Properties

Label 666.2.be.a.125.2
Level $666$
Weight $2$
Character 666.125
Analytic conductor $5.318$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(125,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.125");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.be (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 666.125
Dual form 666.2.be.a.341.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(0.448288 - 1.67303i) q^{5} +(-1.00000 - 1.73205i) q^{7} +(-0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(0.258819 + 0.965926i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(0.448288 - 1.67303i) q^{5} +(-1.00000 - 1.73205i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.73205 q^{10} -3.86370 q^{11} +(-4.09808 - 1.09808i) q^{13} +(1.41421 - 1.41421i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-5.53674 + 1.48356i) q^{17} +(1.00000 + 0.267949i) q^{19} +(0.448288 + 1.67303i) q^{20} +(-1.00000 - 3.73205i) q^{22} +(-3.86370 - 3.86370i) q^{23} +(1.73205 + 1.00000i) q^{25} -4.24264i q^{26} +(1.73205 + 1.00000i) q^{28} +(-6.50266 + 6.50266i) q^{29} +(1.26795 + 1.26795i) q^{31} +(0.965926 + 0.258819i) q^{32} +(-2.86603 - 4.96410i) q^{34} +(-3.34607 + 0.896575i) q^{35} +(2.59808 - 5.50000i) q^{37} +1.03528i q^{38} +(-1.50000 + 0.866025i) q^{40} +(-0.258819 - 0.448288i) q^{41} +(4.73205 - 4.73205i) q^{43} +(3.34607 - 1.93185i) q^{44} +(2.73205 - 4.73205i) q^{46} -5.93426i q^{47} +(1.50000 - 2.59808i) q^{49} +(-0.517638 + 1.93185i) q^{50} +(4.09808 - 1.09808i) q^{52} +(-1.22474 - 0.707107i) q^{53} +(-1.73205 + 6.46410i) q^{55} +(-0.517638 + 1.93185i) q^{56} +(-7.96410 - 4.59808i) q^{58} +(9.14162 - 2.44949i) q^{59} +(-2.42820 + 9.06218i) q^{61} +(-0.896575 + 1.55291i) q^{62} +1.00000i q^{64} +(-3.67423 + 6.36396i) q^{65} +(9.00000 - 5.19615i) q^{67} +(4.05317 - 4.05317i) q^{68} +(-1.73205 - 3.00000i) q^{70} +(7.58871 - 4.38134i) q^{71} -4.00000i q^{73} +(5.98502 + 1.08604i) q^{74} +(-1.00000 + 0.267949i) q^{76} +(3.86370 + 6.69213i) q^{77} +(-13.9282 - 3.73205i) q^{79} +(-1.22474 - 1.22474i) q^{80} +(0.366025 - 0.366025i) q^{82} +(4.89898 + 2.82843i) q^{83} +9.92820i q^{85} +(5.79555 + 3.34607i) q^{86} +(2.73205 + 2.73205i) q^{88} +(-0.258819 - 0.965926i) q^{89} +(2.19615 + 8.19615i) q^{91} +(5.27792 + 1.41421i) q^{92} +(5.73205 - 1.53590i) q^{94} +(0.896575 - 1.55291i) q^{95} +(3.63397 - 3.63397i) q^{97} +(2.89778 + 0.776457i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{7} - 12 q^{13} + 4 q^{16} + 8 q^{19} - 8 q^{22} + 24 q^{31} - 16 q^{34} - 12 q^{40} + 24 q^{43} + 8 q^{46} + 12 q^{49} + 12 q^{52} - 36 q^{58} + 36 q^{61} + 72 q^{67} - 8 q^{76} - 56 q^{79} - 4 q^{82} + 8 q^{88} - 24 q^{91} + 32 q^{94} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 + 0.965926i 0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 + 0.500000i −0.433013 + 0.250000i
\(5\) 0.448288 1.67303i 0.200480 0.748203i −0.790299 0.612721i \(-0.790075\pi\)
0.990780 0.135482i \(-0.0432583\pi\)
\(6\) 0 0
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 1.73205 0.547723
\(11\) −3.86370 −1.16495 −0.582475 0.812848i \(-0.697916\pi\)
−0.582475 + 0.812848i \(0.697916\pi\)
\(12\) 0 0
\(13\) −4.09808 1.09808i −1.13660 0.304552i −0.359018 0.933331i \(-0.616888\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(14\) 1.41421 1.41421i 0.377964 0.377964i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −5.53674 + 1.48356i −1.34286 + 0.359817i −0.857493 0.514496i \(-0.827979\pi\)
−0.485363 + 0.874313i \(0.661312\pi\)
\(18\) 0 0
\(19\) 1.00000 + 0.267949i 0.229416 + 0.0614718i 0.371695 0.928355i \(-0.378777\pi\)
−0.142280 + 0.989826i \(0.545443\pi\)
\(20\) 0.448288 + 1.67303i 0.100240 + 0.374101i
\(21\) 0 0
\(22\) −1.00000 3.73205i −0.213201 0.795676i
\(23\) −3.86370 3.86370i −0.805638 0.805638i 0.178332 0.983970i \(-0.442930\pi\)
−0.983970 + 0.178332i \(0.942930\pi\)
\(24\) 0 0
\(25\) 1.73205 + 1.00000i 0.346410 + 0.200000i
\(26\) 4.24264i 0.832050i
\(27\) 0 0
\(28\) 1.73205 + 1.00000i 0.327327 + 0.188982i
\(29\) −6.50266 + 6.50266i −1.20751 + 1.20751i −0.235684 + 0.971830i \(0.575733\pi\)
−0.971830 + 0.235684i \(0.924267\pi\)
\(30\) 0 0
\(31\) 1.26795 + 1.26795i 0.227730 + 0.227730i 0.811744 0.584014i \(-0.198519\pi\)
−0.584014 + 0.811744i \(0.698519\pi\)
\(32\) 0.965926 + 0.258819i 0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −2.86603 4.96410i −0.491519 0.851336i
\(35\) −3.34607 + 0.896575i −0.565588 + 0.151549i
\(36\) 0 0
\(37\) 2.59808 5.50000i 0.427121 0.904194i
\(38\) 1.03528i 0.167944i
\(39\) 0 0
\(40\) −1.50000 + 0.866025i −0.237171 + 0.136931i
\(41\) −0.258819 0.448288i −0.0404207 0.0700108i 0.845107 0.534597i \(-0.179536\pi\)
−0.885528 + 0.464586i \(0.846203\pi\)
\(42\) 0 0
\(43\) 4.73205 4.73205i 0.721631 0.721631i −0.247306 0.968937i \(-0.579545\pi\)
0.968937 + 0.247306i \(0.0795454\pi\)
\(44\) 3.34607 1.93185i 0.504438 0.291238i
\(45\) 0 0
\(46\) 2.73205 4.73205i 0.402819 0.697703i
\(47\) 5.93426i 0.865600i −0.901490 0.432800i \(-0.857526\pi\)
0.901490 0.432800i \(-0.142474\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) −0.517638 + 1.93185i −0.0732051 + 0.273205i
\(51\) 0 0
\(52\) 4.09808 1.09808i 0.568301 0.152276i
\(53\) −1.22474 0.707107i −0.168232 0.0971286i 0.413520 0.910495i \(-0.364299\pi\)
−0.581752 + 0.813366i \(0.697632\pi\)
\(54\) 0 0
\(55\) −1.73205 + 6.46410i −0.233550 + 0.871619i
\(56\) −0.517638 + 1.93185i −0.0691723 + 0.258155i
\(57\) 0 0
\(58\) −7.96410 4.59808i −1.04574 0.603757i
\(59\) 9.14162 2.44949i 1.19014 0.318896i 0.391197 0.920307i \(-0.372061\pi\)
0.798940 + 0.601410i \(0.205394\pi\)
\(60\) 0 0
\(61\) −2.42820 + 9.06218i −0.310900 + 1.16029i 0.616847 + 0.787083i \(0.288410\pi\)
−0.927747 + 0.373210i \(0.878257\pi\)
\(62\) −0.896575 + 1.55291i −0.113865 + 0.197220i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.67423 + 6.36396i −0.455733 + 0.789352i
\(66\) 0 0
\(67\) 9.00000 5.19615i 1.09952 0.634811i 0.163429 0.986555i \(-0.447745\pi\)
0.936096 + 0.351744i \(0.114411\pi\)
\(68\) 4.05317 4.05317i 0.491519 0.491519i
\(69\) 0 0
\(70\) −1.73205 3.00000i −0.207020 0.358569i
\(71\) 7.58871 4.38134i 0.900614 0.519970i 0.0232145 0.999731i \(-0.492610\pi\)
0.877399 + 0.479761i \(0.159277\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 5.98502 + 1.08604i 0.695745 + 0.126250i
\(75\) 0 0
\(76\) −1.00000 + 0.267949i −0.114708 + 0.0307359i
\(77\) 3.86370 + 6.69213i 0.440310 + 0.762639i
\(78\) 0 0
\(79\) −13.9282 3.73205i −1.56705 0.419889i −0.632160 0.774838i \(-0.717831\pi\)
−0.934885 + 0.354950i \(0.884498\pi\)
\(80\) −1.22474 1.22474i −0.136931 0.136931i
\(81\) 0 0
\(82\) 0.366025 0.366025i 0.0404207 0.0404207i
\(83\) 4.89898 + 2.82843i 0.537733 + 0.310460i 0.744160 0.668002i \(-0.232850\pi\)
−0.206427 + 0.978462i \(0.566184\pi\)
\(84\) 0 0
\(85\) 9.92820i 1.07686i
\(86\) 5.79555 + 3.34607i 0.624951 + 0.360815i
\(87\) 0 0
\(88\) 2.73205 + 2.73205i 0.291238 + 0.291238i
\(89\) −0.258819 0.965926i −0.0274348 0.102388i 0.950851 0.309649i \(-0.100212\pi\)
−0.978286 + 0.207261i \(0.933545\pi\)
\(90\) 0 0
\(91\) 2.19615 + 8.19615i 0.230219 + 0.859190i
\(92\) 5.27792 + 1.41421i 0.550261 + 0.147442i
\(93\) 0 0
\(94\) 5.73205 1.53590i 0.591216 0.158416i
\(95\) 0.896575 1.55291i 0.0919867 0.159326i
\(96\) 0 0
\(97\) 3.63397 3.63397i 0.368974 0.368974i −0.498129 0.867103i \(-0.665979\pi\)
0.867103 + 0.498129i \(0.165979\pi\)
\(98\) 2.89778 + 0.776457i 0.292720 + 0.0784340i
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) −19.4572 −1.93607 −0.968033 0.250824i \(-0.919298\pi\)
−0.968033 + 0.250824i \(0.919298\pi\)
\(102\) 0 0
\(103\) −8.19615 8.19615i −0.807591 0.807591i 0.176678 0.984269i \(-0.443465\pi\)
−0.984269 + 0.176678i \(0.943465\pi\)
\(104\) 2.12132 + 3.67423i 0.208013 + 0.360288i
\(105\) 0 0
\(106\) 0.366025 1.36603i 0.0355515 0.132680i
\(107\) −6.93237 + 4.00240i −0.670177 + 0.386927i −0.796144 0.605107i \(-0.793130\pi\)
0.125967 + 0.992034i \(0.459797\pi\)
\(108\) 0 0
\(109\) 4.42820 + 16.5263i 0.424145 + 1.58293i 0.765783 + 0.643099i \(0.222352\pi\)
−0.341638 + 0.939832i \(0.610982\pi\)
\(110\) −6.69213 −0.638070
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 2.58819 + 9.65926i 0.243476 + 0.908667i 0.974143 + 0.225932i \(0.0725428\pi\)
−0.730667 + 0.682734i \(0.760791\pi\)
\(114\) 0 0
\(115\) −8.19615 + 4.73205i −0.764295 + 0.441266i
\(116\) 2.38014 8.88280i 0.220990 0.824747i
\(117\) 0 0
\(118\) 4.73205 + 8.19615i 0.435621 + 0.754517i
\(119\) 8.10634 + 8.10634i 0.743107 + 0.743107i
\(120\) 0 0
\(121\) 3.92820 0.357109
\(122\) −9.38186 −0.849393
\(123\) 0 0
\(124\) −1.73205 0.464102i −0.155543 0.0416776i
\(125\) 8.57321 8.57321i 0.766812 0.766812i
\(126\) 0 0
\(127\) −3.26795 + 5.66025i −0.289984 + 0.502266i −0.973805 0.227383i \(-0.926983\pi\)
0.683822 + 0.729649i \(0.260317\pi\)
\(128\) −0.965926 + 0.258819i −0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) −7.09808 1.90192i −0.622542 0.166810i
\(131\) −3.20736 11.9700i −0.280229 1.04583i −0.952256 0.305301i \(-0.901243\pi\)
0.672027 0.740527i \(-0.265424\pi\)
\(132\) 0 0
\(133\) −0.535898 2.00000i −0.0464683 0.173422i
\(134\) 7.34847 + 7.34847i 0.634811 + 0.634811i
\(135\) 0 0
\(136\) 4.96410 + 2.86603i 0.425668 + 0.245760i
\(137\) 5.13922i 0.439073i −0.975604 0.219536i \(-0.929546\pi\)
0.975604 0.219536i \(-0.0704545\pi\)
\(138\) 0 0
\(139\) 6.00000 + 3.46410i 0.508913 + 0.293821i 0.732387 0.680889i \(-0.238406\pi\)
−0.223474 + 0.974710i \(0.571740\pi\)
\(140\) 2.44949 2.44949i 0.207020 0.207020i
\(141\) 0 0
\(142\) 6.19615 + 6.19615i 0.519970 + 0.519970i
\(143\) 15.8338 + 4.24264i 1.32408 + 0.354787i
\(144\) 0 0
\(145\) 7.96410 + 13.7942i 0.661383 + 1.14555i
\(146\) 3.86370 1.03528i 0.319762 0.0856801i
\(147\) 0 0
\(148\) 0.500000 + 6.06218i 0.0410997 + 0.498308i
\(149\) 16.8319i 1.37892i −0.724324 0.689460i \(-0.757848\pi\)
0.724324 0.689460i \(-0.242152\pi\)
\(150\) 0 0
\(151\) −8.19615 + 4.73205i −0.666993 + 0.385089i −0.794936 0.606693i \(-0.792496\pi\)
0.127943 + 0.991782i \(0.459163\pi\)
\(152\) −0.517638 0.896575i −0.0419860 0.0727219i
\(153\) 0 0
\(154\) −5.46410 + 5.46410i −0.440310 + 0.440310i
\(155\) 2.68973 1.55291i 0.216044 0.124733i
\(156\) 0 0
\(157\) −3.50000 + 6.06218i −0.279330 + 0.483814i −0.971219 0.238190i \(-0.923446\pi\)
0.691888 + 0.722005i \(0.256779\pi\)
\(158\) 14.4195i 1.14716i
\(159\) 0 0
\(160\) 0.866025 1.50000i 0.0684653 0.118585i
\(161\) −2.82843 + 10.5558i −0.222911 + 0.831916i
\(162\) 0 0
\(163\) −6.46410 + 1.73205i −0.506308 + 0.135665i −0.502926 0.864330i \(-0.667743\pi\)
−0.00338172 + 0.999994i \(0.501076\pi\)
\(164\) 0.448288 + 0.258819i 0.0350054 + 0.0202104i
\(165\) 0 0
\(166\) −1.46410 + 5.46410i −0.113636 + 0.424097i
\(167\) 0.933740 3.48477i 0.0722550 0.269659i −0.920342 0.391115i \(-0.872090\pi\)
0.992597 + 0.121456i \(0.0387562\pi\)
\(168\) 0 0
\(169\) 4.33013 + 2.50000i 0.333087 + 0.192308i
\(170\) −9.58991 + 2.56961i −0.735512 + 0.197080i
\(171\) 0 0
\(172\) −1.73205 + 6.46410i −0.132068 + 0.492883i
\(173\) −5.72620 + 9.91808i −0.435355 + 0.754057i −0.997325 0.0731006i \(-0.976711\pi\)
0.561969 + 0.827158i \(0.310044\pi\)
\(174\) 0 0
\(175\) 4.00000i 0.302372i
\(176\) −1.93185 + 3.34607i −0.145619 + 0.252219i
\(177\) 0 0
\(178\) 0.866025 0.500000i 0.0649113 0.0374766i
\(179\) −9.52056 + 9.52056i −0.711600 + 0.711600i −0.966870 0.255270i \(-0.917836\pi\)
0.255270 + 0.966870i \(0.417836\pi\)
\(180\) 0 0
\(181\) −6.96410 12.0622i −0.517638 0.896575i −0.999790 0.0204873i \(-0.993478\pi\)
0.482153 0.876087i \(-0.339855\pi\)
\(182\) −7.34847 + 4.24264i −0.544705 + 0.314485i
\(183\) 0 0
\(184\) 5.46410i 0.402819i
\(185\) −8.03699 6.81225i −0.590892 0.500846i
\(186\) 0 0
\(187\) 21.3923 5.73205i 1.56436 0.419169i
\(188\) 2.96713 + 5.13922i 0.216400 + 0.374816i
\(189\) 0 0
\(190\) 1.73205 + 0.464102i 0.125656 + 0.0336695i
\(191\) 1.79315 + 1.79315i 0.129748 + 0.129748i 0.768998 0.639251i \(-0.220755\pi\)
−0.639251 + 0.768998i \(0.720755\pi\)
\(192\) 0 0
\(193\) −6.16987 + 6.16987i −0.444117 + 0.444117i −0.893393 0.449276i \(-0.851682\pi\)
0.449276 + 0.893393i \(0.351682\pi\)
\(194\) 4.45069 + 2.56961i 0.319541 + 0.184487i
\(195\) 0 0
\(196\) 3.00000i 0.214286i
\(197\) 1.67303 + 0.965926i 0.119199 + 0.0688194i 0.558414 0.829562i \(-0.311410\pi\)
−0.439215 + 0.898382i \(0.644743\pi\)
\(198\) 0 0
\(199\) −9.26795 9.26795i −0.656987 0.656987i 0.297679 0.954666i \(-0.403788\pi\)
−0.954666 + 0.297679i \(0.903788\pi\)
\(200\) −0.517638 1.93185i −0.0366025 0.136603i
\(201\) 0 0
\(202\) −5.03590 18.7942i −0.354325 1.32236i
\(203\) 17.7656 + 4.76028i 1.24690 + 0.334106i
\(204\) 0 0
\(205\) −0.866025 + 0.232051i −0.0604858 + 0.0162071i
\(206\) 5.79555 10.0382i 0.403795 0.699394i
\(207\) 0 0
\(208\) −3.00000 + 3.00000i −0.208013 + 0.208013i
\(209\) −3.86370 1.03528i −0.267258 0.0716116i
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) 1.41421 0.0971286
\(213\) 0 0
\(214\) −5.66025 5.66025i −0.386927 0.386927i
\(215\) −5.79555 10.0382i −0.395254 0.684599i
\(216\) 0 0
\(217\) 0.928203 3.46410i 0.0630105 0.235159i
\(218\) −14.8171 + 8.55463i −1.00354 + 0.579393i
\(219\) 0 0
\(220\) −1.73205 6.46410i −0.116775 0.435810i
\(221\) 24.3190 1.63588
\(222\) 0 0
\(223\) −8.39230 −0.561990 −0.280995 0.959709i \(-0.590664\pi\)
−0.280995 + 0.959709i \(0.590664\pi\)
\(224\) −0.517638 1.93185i −0.0345861 0.129077i
\(225\) 0 0
\(226\) −8.66025 + 5.00000i −0.576072 + 0.332595i
\(227\) −0.240237 + 0.896575i −0.0159451 + 0.0595078i −0.973440 0.228942i \(-0.926473\pi\)
0.957495 + 0.288450i \(0.0931399\pi\)
\(228\) 0 0
\(229\) 10.0622 + 17.4282i 0.664927 + 1.15169i 0.979305 + 0.202390i \(0.0648709\pi\)
−0.314378 + 0.949298i \(0.601796\pi\)
\(230\) −6.69213 6.69213i −0.441266 0.441266i
\(231\) 0 0
\(232\) 9.19615 0.603757
\(233\) 1.55291 0.101735 0.0508674 0.998705i \(-0.483801\pi\)
0.0508674 + 0.998705i \(0.483801\pi\)
\(234\) 0 0
\(235\) −9.92820 2.66025i −0.647645 0.173536i
\(236\) −6.69213 + 6.69213i −0.435621 + 0.435621i
\(237\) 0 0
\(238\) −5.73205 + 9.92820i −0.371554 + 0.643550i
\(239\) −0.138701 + 0.0371647i −0.00897180 + 0.00240399i −0.263302 0.964713i \(-0.584812\pi\)
0.254330 + 0.967117i \(0.418145\pi\)
\(240\) 0 0
\(241\) −21.0263 5.63397i −1.35442 0.362916i −0.492657 0.870224i \(-0.663974\pi\)
−0.861765 + 0.507308i \(0.830641\pi\)
\(242\) 1.01669 + 3.79435i 0.0653556 + 0.243910i
\(243\) 0 0
\(244\) −2.42820 9.06218i −0.155450 0.580146i
\(245\) −3.67423 3.67423i −0.234738 0.234738i
\(246\) 0 0
\(247\) −3.80385 2.19615i −0.242033 0.139738i
\(248\) 1.79315i 0.113865i
\(249\) 0 0
\(250\) 10.5000 + 6.06218i 0.664078 + 0.383406i
\(251\) 20.7327 20.7327i 1.30864 1.30864i 0.386240 0.922398i \(-0.373774\pi\)
0.922398 0.386240i \(-0.126226\pi\)
\(252\) 0 0
\(253\) 14.9282 + 14.9282i 0.938528 + 0.938528i
\(254\) −6.31319 1.69161i −0.396125 0.106141i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.4865 2.80984i 0.654129 0.175273i 0.0835339 0.996505i \(-0.473379\pi\)
0.570595 + 0.821232i \(0.306713\pi\)
\(258\) 0 0
\(259\) −12.1244 + 1.00000i −0.753371 + 0.0621370i
\(260\) 7.34847i 0.455733i
\(261\) 0 0
\(262\) 10.7321 6.19615i 0.663028 0.382800i
\(263\) 8.10634 + 14.0406i 0.499859 + 0.865780i 1.00000 0.000163285i \(-5.19753e-5\pi\)
−0.500141 + 0.865944i \(0.666719\pi\)
\(264\) 0 0
\(265\) −1.73205 + 1.73205i −0.106399 + 0.106399i
\(266\) 1.79315 1.03528i 0.109945 0.0634769i
\(267\) 0 0
\(268\) −5.19615 + 9.00000i −0.317406 + 0.549762i
\(269\) 7.62587i 0.464958i 0.972601 + 0.232479i \(0.0746836\pi\)
−0.972601 + 0.232479i \(0.925316\pi\)
\(270\) 0 0
\(271\) 11.9282 20.6603i 0.724587 1.25502i −0.234557 0.972102i \(-0.575364\pi\)
0.959144 0.282919i \(-0.0913027\pi\)
\(272\) −1.48356 + 5.53674i −0.0899543 + 0.335714i
\(273\) 0 0
\(274\) 4.96410 1.33013i 0.299892 0.0803559i
\(275\) −6.69213 3.86370i −0.403551 0.232990i
\(276\) 0 0
\(277\) 5.89230 21.9904i 0.354034 1.32127i −0.527661 0.849455i \(-0.676931\pi\)
0.881695 0.471819i \(-0.156402\pi\)
\(278\) −1.79315 + 6.69213i −0.107546 + 0.401367i
\(279\) 0 0
\(280\) 3.00000 + 1.73205i 0.179284 + 0.103510i
\(281\) −7.79676 + 2.08913i −0.465116 + 0.124627i −0.483763 0.875199i \(-0.660730\pi\)
0.0186479 + 0.999826i \(0.494064\pi\)
\(282\) 0 0
\(283\) −3.58846 + 13.3923i −0.213312 + 0.796090i 0.773442 + 0.633867i \(0.218533\pi\)
−0.986754 + 0.162223i \(0.948134\pi\)
\(284\) −4.38134 + 7.58871i −0.259985 + 0.450307i
\(285\) 0 0
\(286\) 16.3923i 0.969297i
\(287\) −0.517638 + 0.896575i −0.0305552 + 0.0529232i
\(288\) 0 0
\(289\) 13.7321 7.92820i 0.807768 0.466365i
\(290\) −11.2629 + 11.2629i −0.661383 + 0.661383i
\(291\) 0 0
\(292\) 2.00000 + 3.46410i 0.117041 + 0.202721i
\(293\) −10.2462 + 5.91567i −0.598592 + 0.345597i −0.768488 0.639865i \(-0.778990\pi\)
0.169895 + 0.985462i \(0.445657\pi\)
\(294\) 0 0
\(295\) 16.3923i 0.954397i
\(296\) −5.72620 + 2.05197i −0.332829 + 0.119268i
\(297\) 0 0
\(298\) 16.2583 4.35641i 0.941820 0.252360i
\(299\) 11.5911 + 20.0764i 0.670331 + 1.16105i
\(300\) 0 0
\(301\) −12.9282 3.46410i −0.745169 0.199667i
\(302\) −6.69213 6.69213i −0.385089 0.385089i
\(303\) 0 0
\(304\) 0.732051 0.732051i 0.0419860 0.0419860i
\(305\) 14.0728 + 8.12493i 0.805805 + 0.465232i
\(306\) 0 0
\(307\) 27.8564i 1.58985i −0.606708 0.794925i \(-0.707510\pi\)
0.606708 0.794925i \(-0.292490\pi\)
\(308\) −6.69213 3.86370i −0.381320 0.220155i
\(309\) 0 0
\(310\) 2.19615 + 2.19615i 0.124733 + 0.124733i
\(311\) −7.48717 27.9425i −0.424558 1.58447i −0.764885 0.644167i \(-0.777204\pi\)
0.340327 0.940307i \(-0.389462\pi\)
\(312\) 0 0
\(313\) 5.72243 + 21.3564i 0.323451 + 1.20714i 0.915860 + 0.401498i \(0.131510\pi\)
−0.592409 + 0.805637i \(0.701823\pi\)
\(314\) −6.76148 1.81173i −0.381572 0.102242i
\(315\) 0 0
\(316\) 13.9282 3.73205i 0.783523 0.209944i
\(317\) −7.22835 + 12.5199i −0.405985 + 0.703186i −0.994436 0.105347i \(-0.966405\pi\)
0.588451 + 0.808533i \(0.299738\pi\)
\(318\) 0 0
\(319\) 25.1244 25.1244i 1.40669 1.40669i
\(320\) 1.67303 + 0.448288i 0.0935254 + 0.0250600i
\(321\) 0 0
\(322\) −10.9282 −0.609005
\(323\) −5.93426 −0.330191
\(324\) 0 0
\(325\) −6.00000 6.00000i −0.332820 0.332820i
\(326\) −3.34607 5.79555i −0.185321 0.320986i
\(327\) 0 0
\(328\) −0.133975 + 0.500000i −0.00739751 + 0.0276079i
\(329\) −10.2784 + 5.93426i −0.566668 + 0.327166i
\(330\) 0 0
\(331\) −5.46410 20.3923i −0.300334 1.12086i −0.936888 0.349630i \(-0.886307\pi\)
0.636554 0.771232i \(-0.280359\pi\)
\(332\) −5.65685 −0.310460
\(333\) 0 0
\(334\) 3.60770 0.197404
\(335\) −4.65874 17.3867i −0.254534 0.949935i
\(336\) 0 0
\(337\) 24.3564 14.0622i 1.32678 0.766016i 0.341978 0.939708i \(-0.388903\pi\)
0.984800 + 0.173692i \(0.0555698\pi\)
\(338\) −1.29410 + 4.82963i −0.0703895 + 0.262697i
\(339\) 0 0
\(340\) −4.96410 8.59808i −0.269216 0.466296i
\(341\) −4.89898 4.89898i −0.265295 0.265295i
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) −6.69213 −0.360815
\(345\) 0 0
\(346\) −11.0622 2.96410i −0.594706 0.159351i
\(347\) 16.7675 16.7675i 0.900126 0.900126i −0.0953206 0.995447i \(-0.530388\pi\)
0.995447 + 0.0953206i \(0.0303876\pi\)
\(348\) 0 0
\(349\) −3.52628 + 6.10770i −0.188757 + 0.326937i −0.944836 0.327543i \(-0.893779\pi\)
0.756079 + 0.654481i \(0.227113\pi\)
\(350\) 3.86370 1.03528i 0.206524 0.0553378i
\(351\) 0 0
\(352\) −3.73205 1.00000i −0.198919 0.0533002i
\(353\) 2.53244 + 9.45121i 0.134788 + 0.503037i 0.999999 + 0.00162788i \(0.000518170\pi\)
−0.865210 + 0.501409i \(0.832815\pi\)
\(354\) 0 0
\(355\) −3.92820 14.6603i −0.208487 0.778085i
\(356\) 0.707107 + 0.707107i 0.0374766 + 0.0374766i
\(357\) 0 0
\(358\) −11.6603 6.73205i −0.616264 0.355800i
\(359\) 23.3853i 1.23423i −0.786874 0.617114i \(-0.788302\pi\)
0.786874 0.617114i \(-0.211698\pi\)
\(360\) 0 0
\(361\) −15.5263 8.96410i −0.817173 0.471795i
\(362\) 9.84873 9.84873i 0.517638 0.517638i
\(363\) 0 0
\(364\) −6.00000 6.00000i −0.314485 0.314485i
\(365\) −6.69213 1.79315i −0.350282 0.0938578i
\(366\) 0 0
\(367\) −15.4641 26.7846i −0.807220 1.39815i −0.914782 0.403947i \(-0.867638\pi\)
0.107563 0.994198i \(-0.465695\pi\)
\(368\) −5.27792 + 1.41421i −0.275130 + 0.0737210i
\(369\) 0 0
\(370\) 4.50000 9.52628i 0.233944 0.495248i
\(371\) 2.82843i 0.146845i
\(372\) 0 0
\(373\) 19.9641 11.5263i 1.03370 0.596808i 0.115659 0.993289i \(-0.463102\pi\)
0.918043 + 0.396481i \(0.129769\pi\)
\(374\) 11.0735 + 19.1798i 0.572596 + 0.991765i
\(375\) 0 0
\(376\) −4.19615 + 4.19615i −0.216400 + 0.216400i
\(377\) 33.7888 19.5080i 1.74021 1.00471i
\(378\) 0 0
\(379\) −16.3205 + 28.2679i −0.838328 + 1.45203i 0.0529634 + 0.998596i \(0.483133\pi\)
−0.891292 + 0.453431i \(0.850200\pi\)
\(380\) 1.79315i 0.0919867i
\(381\) 0 0
\(382\) −1.26795 + 2.19615i −0.0648739 + 0.112365i
\(383\) 4.65874 17.3867i 0.238051 0.888417i −0.738699 0.674035i \(-0.764560\pi\)
0.976750 0.214382i \(-0.0687737\pi\)
\(384\) 0 0
\(385\) 12.9282 3.46410i 0.658882 0.176547i
\(386\) −7.55652 4.36276i −0.384617 0.222059i
\(387\) 0 0
\(388\) −1.33013 + 4.96410i −0.0675270 + 0.252014i
\(389\) −7.46859 + 27.8731i −0.378672 + 1.41322i 0.469232 + 0.883075i \(0.344531\pi\)
−0.847904 + 0.530150i \(0.822136\pi\)
\(390\) 0 0
\(391\) 27.1244 + 15.6603i 1.37174 + 0.791973i
\(392\) −2.89778 + 0.776457i −0.146360 + 0.0392170i
\(393\) 0 0
\(394\) −0.500000 + 1.86603i −0.0251896 + 0.0940090i
\(395\) −12.4877 + 21.6293i −0.628324 + 1.08829i
\(396\) 0 0
\(397\) 37.9282i 1.90356i −0.306778 0.951781i \(-0.599251\pi\)
0.306778 0.951781i \(-0.400749\pi\)
\(398\) 6.55343 11.3509i 0.328494 0.568968i
\(399\) 0 0
\(400\) 1.73205 1.00000i 0.0866025 0.0500000i
\(401\) −28.0812 + 28.0812i −1.40231 + 1.40231i −0.609596 + 0.792713i \(0.708668\pi\)
−0.792713 + 0.609596i \(0.791332\pi\)
\(402\) 0 0
\(403\) −3.80385 6.58846i −0.189483 0.328194i
\(404\) 16.8504 9.72861i 0.838341 0.484016i
\(405\) 0 0
\(406\) 18.3923i 0.912795i
\(407\) −10.0382 + 21.2504i −0.497575 + 1.05334i
\(408\) 0 0
\(409\) −0.401924 + 0.107695i −0.0198739 + 0.00532518i −0.268742 0.963212i \(-0.586608\pi\)
0.248868 + 0.968537i \(0.419941\pi\)
\(410\) −0.448288 0.776457i −0.0221394 0.0383465i
\(411\) 0 0
\(412\) 11.1962 + 3.00000i 0.551595 + 0.147799i
\(413\) −13.3843 13.3843i −0.658596 0.658596i
\(414\) 0 0
\(415\) 6.92820 6.92820i 0.340092 0.340092i
\(416\) −3.67423 2.12132i −0.180144 0.104006i
\(417\) 0 0
\(418\) 4.00000i 0.195646i
\(419\) 2.20925 + 1.27551i 0.107929 + 0.0623129i 0.552993 0.833186i \(-0.313486\pi\)
−0.445064 + 0.895499i \(0.646819\pi\)
\(420\) 0 0
\(421\) 20.4186 + 20.4186i 0.995141 + 0.995141i 0.999988 0.00484734i \(-0.00154296\pi\)
−0.00484734 + 0.999988i \(0.501543\pi\)
\(422\) 3.62347 + 13.5230i 0.176388 + 0.658287i
\(423\) 0 0
\(424\) 0.366025 + 1.36603i 0.0177758 + 0.0663401i
\(425\) −11.0735 2.96713i −0.537142 0.143927i
\(426\) 0 0
\(427\) 18.1244 4.85641i 0.877099 0.235018i
\(428\) 4.00240 6.93237i 0.193464 0.335089i
\(429\) 0 0
\(430\) 8.19615 8.19615i 0.395254 0.395254i
\(431\) 10.0382 + 2.68973i 0.483523 + 0.129560i 0.492343 0.870402i \(-0.336141\pi\)
−0.00881965 + 0.999961i \(0.502807\pi\)
\(432\) 0 0
\(433\) −14.5167 −0.697626 −0.348813 0.937192i \(-0.613415\pi\)
−0.348813 + 0.937192i \(0.613415\pi\)
\(434\) 3.58630 0.172148
\(435\) 0 0
\(436\) −12.0981 12.0981i −0.579393 0.579393i
\(437\) −2.82843 4.89898i −0.135302 0.234350i
\(438\) 0 0
\(439\) −6.92820 + 25.8564i −0.330665 + 1.23406i 0.577828 + 0.816159i \(0.303901\pi\)
−0.908493 + 0.417900i \(0.862766\pi\)
\(440\) 5.79555 3.34607i 0.276292 0.159517i
\(441\) 0 0
\(442\) 6.29423 + 23.4904i 0.299386 + 1.11732i
\(443\) 6.41473 0.304773 0.152386 0.988321i \(-0.451304\pi\)
0.152386 + 0.988321i \(0.451304\pi\)
\(444\) 0 0
\(445\) −1.73205 −0.0821071
\(446\) −2.17209 8.10634i −0.102851 0.383847i
\(447\) 0 0
\(448\) 1.73205 1.00000i 0.0818317 0.0472456i
\(449\) 2.31079 8.62398i 0.109053 0.406991i −0.889721 0.456506i \(-0.849101\pi\)
0.998773 + 0.0495148i \(0.0157675\pi\)
\(450\) 0 0
\(451\) 1.00000 + 1.73205i 0.0470882 + 0.0815591i
\(452\) −7.07107 7.07107i −0.332595 0.332595i
\(453\) 0 0
\(454\) −0.928203 −0.0435627
\(455\) 14.6969 0.689003
\(456\) 0 0
\(457\) 10.7942 + 2.89230i 0.504933 + 0.135296i 0.502288 0.864700i \(-0.332492\pi\)
0.00264437 + 0.999997i \(0.499158\pi\)
\(458\) −14.2301 + 14.2301i −0.664927 + 0.664927i
\(459\) 0 0
\(460\) 4.73205 8.19615i 0.220633 0.382148i
\(461\) −5.79555 + 1.55291i −0.269926 + 0.0723264i −0.391243 0.920287i \(-0.627955\pi\)
0.121317 + 0.992614i \(0.461288\pi\)
\(462\) 0 0
\(463\) −31.5885 8.46410i −1.46804 0.393360i −0.565781 0.824555i \(-0.691425\pi\)
−0.902259 + 0.431195i \(0.858092\pi\)
\(464\) 2.38014 + 8.88280i 0.110495 + 0.412374i
\(465\) 0 0
\(466\) 0.401924 + 1.50000i 0.0186188 + 0.0694862i
\(467\) −15.9353 15.9353i −0.737397 0.737397i 0.234676 0.972074i \(-0.424597\pi\)
−0.972074 + 0.234676i \(0.924597\pi\)
\(468\) 0 0
\(469\) −18.0000 10.3923i −0.831163 0.479872i
\(470\) 10.2784i 0.474109i
\(471\) 0 0
\(472\) −8.19615 4.73205i −0.377258 0.217810i
\(473\) −18.2832 + 18.2832i −0.840664 + 0.840664i
\(474\) 0 0
\(475\) 1.46410 + 1.46410i 0.0671776 + 0.0671776i
\(476\) −11.0735 2.96713i −0.507552 0.135998i
\(477\) 0 0
\(478\) −0.0717968 0.124356i −0.00328391 0.00568790i
\(479\) 16.8690 4.52004i 0.770766 0.206526i 0.148056 0.988979i \(-0.452698\pi\)
0.622710 + 0.782453i \(0.286032\pi\)
\(480\) 0 0
\(481\) −16.6865 + 19.6865i −0.760840 + 0.897629i
\(482\) 21.7680i 0.991506i
\(483\) 0 0
\(484\) −3.40192 + 1.96410i −0.154633 + 0.0892773i
\(485\) −4.45069 7.70882i −0.202096 0.350040i
\(486\) 0 0
\(487\) −23.8564 + 23.8564i −1.08104 + 1.08104i −0.0846240 + 0.996413i \(0.526969\pi\)
−0.996413 + 0.0846240i \(0.973031\pi\)
\(488\) 8.12493 4.69093i 0.367798 0.212348i
\(489\) 0 0
\(490\) 2.59808 4.50000i 0.117369 0.203289i
\(491\) 10.2784i 0.463859i 0.972733 + 0.231930i \(0.0745039\pi\)
−0.972733 + 0.231930i \(0.925496\pi\)
\(492\) 0 0
\(493\) 26.3564 45.6506i 1.18703 2.05600i
\(494\) 1.13681 4.24264i 0.0511476 0.190885i
\(495\) 0 0
\(496\) 1.73205 0.464102i 0.0777714 0.0208388i
\(497\) −15.1774 8.76268i −0.680800 0.393060i
\(498\) 0 0
\(499\) −9.00000 + 33.5885i −0.402895 + 1.50363i 0.405009 + 0.914313i \(0.367268\pi\)
−0.807905 + 0.589313i \(0.799398\pi\)
\(500\) −3.13801 + 11.7112i −0.140336 + 0.523742i
\(501\) 0 0
\(502\) 25.3923 + 14.6603i 1.13331 + 0.654319i
\(503\) 33.9783 9.10446i 1.51502 0.405948i 0.596919 0.802301i \(-0.296391\pi\)
0.918098 + 0.396354i \(0.129725\pi\)
\(504\) 0 0
\(505\) −8.72243 + 32.5526i −0.388143 + 1.44857i
\(506\) −10.5558 + 18.2832i −0.469264 + 0.812789i
\(507\) 0 0
\(508\) 6.53590i 0.289984i
\(509\) −1.77457 + 3.07364i −0.0786564 + 0.136237i −0.902670 0.430332i \(-0.858396\pi\)
0.824014 + 0.566569i \(0.191730\pi\)
\(510\) 0 0
\(511\) −6.92820 + 4.00000i −0.306486 + 0.176950i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 5.42820 + 9.40192i 0.239428 + 0.414701i
\(515\) −17.3867 + 10.0382i −0.766148 + 0.442336i
\(516\) 0 0
\(517\) 22.9282i 1.00838i
\(518\) −4.10394 11.4524i −0.180317 0.503190i
\(519\) 0 0
\(520\) 7.09808 1.90192i 0.311271 0.0834049i
\(521\) −10.2277 17.7148i −0.448082 0.776101i 0.550179 0.835047i \(-0.314559\pi\)
−0.998261 + 0.0589457i \(0.981226\pi\)
\(522\) 0 0
\(523\) 15.1244 + 4.05256i 0.661342 + 0.177206i 0.573852 0.818959i \(-0.305449\pi\)
0.0874903 + 0.996165i \(0.472115\pi\)
\(524\) 8.76268 + 8.76268i 0.382800 + 0.382800i
\(525\) 0 0
\(526\) −11.4641 + 11.4641i −0.499859 + 0.499859i
\(527\) −8.90138 5.13922i −0.387750 0.223868i
\(528\) 0 0
\(529\) 6.85641i 0.298105i
\(530\) −2.12132 1.22474i −0.0921443 0.0531995i
\(531\) 0 0
\(532\) 1.46410 + 1.46410i 0.0634769 + 0.0634769i
\(533\) 0.568406 + 2.12132i 0.0246204 + 0.0918846i
\(534\) 0 0
\(535\) 3.58846 + 13.3923i 0.155143 + 0.579000i
\(536\) −10.0382 2.68973i −0.433584 0.116178i
\(537\) 0 0
\(538\) −7.36603 + 1.97372i −0.317572 + 0.0850931i
\(539\) −5.79555 + 10.0382i −0.249632 + 0.432376i
\(540\) 0 0
\(541\) −17.4904 + 17.4904i −0.751970 + 0.751970i −0.974847 0.222876i \(-0.928455\pi\)
0.222876 + 0.974847i \(0.428455\pi\)
\(542\) 23.0435 + 6.17449i 0.989804 + 0.265217i
\(543\) 0 0
\(544\) −5.73205 −0.245760
\(545\) 29.6341 1.26939
\(546\) 0 0
\(547\) 15.1244 + 15.1244i 0.646671 + 0.646671i 0.952187 0.305516i \(-0.0988290\pi\)
−0.305516 + 0.952187i \(0.598829\pi\)
\(548\) 2.56961 + 4.45069i 0.109768 + 0.190124i
\(549\) 0 0
\(550\) 2.00000 7.46410i 0.0852803 0.318270i
\(551\) −8.24504 + 4.76028i −0.351251 + 0.202795i
\(552\) 0 0
\(553\) 7.46410 + 27.8564i 0.317406 + 1.18457i
\(554\) 22.7661 0.967240
\(555\) 0 0
\(556\) −6.92820 −0.293821
\(557\) −1.77457 6.62278i −0.0751909 0.280616i 0.918086 0.396382i \(-0.129734\pi\)
−0.993277 + 0.115766i \(0.963068\pi\)
\(558\) 0 0
\(559\) −24.5885 + 14.1962i −1.03998 + 0.600433i
\(560\) −0.896575 + 3.34607i −0.0378872 + 0.141397i
\(561\) 0 0
\(562\) −4.03590 6.99038i −0.170244 0.294871i
\(563\) 20.0764 + 20.0764i 0.846119 + 0.846119i 0.989646 0.143527i \(-0.0458445\pi\)
−0.143527 + 0.989646i \(0.545844\pi\)
\(564\) 0 0
\(565\) 17.3205 0.728679
\(566\) −13.8647 −0.582778
\(567\) 0 0
\(568\) −8.46410 2.26795i −0.355146 0.0951610i
\(569\) 21.7172 21.7172i 0.910434 0.910434i −0.0858722 0.996306i \(-0.527368\pi\)
0.996306 + 0.0858722i \(0.0273677\pi\)
\(570\) 0 0
\(571\) −4.92820 + 8.53590i −0.206239 + 0.357216i −0.950527 0.310643i \(-0.899456\pi\)
0.744288 + 0.667859i \(0.232789\pi\)
\(572\) −15.8338 + 4.24264i −0.662042 + 0.177394i
\(573\) 0 0
\(574\) −1.00000 0.267949i −0.0417392 0.0111840i
\(575\) −2.82843 10.5558i −0.117954 0.440209i
\(576\) 0 0
\(577\) −8.16987 30.4904i −0.340116 1.26933i −0.898215 0.439557i \(-0.855136\pi\)
0.558099 0.829775i \(-0.311531\pi\)
\(578\) 11.2122 + 11.2122i 0.466365 + 0.466365i
\(579\) 0 0
\(580\) −13.7942 7.96410i −0.572774 0.330691i
\(581\) 11.3137i 0.469372i
\(582\) 0 0
\(583\) 4.73205 + 2.73205i 0.195982 + 0.113150i
\(584\) −2.82843 + 2.82843i −0.117041 + 0.117041i
\(585\) 0 0
\(586\) −8.36603 8.36603i −0.345597 0.345597i
\(587\) −40.0512 10.7317i −1.65309 0.442945i −0.692616 0.721307i \(-0.743542\pi\)
−0.960476 + 0.278362i \(0.910208\pi\)
\(588\) 0 0
\(589\) 0.928203 + 1.60770i 0.0382459 + 0.0662439i
\(590\) 15.8338 4.24264i 0.651865 0.174667i
\(591\) 0 0
\(592\) −3.46410 5.00000i −0.142374 0.205499i
\(593\) 11.4524i 0.470294i −0.971960 0.235147i \(-0.924443\pi\)
0.971960 0.235147i \(-0.0755572\pi\)
\(594\) 0 0
\(595\) 17.1962 9.92820i 0.704974 0.407017i
\(596\) 8.41593 + 14.5768i 0.344730 + 0.597090i
\(597\) 0 0
\(598\) −16.3923 + 16.3923i −0.670331 + 0.670331i
\(599\) −5.97142 + 3.44760i −0.243986 + 0.140865i −0.617007 0.786957i \(-0.711655\pi\)
0.373022 + 0.927823i \(0.378322\pi\)
\(600\) 0 0
\(601\) −4.50000 + 7.79423i −0.183559 + 0.317933i −0.943090 0.332538i \(-0.892095\pi\)
0.759531 + 0.650471i \(0.225428\pi\)
\(602\) 13.3843i 0.545502i
\(603\) 0 0
\(604\) 4.73205 8.19615i 0.192544 0.333497i
\(605\) 1.76097 6.57201i 0.0715934 0.267190i
\(606\) 0 0
\(607\) 11.7321 3.14359i 0.476189 0.127595i −0.0127384 0.999919i \(-0.504055\pi\)
0.488928 + 0.872324i \(0.337388\pi\)
\(608\) 0.896575 + 0.517638i 0.0363609 + 0.0209930i
\(609\) 0 0
\(610\) −4.20577 + 15.6962i −0.170287 + 0.635519i
\(611\) −6.51626 + 24.3190i −0.263620 + 0.983843i
\(612\) 0 0
\(613\) −3.52628 2.03590i −0.142425 0.0822292i 0.427094 0.904207i \(-0.359537\pi\)
−0.569519 + 0.821978i \(0.692871\pi\)
\(614\) 26.9072 7.20977i 1.08589 0.290963i
\(615\) 0 0
\(616\) 2.00000 7.46410i 0.0805823 0.300737i
\(617\) −4.84821 + 8.39735i −0.195182 + 0.338065i −0.946960 0.321351i \(-0.895863\pi\)
0.751778 + 0.659416i \(0.229196\pi\)
\(618\) 0 0
\(619\) 32.2487i 1.29619i 0.761562 + 0.648093i \(0.224433\pi\)
−0.761562 + 0.648093i \(0.775567\pi\)
\(620\) −1.55291 + 2.68973i −0.0623665 + 0.108022i
\(621\) 0 0
\(622\) 25.0526 14.4641i 1.00452 0.579958i
\(623\) −1.41421 + 1.41421i −0.0566593 + 0.0566593i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −19.1476 + 11.0549i −0.765293 + 0.441842i
\(627\) 0 0
\(628\) 7.00000i 0.279330i
\(629\) −6.22526 + 34.3065i −0.248217 + 1.36789i
\(630\) 0 0
\(631\) 37.1244 9.94744i 1.47790 0.396001i 0.572266 0.820068i \(-0.306064\pi\)
0.905631 + 0.424067i \(0.139398\pi\)
\(632\) 7.20977 + 12.4877i 0.286789 + 0.496733i
\(633\) 0 0
\(634\) −13.9641 3.74167i −0.554585 0.148601i
\(635\) 8.00481 + 8.00481i 0.317661 + 0.317661i
\(636\) 0 0
\(637\) −9.00000 + 9.00000i −0.356593 + 0.356593i
\(638\) 30.7709 + 17.7656i 1.21823 + 0.703347i
\(639\) 0 0
\(640\) 1.73205i 0.0684653i
\(641\) 27.9611 + 16.1433i 1.10440 + 0.637624i 0.937372 0.348329i \(-0.113251\pi\)
0.167024 + 0.985953i \(0.446584\pi\)
\(642\) 0 0
\(643\) 19.6603 + 19.6603i 0.775325 + 0.775325i 0.979032 0.203707i \(-0.0652990\pi\)
−0.203707 + 0.979032i \(0.565299\pi\)
\(644\) −2.82843 10.5558i −0.111456 0.415958i
\(645\) 0 0
\(646\) −1.53590 5.73205i −0.0604291 0.225525i
\(647\) 15.6950 + 4.20548i 0.617036 + 0.165334i 0.553780 0.832663i \(-0.313185\pi\)
0.0632561 + 0.997997i \(0.479852\pi\)
\(648\) 0 0
\(649\) −35.3205 + 9.46410i −1.38645 + 0.371498i
\(650\) 4.24264 7.34847i 0.166410 0.288231i
\(651\) 0 0
\(652\) 4.73205 4.73205i 0.185321 0.185321i
\(653\) 35.4619 + 9.50198i 1.38773 + 0.371841i 0.873923 0.486065i \(-0.161568\pi\)
0.513807 + 0.857906i \(0.328235\pi\)
\(654\) 0 0
\(655\) −21.4641 −0.838672
\(656\) −0.517638 −0.0202104
\(657\) 0 0
\(658\) −8.39230 8.39230i −0.327166 0.327166i
\(659\) −23.5612 40.8091i −0.917812 1.58970i −0.802731 0.596342i \(-0.796620\pi\)
−0.115082 0.993356i \(-0.536713\pi\)
\(660\) 0 0
\(661\) 7.47372 27.8923i 0.290694 1.08488i −0.653883 0.756596i \(-0.726861\pi\)
0.944577 0.328289i \(-0.106472\pi\)
\(662\) 18.2832 10.5558i 0.710598 0.410264i
\(663\) 0 0
\(664\) −1.46410 5.46410i −0.0568182 0.212048i
\(665\) −3.58630 −0.139071
\(666\) 0 0
\(667\) 50.2487 1.94564
\(668\) 0.933740 + 3.48477i 0.0361275 + 0.134830i
\(669\) 0 0
\(670\) 15.5885 9.00000i 0.602235 0.347700i
\(671\) 9.38186 35.0136i 0.362183 1.35168i
\(672\) 0 0
\(673\) 17.0000 + 29.4449i 0.655302 + 1.13502i 0.981818 + 0.189824i \(0.0607919\pi\)
−0.326516 + 0.945192i \(0.605875\pi\)
\(674\) 19.8869 + 19.8869i 0.766016 + 0.766016i
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) 35.0879 1.34854 0.674269 0.738486i \(-0.264459\pi\)
0.674269 + 0.738486i \(0.264459\pi\)
\(678\) 0 0
\(679\) −9.92820 2.66025i −0.381009 0.102091i
\(680\) 7.02030 7.02030i 0.269216 0.269216i
\(681\) 0 0
\(682\) 3.46410 6.00000i 0.132647 0.229752i
\(683\) −11.8313 + 3.17020i −0.452714 + 0.121304i −0.477969 0.878377i \(-0.658627\pi\)
0.0252551 + 0.999681i \(0.491960\pi\)
\(684\) 0 0
\(685\) −8.59808 2.30385i −0.328516 0.0880255i
\(686\) −5.17638 19.3185i −0.197635 0.737584i
\(687\) 0 0
\(688\) −1.73205 6.46410i −0.0660338 0.246442i
\(689\) 4.24264 + 4.24264i 0.161632 + 0.161632i
\(690\) 0 0
\(691\) 0.803848 + 0.464102i 0.0305798 + 0.0176553i 0.515212 0.857063i \(-0.327713\pi\)
−0.484632 + 0.874718i \(0.661047\pi\)
\(692\) 11.4524i 0.435355i
\(693\) 0 0
\(694\) 20.5359 + 11.8564i 0.779532 + 0.450063i
\(695\) 8.48528 8.48528i 0.321865 0.321865i
\(696\) 0 0
\(697\) 2.09808 + 2.09808i 0.0794703 + 0.0794703i
\(698\) −6.81225 1.82534i −0.257847 0.0690900i
\(699\) 0 0
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) −20.9730 + 5.61969i −0.792138 + 0.212253i −0.632129 0.774863i \(-0.717819\pi\)
−0.160009 + 0.987116i \(0.551152\pi\)
\(702\) 0 0
\(703\) 4.07180 4.80385i 0.153571 0.181181i
\(704\) 3.86370i 0.145619i
\(705\) 0 0
\(706\) −8.47372 + 4.89230i −0.318913 + 0.184124i
\(707\) 19.4572 + 33.7009i 0.731764 + 1.26745i
\(708\) 0 0
\(709\) −28.3205 + 28.3205i −1.06360 + 1.06360i −0.0657638 + 0.997835i \(0.520948\pi\)
−0.997835 + 0.0657638i \(0.979052\pi\)
\(710\) 13.1440 7.58871i 0.493286 0.284799i
\(711\) 0 0
\(712\) −0.500000 + 0.866025i −0.0187383 + 0.0324557i
\(713\) 9.79796i 0.366936i
\(714\) 0 0
\(715\) 14.1962 24.5885i 0.530906 0.919556i
\(716\) 3.48477 13.0053i 0.130232 0.486032i
\(717\) 0 0
\(718\) 22.5885 6.05256i 0.842994 0.225879i
\(719\) 34.5975 + 19.9749i 1.29027 + 0.744936i 0.978702 0.205288i \(-0.0658131\pi\)
0.311566 + 0.950224i \(0.399146\pi\)
\(720\) 0 0
\(721\) −6.00000 + 22.3923i −0.223452 + 0.833933i
\(722\) 4.64016 17.3173i 0.172689 0.644484i
\(723\) 0 0
\(724\) 12.0622 + 6.96410i 0.448287 + 0.258819i
\(725\) −17.7656 + 4.76028i −0.659798 + 0.176792i
\(726\) 0 0
\(727\) −4.92820 + 18.3923i −0.182777 + 0.682133i 0.812319 + 0.583214i \(0.198205\pi\)
−0.995096 + 0.0989188i \(0.968462\pi\)
\(728\) 4.24264 7.34847i 0.157243 0.272352i
\(729\) 0 0
\(730\) 6.92820i 0.256424i
\(731\) −19.1798 + 33.2204i −0.709391 + 1.22870i
\(732\) 0 0
\(733\) −32.1051 + 18.5359i −1.18583 + 0.684639i −0.957356 0.288911i \(-0.906707\pi\)
−0.228474 + 0.973550i \(0.573373\pi\)
\(734\) 21.8695 21.8695i 0.807220 0.807220i
\(735\) 0 0
\(736\) −2.73205 4.73205i −0.100705 0.174426i
\(737\) −34.7733 + 20.0764i −1.28089 + 0.739523i
\(738\) 0 0
\(739\) 21.8564i 0.804001i −0.915639 0.402000i \(-0.868315\pi\)
0.915639 0.402000i \(-0.131685\pi\)
\(740\) 10.3664 + 1.88108i 0.381075 + 0.0691500i
\(741\) 0 0
\(742\) −2.73205 + 0.732051i −0.100297 + 0.0268744i
\(743\) −17.6641 30.5951i −0.648032 1.12242i −0.983592 0.180405i \(-0.942259\pi\)
0.335561 0.942019i \(-0.391074\pi\)
\(744\) 0 0
\(745\) −28.1603 7.54552i −1.03171 0.276446i
\(746\) 16.3006 + 16.3006i 0.596808 + 0.596808i
\(747\) 0 0
\(748\) −15.6603 + 15.6603i −0.572596 + 0.572596i
\(749\) 13.8647 + 8.00481i 0.506606 + 0.292489i
\(750\) 0 0
\(751\) 15.1769i 0.553813i 0.960897 + 0.276907i \(0.0893093\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(752\) −5.13922 2.96713i −0.187408 0.108200i
\(753\) 0 0
\(754\) 27.5885 + 27.5885i 1.00471 + 1.00471i
\(755\) 4.24264 + 15.8338i 0.154406 + 0.576249i
\(756\) 0 0
\(757\) −0.643594 2.40192i −0.0233918 0.0872994i 0.953243 0.302204i \(-0.0977225\pi\)
−0.976635 + 0.214905i \(0.931056\pi\)
\(758\) −31.5288 8.44812i −1.14518 0.306849i
\(759\) 0 0
\(760\) −1.73205 + 0.464102i −0.0628281 + 0.0168347i
\(761\) 13.9341 24.1345i 0.505110 0.874876i −0.494872 0.868966i \(-0.664785\pi\)
0.999983 0.00591080i \(-0.00188148\pi\)
\(762\) 0 0
\(763\) 24.1962 24.1962i 0.875960 0.875960i
\(764\) −2.44949 0.656339i −0.0886194 0.0237455i
\(765\) 0 0
\(766\) 18.0000 0.650366
\(767\) −40.1528 −1.44983
\(768\) 0 0
\(769\) −4.32051 4.32051i −0.155802 0.155802i 0.624902 0.780703i \(-0.285139\pi\)
−0.780703 + 0.624902i \(0.785139\pi\)
\(770\) 6.69213 + 11.5911i 0.241168 + 0.417715i
\(771\) 0 0
\(772\) 2.25833 8.42820i 0.0812791 0.303338i
\(773\) 10.7267 6.19307i 0.385813 0.222749i −0.294531 0.955642i \(-0.595163\pi\)
0.680345 + 0.732892i \(0.261830\pi\)
\(774\) 0 0
\(775\) 0.928203 + 3.46410i 0.0333420 + 0.124434i
\(776\) −5.13922 −0.184487
\(777\) 0 0
\(778\) −28.8564 −1.03455
\(779\) −0.138701 0.517638i −0.00496947 0.0185463i
\(780\) 0 0
\(781\) −29.3205 + 16.9282i −1.04917 + 0.605739i
\(782\) −8.10634 + 30.2533i −0.289882