi\)
−0.585748 + 0.810493i \(0.699199\pi\)
\(62\) −2.14015 3.70685i −0.271799 0.470770i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.71683 6.43773i −0.461016 0.798503i
\(66\) 0 0
\(67\) −13.5208 7.80626i −1.65183 0.953687i −0.976318 0.216343i \(-0.930587\pi\)
−0.675517 0.737345i \(-0.736079\pi\)
\(68\) 1.26734 + 1.26734i 0.153687 + 0.153687i
\(69\) 0 0
\(70\) 4.44831 7.70470i 0.531675 0.920888i
\(71\) 3.56178 + 2.05639i 0.422705 + 0.244049i 0.696234 0.717815i \(-0.254858\pi\)
−0.273529 + 0.961864i \(0.588191\pi\)
\(72\) 0 0
\(73\) 4.09182i 0.478911i 0.970907 + 0.239456i \(0.0769690\pi\)
−0.970907 + 0.239456i \(0.923031\pi\)
\(74\) 1.57992 5.87400i 0.183662 0.682838i
\(75\) 0 0
\(76\) 3.53059 + 0.946020i 0.404987 + 0.108516i
\(77\) −4.46653 + 7.73625i −0.509008 + 0.881628i
\(78\) 0 0
\(79\) 2.84445 0.762169i 0.320026 0.0857507i −0.0952300 0.995455i \(-0.530359\pi\)
0.415256 + 0.909705i \(0.363692\pi\)
\(80\) −1.78498 + 1.78498i −0.199566 + 0.199566i
\(81\) 0 0
\(82\) −6.55264 6.55264i −0.723618 0.723618i
\(83\) 7.86403 4.54030i 0.863190 0.498363i −0.00188932 0.999998i \(-0.500601\pi\)
0.865079 + 0.501635i \(0.167268\pi\)
\(84\) 0 0
\(85\) 4.52434i 0.490733i
\(86\) −0.287007 + 0.165704i −0.0309488 + 0.0178683i
\(87\) 0 0
\(88\) 1.79229 1.79229i 0.191058 0.191058i
\(89\) −3.78437 + 14.1235i −0.401143 + 1.49708i 0.409918 + 0.912122i \(0.365557\pi\)
−0.811061 + 0.584962i \(0.801109\pi\)
\(90\) 0 0
\(91\) 2.68614 10.0248i 0.281584 1.05089i
\(92\) −4.31641 + 1.15658i −0.450017 + 0.120582i
\(93\) 0 0
\(94\) 4.24060 + 1.13626i 0.437384 + 0.117197i
\(95\) −4.61340 7.99065i −0.473325 0.819823i
\(96\) 0 0
\(97\) −0.841688 0.841688i −0.0854604 0.0854604i 0.663084 0.748545i \(-0.269247\pi\)
−0.748545 + 0.663084i \(0.769247\pi\)
\(98\) 5.23624 1.40305i 0.528940 0.141729i
\(99\) 0 0
\(100\) 1.37228 0.137228
\(101\) 17.0794 1.69947 0.849733 0.527213i \(-0.176763\pi\)
0.849733 + 0.527213i \(0.176763\pi\)
\(102\) 0 0
\(103\) 11.0974 11.0974i 1.09345 1.09345i 0.0982974 0.995157i \(-0.468660\pi\)
0.995157 0.0982974i \(-0.0313396\pi\)
\(104\) −1.47240 + 2.55027i −0.144380 + 0.250074i
\(105\) 0 0
\(106\) −0.923972 3.44831i −0.0897441 0.334929i
\(107\) −0.455950 0.263243i −0.0440783 0.0254486i 0.477799 0.878469i \(-0.341435\pi\)
−0.521877 + 0.853021i \(0.674768\pi\)
\(108\) 0 0
\(109\) 0.981918 3.66457i 0.0940507 0.351002i −0.902823 0.430012i \(-0.858509\pi\)
0.996874 + 0.0790101i \(0.0251759\pi\)
\(110\) −6.39838 −0.610062
\(111\) 0 0
\(112\) −3.52434 −0.333019
\(113\) −0.903052 + 3.37024i −0.0849520 + 0.317045i −0.995305 0.0967872i \(-0.969143\pi\)
0.910353 + 0.413832i \(0.135810\pi\)
\(114\) 0 0
\(115\) 9.76917 + 5.64023i 0.910979 + 0.525954i
\(116\) −0.0144050 0.0537601i −0.00133747 0.00499150i
\(117\) 0 0
\(118\) −4.75410 + 8.23434i −0.437650 + 0.758032i
\(119\) 4.46653 4.46653i 0.409446 0.409446i
\(120\) 0 0
\(121\) −4.57541 −0.415947
\(122\) −9.86081 −0.892756
\(123\) 0 0
\(124\) 4.13445 1.10782i 0.371285 0.0994854i
\(125\) 6.47539 + 6.47539i 0.579177 + 0.579177i
\(126\) 0 0
\(127\) 8.75686 + 15.1673i 0.777046 + 1.34588i 0.933637 + 0.358220i \(0.116616\pi\)
−0.156591 + 0.987663i \(0.550051\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 7.18036 1.92397i 0.629759 0.168743i
\(131\) −1.32048 + 4.92809i −0.115371 + 0.430569i −0.999314 0.0370243i \(-0.988212\pi\)
0.883944 + 0.467593i \(0.154879\pi\)
\(132\) 0 0
\(133\) 3.33409 12.4430i 0.289103 1.07895i
\(134\) 11.0397 11.0397i 0.953687 0.953687i
\(135\) 0 0
\(136\) −1.55217 + 0.896143i −0.133097 + 0.0768437i
\(137\) 15.3091i 1.30794i −0.756518 0.653972i \(-0.773101\pi\)
0.756518 0.653972i \(-0.226899\pi\)
\(138\) 0 0
\(139\) 17.9622 10.3705i 1.52353 0.879612i 0.523920 0.851768i \(-0.324469\pi\)
0.999612 0.0278438i \(-0.00886411\pi\)
\(140\) 6.29086 + 6.29086i 0.531675 + 0.531675i
\(141\) 0 0
\(142\) −2.90818 + 2.90818i −0.244049 + 0.244049i
\(143\) −7.20977 + 1.93185i −0.602911 + 0.161550i
\(144\) 0 0
\(145\) −0.0702479 + 0.121673i −0.00583377 + 0.0101044i
\(146\) −3.95239 1.05904i −0.327103 0.0876469i
\(147\) 0 0
\(148\) 5.26493 + 3.04639i 0.432775 + 0.250411i
\(149\) 18.7775i 1.53831i 0.639060 + 0.769157i \(0.279324\pi\)
−0.639060 + 0.769157i \(0.720676\pi\)
\(150\) 0 0
\(151\) 17.8658 + 10.3148i 1.45390 + 0.839407i 0.998699 0.0509835i \(-0.0162356\pi\)
0.455197 + 0.890391i \(0.349569\pi\)
\(152\) −1.82757 + 3.16544i −0.148235 + 0.256751i
\(153\) 0 0
\(154\) −6.31662 6.31662i −0.509008 0.509008i
\(155\) −9.35733 5.40246i −0.751599 0.433936i
\(156\) 0 0
\(157\) 8.87651 + 15.3746i 0.708423 + 1.22702i 0.965442 + 0.260618i \(0.0839263\pi\)
−0.257019 + 0.966406i \(0.582740\pi\)
\(158\) 2.94479i 0.234275i
\(159\) 0 0
\(160\) −1.26217 2.18614i −0.0997832 0.172830i
\(161\) 4.07618 + 15.2125i 0.321248 + 1.19891i
\(162\) 0 0
\(163\) −23.3554 6.25806i −1.82934 0.490169i −0.831478 0.555558i \(-0.812505\pi\)
−0.997860 + 0.0653889i \(0.979171\pi\)
\(164\) 8.02531 4.63342i 0.626672 0.361809i
\(165\) 0 0
\(166\) 2.35023 + 8.77119i 0.182413 + 0.680776i
\(167\) 4.64135 + 17.3217i 0.359158 + 1.34040i 0.875170 + 0.483815i \(0.160749\pi\)
−0.516012 + 0.856581i \(0.672584\pi\)
\(168\) 0 0
\(169\) −3.74832 + 2.16409i −0.288332 + 0.166469i
\(170\) 4.37017 + 1.17098i 0.335177 + 0.0898104i
\(171\) 0 0
\(172\) −0.0857746 0.320115i −0.00654025 0.0244086i
\(173\) 7.39692 + 12.8118i 0.562377 + 0.974066i 0.997288 + 0.0735926i \(0.0234464\pi\)
−0.434911 + 0.900473i \(0.643220\pi\)
\(174\) 0 0
\(175\) 4.83638i 0.365596i
\(176\) 1.26734 + 2.19509i 0.0955292 + 0.165461i
\(177\) 0 0
\(178\) −12.6628 7.31084i −0.949114 0.547971i
\(179\) 3.22506 + 3.22506i 0.241052 + 0.241052i 0.817285 0.576233i \(-0.195478\pi\)
−0.576233 + 0.817285i \(0.695478\pi\)
\(180\) 0 0
\(181\) 5.15144 8.92256i 0.382904 0.663209i −0.608572 0.793498i \(-0.708257\pi\)
0.991476 + 0.130290i \(0.0415908\pi\)
\(182\) 8.98800 + 5.18923i 0.666235 + 0.384651i
\(183\) 0 0
\(184\) 4.46868i 0.329436i
\(185\) −3.96006 14.8355i −0.291149 1.09073i
\(186\) 0 0
\(187\) −4.38807 1.17578i −0.320888 0.0859816i
\(188\) −2.19509 + 3.80201i −0.160094 + 0.277290i
\(189\) 0 0
\(190\) 8.91241 2.38807i 0.646574 0.173249i
\(191\) −0.0134861 + 0.0134861i −0.000975822 + 0.000975822i −0.707595 0.706619i \(-0.750220\pi\)
0.706619 + 0.707595i \(0.250220\pi\)
\(192\) 0 0
\(193\) −0.946020 0.946020i −0.0680960 0.0680960i 0.672239 0.740335i \(-0.265333\pi\)
−0.740335 + 0.672239i \(0.765333\pi\)
\(194\) 1.03085 0.595163i 0.0740109 0.0427302i
\(195\) 0 0
\(196\) 5.42096i 0.387211i
\(197\) 10.2579 5.92242i 0.730847 0.421955i −0.0878850 0.996131i \(-0.528011\pi\)
0.818732 + 0.574176i \(0.194677\pi\)
\(198\) 0 0
\(199\) −6.15796 + 6.15796i −0.436527 + 0.436527i −0.890841 0.454315i \(-0.849884\pi\)
0.454315 + 0.890841i \(0.349884\pi\)
\(200\) −0.355173 + 1.32552i −0.0251145 + 0.0937286i
\(201\) 0 0
\(202\) −4.42048 + 16.4975i −0.311024 + 1.16076i
\(203\) −0.189469 + 0.0507680i −0.0132981 + 0.00356321i
\(204\) 0 0
\(205\) −22.5955 6.05446i −1.57814 0.422862i
\(206\) 7.84701 + 13.5914i 0.546727 + 0.946959i
\(207\) 0 0
\(208\) −2.08228 2.08228i −0.144380 0.144380i
\(209\) −8.94891 + 2.39785i −0.619009 + 0.165863i
\(210\) 0 0
\(211\) 0.148428 0.0102182 0.00510911 0.999987i \(-0.498374\pi\)
0.00510911 + 0.999987i \(0.498374\pi\)
\(212\) 3.56995 0.245185
\(213\) 0 0
\(214\) 0.372281 0.372281i 0.0254486 0.0254486i
\(215\) −0.418292 + 0.724504i −0.0285273 + 0.0494108i
\(216\) 0 0
\(217\) −3.90434 14.5712i −0.265044 0.989157i
\(218\) 3.28556 + 1.89692i 0.222526 + 0.128476i
\(219\) 0 0
\(220\) 1.65602 6.18036i 0.111649 0.416680i
\(221\) 5.27792 0.355031
\(222\) 0 0
\(223\) 16.0747 1.07644 0.538219 0.842805i \(-0.319097\pi\)
0.538219 + 0.842805i \(0.319097\pi\)
\(224\) 0.912166 3.40425i 0.0609466 0.227456i
\(225\) 0 0
\(226\) −3.02167 1.74456i −0.200999 0.116047i
\(227\) −3.85296 14.3795i −0.255730 0.954398i −0.967683 0.252170i \(-0.918856\pi\)
0.711953 0.702227i \(-0.247811\pi\)
\(228\) 0 0
\(229\) −13.9189 + 24.1083i −0.919789 + 1.59312i −0.120054 + 0.992767i \(0.538307\pi\)
−0.799734 + 0.600354i \(0.795026\pi\)
\(230\) −7.97649 + 7.97649i −0.525954 + 0.525954i
\(231\) 0 0
\(232\) 0.0556565 0.00365403
\(233\) 16.6317 1.08958 0.544788 0.838574i \(-0.316610\pi\)
0.544788 + 0.838574i \(0.316610\pi\)
\(234\) 0 0
\(235\) 10.7047 2.86832i 0.698298 0.187108i
\(236\) −6.72331 6.72331i −0.437650 0.437650i
\(237\) 0 0
\(238\) 3.15831 + 5.47036i 0.204723 + 0.354591i
\(239\) −2.55377 0.684281i −0.165190 0.0442625i 0.175276 0.984519i \(-0.443918\pi\)
−0.340466 + 0.940257i \(0.610585\pi\)
\(240\) 0 0
\(241\) −1.80131 + 0.482659i −0.116032 + 0.0310908i −0.316368 0.948637i \(-0.602463\pi\)
0.200336 + 0.979727i \(0.435797\pi\)
\(242\) 1.18420 4.41951i 0.0761235 0.284097i
\(243\) 0 0
\(244\) 2.55217 9.52481i 0.163386 0.609764i
\(245\) 9.67628 9.67628i 0.618195 0.618195i
\(246\) 0 0
\(247\) 9.32158 5.38182i 0.593118 0.342437i
\(248\) 4.28030i 0.271799i
\(249\) 0 0
\(250\) −7.93070 + 4.57879i −0.501582 + 0.289588i
\(251\) −7.55887 7.55887i −0.477112 0.477112i 0.427095 0.904207i \(-0.359537\pi\)
−0.904207 + 0.427095i \(0.859537\pi\)
\(252\) 0 0
\(253\) 8.00916 8.00916i 0.503532 0.503532i
\(254\) −16.9170 + 4.53289i −1.06146 + 0.284419i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −29.2710 7.84315i −1.82588 0.489242i −0.828394 0.560145i \(-0.810745\pi\)
−0.997483 + 0.0709030i \(0.977412\pi\)
\(258\) 0 0
\(259\) 10.7365 18.5554i 0.667133 1.15298i
\(260\) 7.43366i 0.461016i
\(261\) 0 0
\(262\) −4.41840 2.55097i −0.272970 0.157599i
\(263\) 8.57675 14.8554i 0.528865 0.916021i −0.470568 0.882364i \(-0.655951\pi\)
0.999433 0.0336576i \(-0.0107156\pi\)
\(264\) 0 0
\(265\) −6.37228 6.37228i −0.391446 0.391446i
\(266\) 11.1561 + 6.44097i 0.684024 + 0.394921i
\(267\) 0 0
\(268\) 7.80626 + 13.5208i 0.476844 + 0.825917i
\(269\) 21.7135i 1.32389i −0.749551 0.661947i \(-0.769730\pi\)
0.749551 0.661947i \(-0.230270\pi\)
\(270\) 0 0
\(271\) 4.31058 + 7.46614i 0.261849 + 0.453536i 0.966733 0.255787i \(-0.0823344\pi\)
−0.704884 + 0.709322i \(0.749001\pi\)
\(272\) −0.463878 1.73122i −0.0281267 0.104970i
\(273\) 0 0
\(274\) 14.7875 + 3.96229i 0.893343 + 0.239371i
\(275\) −3.01229 + 1.73914i −0.181648 + 0.104874i
\(276\) 0 0
\(277\) 2.33652 + 8.72001i 0.140388 + 0.523935i 0.999917 + 0.0128488i \(0.00409001\pi\)
−0.859530 + 0.511086i \(0.829243\pi\)
\(278\) 5.36815 + 20.0342i 0.321960 + 1.20157i
\(279\) 0 0
\(280\) −7.70470 + 4.44831i −0.460444 + 0.265837i
\(281\) 12.8440 + 3.44155i 0.766211 + 0.205306i 0.620697 0.784050i \(-0.286850\pi\)
0.145514 + 0.989356i \(0.453516\pi\)
\(282\) 0 0
\(283\) 2.87604 + 10.7335i 0.170963 + 0.638041i 0.997204 + 0.0747253i \(0.0238080\pi\)
−0.826241 + 0.563316i \(0.809525\pi\)
\(284\) −2.05639 3.56178i −0.122025 0.211353i
\(285\) 0 0
\(286\) 7.46410i 0.441362i
\(287\) −16.3297 28.2839i −0.963913 1.66955i
\(288\) 0 0
\(289\) −11.9405 6.89385i −0.702383 0.405521i
\(290\) −0.0993456 0.0993456i −0.00583377 0.00583377i
\(291\) 0 0
\(292\) 2.04591 3.54362i 0.119728 0.207375i
\(293\) −23.0873 13.3295i −1.34878 0.778716i −0.360700 0.932682i \(-0.617462\pi\)
−0.988076 + 0.153966i \(0.950795\pi\)
\(294\) 0 0
\(295\) 24.0019i 1.39744i
\(296\) −4.30525 + 4.29707i −0.250237 + 0.249762i
\(297\) 0 0
\(298\) −18.1377 4.85998i −1.05069 0.281531i
\(299\) −6.57967 + 11.3963i −0.380512 + 0.659067i
\(300\) 0 0
\(301\) −1.12819 + 0.302299i −0.0650280 + 0.0174242i
\(302\) −14.5873 + 14.5873i −0.839407 + 0.839407i
\(303\) 0 0
\(304\) −2.58457 2.58457i −0.148235 0.148235i
\(305\) −21.5571 + 12.4460i −1.23436 + 0.712657i
\(306\) 0 0
\(307\) 10.0904i 0.575888i 0.957647 + 0.287944i \(0.0929717\pi\)
−0.957647 + 0.287944i \(0.907028\pi\)
\(308\) 7.73625 4.46653i 0.440814 0.254504i
\(309\) 0 0
\(310\) 7.64023 7.64023i 0.433936 0.433936i
\(311\) 4.26071 15.9012i 0.241603 0.901674i −0.733458 0.679735i \(-0.762095\pi\)
0.975061 0.221939i \(-0.0712385\pi\)
\(312\) 0 0
\(313\) 5.71141 21.3153i 0.322828 1.20481i −0.593649 0.804724i \(-0.702313\pi\)
0.916477 0.400087i \(-0.131020\pi\)
\(314\) −17.1481 + 4.59482i −0.967724 + 0.259301i
\(315\) 0 0
\(316\) −2.84445 0.762169i −0.160013 0.0428754i
\(317\) −12.7267 22.0432i −0.714800 1.23807i −0.963037 0.269370i \(-0.913184\pi\)
0.248237 0.968699i \(-0.420149\pi\)
\(318\) 0 0
\(319\) 0.0997525 + 0.0997525i 0.00558507 + 0.00558507i
\(320\) 2.43832 0.653347i 0.136306 0.0365232i
\(321\) 0 0
\(322\) −15.7491 −0.877665
\(323\) 6.55106 0.364511
\(324\) 0 0
\(325\) 2.85748 2.85748i 0.158504 0.158504i
\(326\) 12.0897 20.9399i 0.669584 1.15975i
\(327\) 0 0
\(328\) 2.39843 + 8.95108i 0.132431 + 0.494240i
\(329\) 13.3996 + 7.73625i 0.738743 + 0.426513i
\(330\) 0 0
\(331\) −3.96000 + 14.7789i −0.217661 + 0.812322i 0.767552 + 0.640987i \(0.221475\pi\)
−0.985213 + 0.171335i \(0.945192\pi\)
\(332\) −9.08060 −0.498363
\(333\) 0 0
\(334\) −17.9328 −0.981238
\(335\) 10.2004 38.0684i 0.557307 2.07990i
\(336\) 0 0
\(337\) 18.4528 + 10.6537i 1.00519 + 0.580346i 0.909779 0.415092i \(-0.136251\pi\)
0.0954091 + 0.995438i \(0.469584\pi\)
\(338\) −1.12022 4.18071i −0.0609318 0.227400i
\(339\) 0 0
\(340\) −2.26217 + 3.91819i −0.122683 + 0.212494i
\(341\) −7.67152 + 7.67152i −0.415436 + 0.415436i
\(342\) 0 0
\(343\) −5.56508 −0.300486
\(344\) 0.331408 0.0178683
\(345\) 0 0
\(346\) −14.2897 + 3.82893i −0.768222 + 0.205844i
\(347\) −9.93850 9.93850i −0.533526 0.533526i 0.388094 0.921620i \(-0.373134\pi\)
−0.921620 + 0.388094i \(0.873134\pi\)
\(348\) 0 0
\(349\) −2.12590 3.68217i −0.113797 0.197102i 0.803501 0.595303i \(-0.202968\pi\)
−0.917298 + 0.398201i \(0.869635\pi\)
\(350\) 4.67159 + 1.25175i 0.249707 + 0.0669087i
\(351\) 0 0
\(352\) −2.44831 + 0.656023i −0.130495 + 0.0349661i
\(353\) −1.50496 + 5.61658i −0.0801008 + 0.298940i −0.994341 0.106231i \(-0.966122\pi\)
0.914241 + 0.405172i \(0.132788\pi\)
\(354\) 0 0
\(355\) −2.68708 + 10.0283i −0.142615 + 0.532247i
\(356\) 10.3391 10.3391i 0.547971 0.547971i
\(357\) 0 0
\(358\) −3.94987 + 2.28046i −0.208757 + 0.120526i
\(359\) 9.45307i 0.498914i −0.968386 0.249457i \(-0.919748\pi\)
0.968386 0.249457i \(-0.0802521\pi\)
\(360\) 0 0
\(361\) −4.88434 + 2.81998i −0.257071 + 0.148420i
\(362\) 7.28524 + 7.28524i 0.382904 + 0.382904i
\(363\) 0 0
\(364\) −7.33867 + 7.33867i −0.384651 + 0.384651i
\(365\) −9.97718 + 2.67338i −0.522229 + 0.139931i
\(366\) 0 0
\(367\) 6.60386 11.4382i 0.344719 0.597070i −0.640584 0.767888i \(-0.721308\pi\)
0.985303 + 0.170818i \(0.0546410\pi\)
\(368\) 4.31641 + 1.15658i 0.225009 + 0.0602909i
\(369\) 0 0
\(370\) 15.3549 + 0.0145914i 0.798265 + 0.000758571i
\(371\) 12.5817i 0.653210i
\(372\) 0 0
\(373\) −24.8365 14.3394i −1.28599 0.742464i −0.308049 0.951370i \(-0.599676\pi\)
−0.977936 + 0.208906i \(0.933010\pi\)
\(374\) 2.27143 3.93424i 0.117453 0.203435i
\(375\) 0 0
\(376\) −3.10433 3.10433i −0.160094 0.160094i
\(377\) −0.141939 0.0819485i −0.00731023 0.00422056i
\(378\) 0 0
\(379\) −3.66853 6.35409i −0.188440 0.326388i 0.756290 0.654236i \(-0.227010\pi\)
−0.944730 + 0.327849i \(0.893676\pi\)
\(380\) 9.22681i 0.473325i
\(381\) 0 0
\(382\) −0.00953613 0.0165171i −0.000487911 0.000845087i
\(383\) 4.76950 + 17.8000i 0.243710 + 0.909539i 0.974027 + 0.226430i \(0.0727056\pi\)
−0.730317 + 0.683108i \(0.760628\pi\)
\(384\) 0 0
\(385\) −21.7817 5.83638i −1.11010 0.297450i
\(386\) 1.15863 0.668937i 0.0589729 0.0340480i
\(387\) 0 0
\(388\) 0.308079 + 1.14977i 0.0156403 + 0.0583706i
\(389\) 5.28310 + 19.7168i 0.267864 + 0.999681i 0.960474 + 0.278369i \(0.0897939\pi\)
−0.692610 + 0.721312i \(0.743539\pi\)
\(390\) 0 0
\(391\) −6.93614 + 4.00458i −0.350775 + 0.202520i
\(392\) −5.23624 1.40305i −0.264470 0.0708646i
\(393\) 0 0
\(394\) 3.06567 + 11.4412i 0.154446 + 0.576401i
\(395\) 3.71683 + 6.43773i 0.187014 + 0.323918i
\(396\) 0 0
\(397\) 38.0722i 1.91079i 0.295329 + 0.955396i \(0.404571\pi\)
−0.295329 + 0.955396i \(0.595429\pi\)
\(398\) −4.35434 7.54194i −0.218263 0.378043i
\(399\) 0 0
\(400\) −1.18843 0.686141i −0.0594215 0.0343070i
\(401\) −4.23616 4.23616i −0.211544 0.211544i 0.593379 0.804923i \(-0.297793\pi\)
−0.804923 + 0.593379i \(0.797793\pi\)
\(402\) 0 0
\(403\) 6.30230 10.9159i 0.313940 0.543760i
\(404\) −14.7912 8.53971i −0.735891 0.424867i
\(405\) 0 0
\(406\) 0.196152i 0.00973488i
\(407\) −15.4178 0.0146512i −0.764233 0.000726232i
\(408\) 0 0
\(409\) −9.92424 2.65919i −0.490722 0.131489i 0.00496879 0.999988i \(-0.498418\pi\)
−0.495691 + 0.868499i \(0.665085\pi\)
\(410\) 11.6963 20.2586i 0.577640 1.00050i
\(411\) 0 0
\(412\) −15.1593 + 4.06191i −0.746843 + 0.200116i
\(413\) −23.6952 + 23.6952i −1.16597 + 1.16597i
\(414\) 0 0
\(415\) 16.2087 + 16.2087i 0.795652 + 0.795652i
\(416\) 2.55027 1.47240i 0.125037 0.0721902i
\(417\) 0 0
\(418\) 9.26460i 0.453146i
\(419\) 17.8075 10.2812i 0.869954 0.502268i 0.00262133 0.999997i \(-0.499166\pi\)
0.867333 + 0.497728i \(0.165832\pi\)
\(420\) 0 0
\(421\) −11.4397 + 11.4397i −0.557536 + 0.557536i −0.928605 0.371069i \(-0.878991\pi\)
0.371069 + 0.928605i \(0.378991\pi\)
\(422\) −0.0384160 + 0.143371i −0.00187006 + 0.00697917i
\(423\) 0 0
\(424\) −0.923972 + 3.44831i −0.0448720 + 0.167465i
\(425\) 2.37572 0.636571i 0.115239 0.0308782i
\(426\) 0 0
\(427\) −33.5687 8.99470i −1.62450 0.435284i
\(428\) 0.263243 + 0.455950i 0.0127243 + 0.0220392i
\(429\) 0 0
\(430\) −0.591555 0.591555i −0.0285273 0.0285273i
\(431\) −5.43828 + 1.45718i −0.261953 + 0.0701900i −0.387405 0.921910i \(-0.626628\pi\)
0.125452 + 0.992100i \(0.459962\pi\)
\(432\) 0 0
\(433\) −3.26700 −0.157002 −0.0785010 0.996914i \(-0.525013\pi\)
−0.0785010 + 0.996914i \(0.525013\pi\)
\(434\) 15.0852 0.724114
\(435\) 0 0
\(436\) −2.68265 + 2.68265i −0.128476 + 0.128476i
\(437\) −8.16683 + 14.1454i −0.390672 + 0.676664i
\(438\) 0 0
\(439\) −0.858221 3.20292i −0.0409606 0.152867i 0.942417 0.334441i \(-0.108548\pi\)
−0.983377 + 0.181574i \(0.941881\pi\)
\(440\) 5.54116 + 3.19919i 0.264164 + 0.152515i
\(441\) 0 0
\(442\) −1.36603 + 5.09808i −0.0649752 + 0.242491i
\(443\) 7.45001 0.353960 0.176980 0.984214i \(-0.443367\pi\)
0.176980 + 0.984214i \(0.443367\pi\)
\(444\) 0 0
\(445\) −36.9101 −1.74971
\(446\) −4.16043 + 15.5269i −0.197002 + 0.735221i
\(447\) 0 0
\(448\) 3.05217 + 1.76217i 0.144201 + 0.0832547i
\(449\) 7.38745 + 27.5703i 0.348635 + 1.30112i 0.888307 + 0.459249i \(0.151882\pi\)
−0.539672 + 0.841875i \(0.681452\pi\)
\(450\) 0 0
\(451\) −11.7442 + 20.3416i −0.553013 + 0.957847i
\(452\) 2.46718 2.46718i 0.116047 0.116047i
\(453\) 0 0
\(454\) 14.8867 0.698668
\(455\) 26.1987 1.22821
\(456\) 0 0
\(457\) 25.8888 6.93689i 1.21103 0.324494i 0.403863 0.914820i \(-0.367667\pi\)
0.807165 + 0.590326i \(0.201001\pi\)
\(458\) −19.6843 19.6843i −0.919789 0.919789i
\(459\) 0 0
\(460\) −5.64023 9.76917i −0.262977 0.455490i
\(461\) −16.0558 4.30214i −0.747793 0.200371i −0.135254 0.990811i \(-0.543185\pi\)
−0.612539 + 0.790440i \(0.709852\pi\)
\(462\) 0 0
\(463\) 29.5438 7.91625i 1.37302 0.367899i 0.504439 0.863448i \(-0.331699\pi\)
0.868580 + 0.495548i \(0.165033\pi\)
\(464\) −0.0144050 + 0.0537601i −0.000668734 + 0.00249575i
\(465\) 0 0
\(466\) −4.30459 + 16.0649i −0.199406 + 0.744194i
\(467\) −12.3057 + 12.3057i −0.569438 + 0.569438i −0.931971 0.362533i \(-0.881912\pi\)
0.362533 + 0.931971i \(0.381912\pi\)
\(468\) 0 0
\(469\) 47.6520 27.5119i 2.20037 1.27038i
\(470\) 11.0823i 0.511189i
\(471\) 0 0
\(472\) 8.23434 4.75410i 0.379016 0.218825i
\(473\) 0.593978 + 0.593978i 0.0273111 + 0.0273111i
\(474\) 0 0
\(475\) 3.54676 3.54676i 0.162737 0.162737i
\(476\) −6.10139 + 1.63486i −0.279657 + 0.0749338i
\(477\) 0 0
\(478\) 1.32193 2.28965i 0.0604636 0.104726i
\(479\) 14.3266 + 3.83880i 0.654600 + 0.175399i 0.570808 0.821084i \(-0.306630\pi\)
0.0837920 + 0.996483i \(0.473297\pi\)
\(480\) 0 0
\(481\) 17.3065 4.61965i 0.789110 0.210638i
\(482\) 1.86485i 0.0849417i
\(483\) 0 0
\(484\) 3.96243 + 2.28771i 0.180110 + 0.103987i
\(485\) 1.50239 2.60222i 0.0682201 0.118161i
\(486\) 0 0
\(487\) 17.2504 + 17.2504i 0.781688 + 0.781688i 0.980116 0.198427i \(-0.0635834\pi\)
−0.198427 + 0.980116i \(0.563583\pi\)
\(488\) 8.53971 + 4.93041i 0.386575 + 0.223189i
\(489\) 0 0
\(490\) 6.84216 + 11.8510i 0.309097 + 0.535372i
\(491\) 11.8443i 0.534528i −0.963623 0.267264i \(-0.913880\pi\)
0.963623 0.267264i \(-0.0861195\pi\)
\(492\) 0 0
\(493\) −0.0498762 0.0863882i −0.00224631 0.00389073i
\(494\) 2.78583 + 10.3969i 0.125341 + 0.467777i
\(495\) 0 0
\(496\) −4.13445 1.10782i −0.185642 0.0497427i
\(497\) −12.5529 + 7.24743i −0.563075 + 0.325091i
\(498\) 0 0
\(499\) −8.14435 30.3951i −0.364591 1.36067i −0.867974 0.496609i \(-0.834578\pi\)
0.503383 0.864063i \(-0.332089\pi\)
\(500\) −2.37016 8.84555i −0.105997 0.395585i
\(501\) 0 0
\(502\) 9.25769 5.34493i 0.413191 0.238556i
\(503\) 22.7619 + 6.09902i 1.01490 + 0.271942i 0.727676 0.685921i \(-0.240601\pi\)
0.287225 + 0.957863i \(0.407267\pi\)
\(504\) 0 0
\(505\) 11.1588 + 41.6452i 0.496560 + 1.85319i
\(506\) 5.66333 + 9.80918i 0.251766 + 0.436071i
\(507\) 0 0
\(508\) 17.5137i 0.777046i
\(509\) 5.46574 + 9.46694i 0.242265 + 0.419615i 0.961359 0.275298i \(-0.0887765\pi\)
−0.719094 + 0.694912i \(0.755443\pi\)
\(510\) 0 0
\(511\) −12.4889 7.21048i −0.552477 0.318973i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 15.1518 26.2437i 0.668318 1.15756i
\(515\) 34.3093 + 19.8085i 1.51185 + 0.872867i
\(516\) 0 0
\(517\) 11.1277i 0.489396i
\(518\) 15.1443 + 15.1731i 0.665404 + 0.666670i
\(519\) 0 0
\(520\) −7.18036 1.92397i −0.314880 0.0843717i
\(521\) 16.6146 28.7774i 0.727900 1.26076i −0.229869 0.973222i \(-0.573830\pi\)
0.957769 0.287539i \(-0.0928369\pi\)
\(522\) 0 0
\(523\) 24.5115 6.56785i 1.07181 0.287192i 0.320576 0.947223i \(-0.396123\pi\)
0.751238 + 0.660031i \(0.229457\pi\)
\(524\) 3.60761 3.60761i 0.157599 0.157599i
\(525\) 0 0
\(526\) 12.1294 + 12.1294i 0.528865 + 0.528865i
\(527\) 6.64373 3.83576i 0.289406 0.167088i
\(528\) 0 0
\(529\) 3.03089i 0.131778i
\(530\) 7.80442 4.50588i 0.339002 0.195723i
\(531\) 0 0
\(532\) −9.10891 + 9.10891i −0.394921 + 0.394921i
\(533\) 7.06289 26.3591i 0.305928 1.14174i
\(534\) 0 0
\(535\) 0.343977 1.28374i 0.0148714 0.0555010i
\(536\) −15.0805 + 4.04082i −0.651380 + 0.174537i
\(537\) 0 0
\(538\) 20.9736 + 5.61986i 0.904236 + 0.242289i
\(539\) −6.87019 11.8995i −0.295920 0.512548i
\(540\) 0 0
\(541\) −9.44575 9.44575i −0.406105 0.406105i 0.474273 0.880378i \(-0.342711\pi\)
−0.880378 + 0.474273i \(0.842711\pi\)
\(542\) −8.32740 + 2.23132i −0.357692 + 0.0958434i
\(543\) 0 0
\(544\) 1.79229 0.0768437
\(545\) 9.57693 0.410231
\(546\) 0 0
\(547\) −11.8545 + 11.8545i −0.506864 + 0.506864i −0.913562 0.406699i \(-0.866680\pi\)
0.406699 + 0.913562i \(0.366680\pi\)
\(548\) −7.65455 + 13.2581i −0.326986 + 0.566357i
\(549\) 0 0
\(550\) −0.900248 3.35977i −0.0383867 0.143261i
\(551\) −0.176178 0.101716i −0.00750542 0.00433326i
\(552\) 0 0
\(553\) −2.68614 + 10.0248i −0.114226 + 0.426298i
\(554\) −9.02762 −0.383547
\(555\) 0 0
\(556\) −20.7409 −0.879612
\(557\) 2.77230 10.3464i 0.117466 0.438389i −0.881994 0.471261i \(-0.843799\pi\)
0.999460 + 0.0328724i \(0.0104655\pi\)
\(558\) 0 0
\(559\) −0.845178 0.487964i −0.0357472 0.0206387i
\(560\) −2.30261 8.59347i −0.0973032 0.363141i
\(561\) 0 0
\(562\) −6.64857 + 11.5157i −0.280453 + 0.485759i
\(563\) −0.836585 + 0.836585i −0.0352579 + 0.0352579i −0.724516 0.689258i \(-0.757937\pi\)
0.689258 + 0.724516i \(0.257937\pi\)
\(564\) 0 0
\(565\) −8.80773 −0.370544
\(566\) −11.1122 −0.467079
\(567\) 0 0
\(568\) 3.97265 1.06447i 0.166689 0.0446641i
\(569\) 17.1141 + 17.1141i 0.717462 + 0.717462i 0.968085 0.250623i \(-0.0806353\pi\)
−0.250623 + 0.968085i \(0.580635\pi\)
\(570\) 0 0
\(571\) −15.4619 26.7808i −0.647061 1.12074i −0.983821 0.179152i \(-0.942665\pi\)
0.336761 0.941590i \(-0.390669\pi\)
\(572\) 7.20977 + 1.93185i 0.301456 + 0.0807748i
\(573\) 0 0
\(574\) 31.5466 8.45289i 1.31673 0.352817i
\(575\) −1.58715 + 5.92334i −0.0661889 + 0.247020i
\(576\) 0 0
\(577\) −2.77757 + 10.3660i −0.115632 + 0.431543i −0.999333 0.0365072i \(-0.988377\pi\)
0.883702 + 0.468051i \(0.155043\pi\)
\(578\) 9.74938 9.74938i 0.405521 0.405521i
\(579\) 0 0
\(580\) 0.121673 0.0702479i 0.00505220 0.00291689i
\(581\) 32.0031i 1.32771i
\(582\) 0 0
\(583\) −7.83638 + 4.52434i −0.324550 + 0.187379i
\(584\) 2.89335 + 2.89335i 0.119728 + 0.119728i
\(585\) 0 0
\(586\) 18.8507 18.8507i 0.778716 0.778716i
\(587\) −16.3756 + 4.38782i −0.675892 + 0.181105i −0.580407 0.814326i \(-0.697107\pi\)
−0.0954843 + 0.995431i \(0.530440\pi\)
\(588\) 0 0
\(589\) 7.82254 13.5490i 0.322322 0.558279i
\(590\) −23.1841 6.21215i −0.954473 0.255750i
\(591\) 0 0
\(592\) −3.03637 5.27071i −0.124794 0.216625i
\(593\) 6.35970i 0.261161i 0.991438 + 0.130581i \(0.0416842\pi\)
−0.991438 + 0.130581i \(0.958316\pi\)
\(594\) 0 0
\(595\) 13.8090 + 7.97265i 0.566115 + 0.326847i
\(596\) 9.38876 16.2618i 0.384579 0.666110i
\(597\) 0 0
\(598\) −9.30506 9.30506i −0.380512 0.380512i
\(599\) 10.7025 + 6.17908i 0.437291 + 0.252470i 0.702448 0.711735i \(-0.252090\pi\)
−0.265157 + 0.964205i \(0.585424\pi\)
\(600\) 0 0
\(601\) 9.18230 + 15.9042i 0.374554 + 0.648746i 0.990260 0.139229i \(-0.0444625\pi\)
−0.615706 + 0.787976i \(0.711129\pi\)
\(602\) 1.16799i 0.0476038i
\(603\) 0 0
\(604\) −10.3148 17.8658i −0.419704 0.726948i
\(605\) −2.98933 11.1563i −0.121534 0.453570i
\(606\) 0 0
\(607\) −33.0032 8.84317i −1.33956 0.358933i −0.483287 0.875462i \(-0.660557\pi\)
−0.856270 + 0.516529i \(0.827224\pi\)
\(608\) 3.16544 1.82757i 0.128376 0.0741177i
\(609\) 0 0
\(610\) −6.44253 24.0438i −0.260850 0.973507i
\(611\) 3.34607 + 12.4877i 0.135367 + 0.505198i
\(612\) 0 0
\(613\) 15.7888 9.11564i 0.637702 0.368177i −0.146027 0.989281i \(-0.546649\pi\)
0.783729 + 0.621103i \(0.213315\pi\)
\(614\) −9.74655 2.61158i −0.393339 0.105395i
\(615\) 0 0
\(616\) 2.31205 + 8.62867i 0.0931550 + 0.347659i
\(617\) 17.4572 + 30.2368i 0.702800 + 1.21729i 0.967479 + 0.252949i \(0.0814006\pi\)
−0.264679 + 0.964337i \(0.585266\pi\)
\(618\) 0 0
\(619\) 19.1280i 0.768819i −0.923163 0.384409i \(-0.874405\pi\)
0.923163 0.384409i \(-0.125595\pi\)
\(620\) 5.40246 + 9.35733i 0.216968 + 0.375800i
\(621\) 0 0
\(622\) 14.2566 + 8.23106i 0.571638 + 0.330035i
\(623\) −36.4385 36.4385i −1.45988 1.45988i
\(624\) 0 0
\(625\) −14.9891 + 25.9619i −0.599565 + 1.03848i
\(626\) 19.1108 + 11.0336i 0.763820 + 0.440992i
\(627\) 0 0
\(628\) 17.7530i 0.708423i
\(629\) 10.5279 + 2.83167i 0.419775 + 0.112906i
\(630\) 0 0
\(631\) −33.4000 8.94951i −1.32963 0.356274i −0.477055 0.878873i \(-0.658296\pi\)
−0.852579 + 0.522599i \(0.824963\pi\)
\(632\) 1.47240 2.55027i 0.0585688 0.101444i
\(633\) 0 0
\(634\) 24.5860 6.58780i 0.976435 0.261635i
\(635\) −31.2616 + 31.2616i −1.24058 + 1.24058i
\(636\) 0 0
\(637\) 11.2880 + 11.2880i 0.447246 + 0.447246i
\(638\) −0.122171 + 0.0705357i −0.00483681 + 0.00279253i
\(639\) 0 0
\(640\) 2.52434i 0.0997832i
\(641\) 37.4676 21.6319i 1.47988 0.854410i 0.480140 0.877192i \(-0.340586\pi\)
0.999740 + 0.0227821i \(0.00725241\pi\)
\(642\) 0 0
\(643\) −26.5503 + 26.5503i −1.04704 + 1.04704i −0.0482028 + 0.998838i \(0.515349\pi\)
−0.998838 + 0.0482028i \(0.984651\pi\)
\(644\) 4.07618 15.2125i 0.160624 0.599457i
\(645\) 0 0
\(646\) −1.69554 + 6.32784i −0.0667101 + 0.248965i
\(647\) 4.43138 1.18739i 0.174216 0.0466809i −0.170657 0.985331i \(-0.554589\pi\)
0.344872 + 0.938650i \(0.387922\pi\)
\(648\) 0 0
\(649\) 23.2790 + 6.23759i 0.913781 + 0.244847i
\(650\) 2.02054 + 3.49968i 0.0792522 + 0.137269i
\(651\) 0 0
\(652\) 17.0974 + 17.0974i 0.669584 + 0.669584i
\(653\) −37.5512 + 10.0618i −1.46949 + 0.393750i −0.902757 0.430150i \(-0.858461\pi\)
−0.566736 + 0.823900i \(0.691794\pi\)
\(654\) 0 0
\(655\) −12.8790 −0.503224
\(656\) −9.26683 −0.361809
\(657\) 0 0
\(658\) −10.9407 + 10.9407i −0.426513 + 0.426513i
\(659\) −23.7957 + 41.2154i −0.926950 + 1.60552i −0.138555 + 0.990355i \(0.544246\pi\)
−0.788395 + 0.615170i \(0.789087\pi\)
\(660\) 0 0
\(661\) −10.1078 37.7230i −0.393150 1.46725i −0.824909 0.565266i \(-0.808774\pi\)
0.431759 0.901989i \(-0.357893\pi\)
\(662\) −13.2504 7.65013i −0.514992 0.297331i
\(663\) 0 0
\(664\) 2.35023 8.77119i 0.0912067 0.340388i
\(665\) 32.5184 1.26101
\(666\) 0 0
\(667\) 0.248711 0.00963014
\(668\) 4.64135 17.3217i 0.179579 0.670198i
\(669\) 0 0
\(670\) 34.1312 + 19.7056i 1.31860 + 0.761296i
\(671\) 6.46892 + 24.1423i 0.249730 + 0.932004i
\(672\) 0 0
\(673\) 16.1385 27.9527i 0.622094 1.07750i −0.367001 0.930221i \(-0.619615\pi\)
0.989095 0.147278i \(-0.0470512\pi\)
\(674\) −15.0667 + 15.0667i −0.580346 + 0.580346i
\(675\) 0 0
\(676\) 4.32819 0.166469
\(677\) −2.66637 −0.102477 −0.0512384 0.998686i \(-0.516317\pi\)
−0.0512384 + 0.998686i \(0.516317\pi\)
\(678\) 0 0
\(679\) 4.05217 1.08577i 0.155508 0.0416682i
\(680\) −3.19919 3.19919i −0.122683 0.122683i
\(681\) 0 0
\(682\) −5.42459 9.39566i −0.207718 0.359778i
\(683\) −32.2749 8.64804i −1.23497 0.330908i −0.418454 0.908238i \(-0.637428\pi\)
−0.816511 + 0.577330i \(0.804095\pi\)
\(684\) 0 0
\(685\) 37.3285 10.0022i 1.42625 0.382163i
\(686\) 1.44035 5.37546i 0.0549928 0.205236i
\(687\) 0 0
\(688\) −0.0857746 + 0.320115i −0.00327013 + 0.0122043i
\(689\) 7.43366 7.43366i 0.283200 0.283200i
\(690\) 0 0
\(691\) 25.1394 14.5142i 0.956348 0.552148i 0.0613009 0.998119i \(-0.480475\pi\)
0.895047 + 0.445971i \(0.147142\pi\)
\(692\) 14.7938i 0.562377i
\(693\) 0 0
\(694\) 12.1721 7.02758i 0.462047 0.266763i
\(695\) 37.0221 + 37.0221i 1.40433 + 1.40433i
\(696\) 0 0
\(697\) 11.7442 11.7442i 0.444844 0.444844i
\(698\) 4.10693 1.10045i 0.155450 0.0416526i
\(699\) 0 0
\(700\) −2.41819 + 4.18843i −0.0913990 + 0.158308i
\(701\) 36.2834 + 9.72211i 1.37041 + 0.367199i 0.867627 0.497216i \(-0.165644\pi\)
0.502779 + 0.864415i \(0.332311\pi\)
\(702\) 0 0
\(703\) 21.4812 5.73400i 0.810180 0.216262i
\(704\) 2.53468i 0.0955292i
\(705\) 0 0
\(706\) −5.03569 2.90736i −0.189521 0.109420i
\(707\) −30.0968 + 52.1293i −1.13191 + 1.96052i
\(708\) 0 0
\(709\) 12.2693 + 12.2693i 0.460782 + 0.460782i 0.898912 0.438129i \(-0.144359\pi\)
−0.438129 + 0.898912i \(0.644359\pi\)
\(710\) −8.99113 5.19103i −0.337431 0.194816i
\(711\) 0 0
\(712\) 7.31084 + 12.6628i 0.273985 + 0.474557i
\(713\) 19.1273i 0.716323i
\(714\) 0 0
\(715\) −9.42096 16.3176i −0.352324 0.610243i
\(716\) −1.18045 4.40551i −0.0441156 0.164642i
\(717\) 0 0
\(718\) 9.13096 + 2.44663i 0.340764 + 0.0913075i
\(719\) 41.7219 24.0881i 1.55596 0.898336i 0.558327 0.829621i \(-0.311443\pi\)
0.997636 0.0687149i \(-0.0218899\pi\)
\(720\) 0 0
\(721\) 14.3156 + 53.4264i 0.533139 + 1.98970i
\(722\) −1.45973 5.44778i −0.0543254 0.202745i
\(723\) 0 0
\(724\) −8.92256 + 5.15144i −0.331604 + 0.191452i
\(725\) −0.0737740 0.0197677i −0.00273990 0.000734153i
\(726\) 0 0
\(727\) 6.61434 + 24.6851i 0.245312 + 0.915518i 0.973226 + 0.229850i \(0.0738235\pi\)
−0.727914 + 0.685669i \(0.759510\pi\)
\(728\) −5.18923 8.98800i −0.192325 0.333118i
\(729\) 0 0
\(730\) 10.3291i 0.382298i
\(731\) −0.296989 0.514400i −0.0109845 0.0190258i
\(732\) 0 0
\(733\) 22.6612 + 13.0834i 0.837010 + 0.483248i 0.856247 0.516567i \(-0.172790\pi\)
−0.0192366 + 0.999815i \(0.506124\pi\)
\(734\) 9.33926 + 9.33926i 0.344719 + 0.344719i
\(735\) 0 0
\(736\) −2.23434 + 3.86999i −0.0823589 + 0.142650i
\(737\) −34.2710 19.7864i −1.26239 0.728840i
\(738\) 0 0
\(739\) 9.69779i 0.356739i −0.983964 0.178369i \(-0.942918\pi\)
0.983964 0.178369i \(-0.0570822\pi\)
\(740\) −3.98825 + 14.8280i −0.146611 + 0.545087i
\(741\) 0 0
\(742\) 12.1530 + 3.25639i 0.446151 + 0.119546i
\(743\) 10.9128 18.9015i 0.400352 0.693430i −0.593416 0.804896i \(-0.702221\pi\)
0.993768 + 0.111465i \(0.0355544\pi\)
\(744\) 0 0
\(745\) −45.7857 + 12.2682i −1.67746 + 0.449473i
\(746\) 20.2789 20.2789i 0.742464 0.742464i
\(747\) 0 0
\(748\) 3.21229 + 3.21229i 0.117453 + 0.117453i
\(749\) 1.60692 0.927756i 0.0587156 0.0338995i
\(750\) 0 0
\(751\) 48.6131i 1.77392i −0.461847 0.886959i \(-0.652813\pi\)
0.461847 0.886959i \(-0.347187\pi\)
\(752\) 3.80201 2.19509i 0.138645 0.0800469i
\(753\) 0 0
\(754\) 0.115893 0.115893i 0.00422056 0.00422056i
\(755\) −13.4783 + 50.3017i −0.490525 + 1.83067i
\(756\) 0 0
\(757\) 5.39990 20.1527i 0.196263 0.732462i −0.795674 0.605725i \(-0.792883\pi\)
0.991936 0.126737i \(-0.0404504\pi\)
\(758\) 7.08706 1.89897i 0.257414 0.0689738i
\(759\) 0 0
\(760\) −8.91241 2.38807i −0.323287 0.0866245i
\(761\) −13.6128 23.5781i −0.493465 0.854706i 0.506507 0.862236i \(-0.330937\pi\)
−0.999972 + 0.00752959i \(0.997603\pi\)
\(762\) 0 0
\(763\) 9.45457 + 9.45457i 0.342278 + 0.342278i
\(764\) 0.0184224 0.00493627i 0.000666499 0.000178588i
\(765\) 0 0
\(766\) −18.4279 −0.665828
\(767\) −27.9997 −1.01101
\(768\) 0 0
\(769\) 24.6006 24.6006i 0.887120 0.887120i −0.107125 0.994246i \(-0.534165\pi\)
0.994246 + 0.107125i \(0.0341647\pi\)
\(770\) 11.2750 19.5289i 0.406324 0.703773i
\(771\) 0 0
\(772\) 0.346267 + 1.29229i 0.0124624 + 0.0465104i
\(773\) −4.69967 2.71335i −0.169035 0.0975926i 0.413096 0.910688i \(-0.364448\pi\)
−0.582131 + 0.813095i \(0.697781\pi\)
\(774\) 0 0
\(775\) 1.52024 5.67363i 0.0546088 0.203803i
\(776\) −1.19033 −0.0427302
\(777\) 0 0
\(778\) −20.4123 −0.731817
\(779\) 8.76661 32.7174i 0.314096 1.17222i
\(780\) 0 0
\(781\) 9.02796 + 5.21229i 0.323046 + 0.186510i
\(782\) −2.07292 7.73625i −0.0741276 0.276648i
\(783\) 0