Properties

Label 666.2.a.k.1.2
Level $666$
Weight $2$
Character 666.1
Self dual yes
Analytic conductor $5.318$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(1,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 666.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} +2.56155 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} +2.56155 q^{7} +1.00000 q^{8} +2.00000 q^{10} +2.56155 q^{11} -5.68466 q^{13} +2.56155 q^{14} +1.00000 q^{16} -0.561553 q^{17} +0.561553 q^{19} +2.00000 q^{20} +2.56155 q^{22} -3.68466 q^{23} -1.00000 q^{25} -5.68466 q^{26} +2.56155 q^{28} +7.12311 q^{29} -0.876894 q^{31} +1.00000 q^{32} -0.561553 q^{34} +5.12311 q^{35} -1.00000 q^{37} +0.561553 q^{38} +2.00000 q^{40} +2.87689 q^{41} -7.12311 q^{43} +2.56155 q^{44} -3.68466 q^{46} +6.24621 q^{47} -0.438447 q^{49} -1.00000 q^{50} -5.68466 q^{52} +2.56155 q^{53} +5.12311 q^{55} +2.56155 q^{56} +7.12311 q^{58} +9.12311 q^{59} +4.24621 q^{61} -0.876894 q^{62} +1.00000 q^{64} -11.3693 q^{65} -14.2462 q^{67} -0.561553 q^{68} +5.12311 q^{70} -14.2462 q^{71} -0.561553 q^{73} -1.00000 q^{74} +0.561553 q^{76} +6.56155 q^{77} -6.00000 q^{79} +2.00000 q^{80} +2.87689 q^{82} -13.9309 q^{83} -1.12311 q^{85} -7.12311 q^{86} +2.56155 q^{88} +15.9309 q^{89} -14.5616 q^{91} -3.68466 q^{92} +6.24621 q^{94} +1.12311 q^{95} +11.1231 q^{97} -0.438447 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 4 q^{5} + q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 4 q^{5} + q^{7} + 2 q^{8} + 4 q^{10} + q^{11} + q^{13} + q^{14} + 2 q^{16} + 3 q^{17} - 3 q^{19} + 4 q^{20} + q^{22} + 5 q^{23} - 2 q^{25} + q^{26} + q^{28} + 6 q^{29} - 10 q^{31} + 2 q^{32} + 3 q^{34} + 2 q^{35} - 2 q^{37} - 3 q^{38} + 4 q^{40} + 14 q^{41} - 6 q^{43} + q^{44} + 5 q^{46} - 4 q^{47} - 5 q^{49} - 2 q^{50} + q^{52} + q^{53} + 2 q^{55} + q^{56} + 6 q^{58} + 10 q^{59} - 8 q^{61} - 10 q^{62} + 2 q^{64} + 2 q^{65} - 12 q^{67} + 3 q^{68} + 2 q^{70} - 12 q^{71} + 3 q^{73} - 2 q^{74} - 3 q^{76} + 9 q^{77} - 12 q^{79} + 4 q^{80} + 14 q^{82} + q^{83} + 6 q^{85} - 6 q^{86} + q^{88} + 3 q^{89} - 25 q^{91} + 5 q^{92} - 4 q^{94} - 6 q^{95} + 14 q^{97} - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 2.56155 0.968176 0.484088 0.875019i \(-0.339151\pi\)
0.484088 + 0.875019i \(0.339151\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 2.56155 0.772337 0.386169 0.922428i \(-0.373798\pi\)
0.386169 + 0.922428i \(0.373798\pi\)
\(12\) 0 0
\(13\) −5.68466 −1.57664 −0.788320 0.615265i \(-0.789049\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 2.56155 0.684604
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.561553 −0.136197 −0.0680983 0.997679i \(-0.521693\pi\)
−0.0680983 + 0.997679i \(0.521693\pi\)
\(18\) 0 0
\(19\) 0.561553 0.128829 0.0644145 0.997923i \(-0.479482\pi\)
0.0644145 + 0.997923i \(0.479482\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) 2.56155 0.546125
\(23\) −3.68466 −0.768304 −0.384152 0.923270i \(-0.625506\pi\)
−0.384152 + 0.923270i \(0.625506\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −5.68466 −1.11485
\(27\) 0 0
\(28\) 2.56155 0.484088
\(29\) 7.12311 1.32273 0.661364 0.750065i \(-0.269978\pi\)
0.661364 + 0.750065i \(0.269978\pi\)
\(30\) 0 0
\(31\) −0.876894 −0.157495 −0.0787474 0.996895i \(-0.525092\pi\)
−0.0787474 + 0.996895i \(0.525092\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.561553 −0.0963055
\(35\) 5.12311 0.865963
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0.561553 0.0910959
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) 2.87689 0.449295 0.224648 0.974440i \(-0.427877\pi\)
0.224648 + 0.974440i \(0.427877\pi\)
\(42\) 0 0
\(43\) −7.12311 −1.08626 −0.543132 0.839648i \(-0.682762\pi\)
−0.543132 + 0.839648i \(0.682762\pi\)
\(44\) 2.56155 0.386169
\(45\) 0 0
\(46\) −3.68466 −0.543273
\(47\) 6.24621 0.911104 0.455552 0.890209i \(-0.349442\pi\)
0.455552 + 0.890209i \(0.349442\pi\)
\(48\) 0 0
\(49\) −0.438447 −0.0626353
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −5.68466 −0.788320
\(53\) 2.56155 0.351856 0.175928 0.984403i \(-0.443707\pi\)
0.175928 + 0.984403i \(0.443707\pi\)
\(54\) 0 0
\(55\) 5.12311 0.690799
\(56\) 2.56155 0.342302
\(57\) 0 0
\(58\) 7.12311 0.935310
\(59\) 9.12311 1.18773 0.593864 0.804566i \(-0.297602\pi\)
0.593864 + 0.804566i \(0.297602\pi\)
\(60\) 0 0
\(61\) 4.24621 0.543672 0.271836 0.962344i \(-0.412369\pi\)
0.271836 + 0.962344i \(0.412369\pi\)
\(62\) −0.876894 −0.111366
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −11.3693 −1.41019
\(66\) 0 0
\(67\) −14.2462 −1.74045 −0.870226 0.492653i \(-0.836027\pi\)
−0.870226 + 0.492653i \(0.836027\pi\)
\(68\) −0.561553 −0.0680983
\(69\) 0 0
\(70\) 5.12311 0.612328
\(71\) −14.2462 −1.69071 −0.845357 0.534202i \(-0.820612\pi\)
−0.845357 + 0.534202i \(0.820612\pi\)
\(72\) 0 0
\(73\) −0.561553 −0.0657248 −0.0328624 0.999460i \(-0.510462\pi\)
−0.0328624 + 0.999460i \(0.510462\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 0.561553 0.0644145
\(77\) 6.56155 0.747758
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) 2.87689 0.317700
\(83\) −13.9309 −1.52911 −0.764556 0.644558i \(-0.777042\pi\)
−0.764556 + 0.644558i \(0.777042\pi\)
\(84\) 0 0
\(85\) −1.12311 −0.121818
\(86\) −7.12311 −0.768104
\(87\) 0 0
\(88\) 2.56155 0.273062
\(89\) 15.9309 1.68867 0.844334 0.535817i \(-0.179996\pi\)
0.844334 + 0.535817i \(0.179996\pi\)
\(90\) 0 0
\(91\) −14.5616 −1.52647
\(92\) −3.68466 −0.384152
\(93\) 0 0
\(94\) 6.24621 0.644247
\(95\) 1.12311 0.115228
\(96\) 0 0
\(97\) 11.1231 1.12938 0.564690 0.825303i \(-0.308996\pi\)
0.564690 + 0.825303i \(0.308996\pi\)
\(98\) −0.438447 −0.0442899
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −2.87689 −0.286262 −0.143131 0.989704i \(-0.545717\pi\)
−0.143131 + 0.989704i \(0.545717\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) −5.68466 −0.557427
\(105\) 0 0
\(106\) 2.56155 0.248800
\(107\) −10.5616 −1.02102 −0.510512 0.859871i \(-0.670544\pi\)
−0.510512 + 0.859871i \(0.670544\pi\)
\(108\) 0 0
\(109\) −0.561553 −0.0537870 −0.0268935 0.999638i \(-0.508561\pi\)
−0.0268935 + 0.999638i \(0.508561\pi\)
\(110\) 5.12311 0.488469
\(111\) 0 0
\(112\) 2.56155 0.242044
\(113\) 4.24621 0.399450 0.199725 0.979852i \(-0.435995\pi\)
0.199725 + 0.979852i \(0.435995\pi\)
\(114\) 0 0
\(115\) −7.36932 −0.687192
\(116\) 7.12311 0.661364
\(117\) 0 0
\(118\) 9.12311 0.839850
\(119\) −1.43845 −0.131862
\(120\) 0 0
\(121\) −4.43845 −0.403495
\(122\) 4.24621 0.384434
\(123\) 0 0
\(124\) −0.876894 −0.0787474
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 1.43845 0.127642 0.0638208 0.997961i \(-0.479671\pi\)
0.0638208 + 0.997961i \(0.479671\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −11.3693 −0.997155
\(131\) 6.87689 0.600837 0.300419 0.953807i \(-0.402874\pi\)
0.300419 + 0.953807i \(0.402874\pi\)
\(132\) 0 0
\(133\) 1.43845 0.124729
\(134\) −14.2462 −1.23069
\(135\) 0 0
\(136\) −0.561553 −0.0481528
\(137\) −22.2462 −1.90062 −0.950311 0.311302i \(-0.899235\pi\)
−0.950311 + 0.311302i \(0.899235\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 5.12311 0.432981
\(141\) 0 0
\(142\) −14.2462 −1.19552
\(143\) −14.5616 −1.21770
\(144\) 0 0
\(145\) 14.2462 1.18308
\(146\) −0.561553 −0.0464744
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −5.12311 −0.419701 −0.209851 0.977733i \(-0.567298\pi\)
−0.209851 + 0.977733i \(0.567298\pi\)
\(150\) 0 0
\(151\) 15.6847 1.27640 0.638200 0.769871i \(-0.279679\pi\)
0.638200 + 0.769871i \(0.279679\pi\)
\(152\) 0.561553 0.0455479
\(153\) 0 0
\(154\) 6.56155 0.528745
\(155\) −1.75379 −0.140868
\(156\) 0 0
\(157\) 22.4924 1.79509 0.897545 0.440922i \(-0.145349\pi\)
0.897545 + 0.440922i \(0.145349\pi\)
\(158\) −6.00000 −0.477334
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) −9.43845 −0.743854
\(162\) 0 0
\(163\) 7.93087 0.621194 0.310597 0.950542i \(-0.399471\pi\)
0.310597 + 0.950542i \(0.399471\pi\)
\(164\) 2.87689 0.224648
\(165\) 0 0
\(166\) −13.9309 −1.08125
\(167\) −4.31534 −0.333931 −0.166966 0.985963i \(-0.553397\pi\)
−0.166966 + 0.985963i \(0.553397\pi\)
\(168\) 0 0
\(169\) 19.3153 1.48580
\(170\) −1.12311 −0.0861383
\(171\) 0 0
\(172\) −7.12311 −0.543132
\(173\) −2.56155 −0.194751 −0.0973756 0.995248i \(-0.531045\pi\)
−0.0973756 + 0.995248i \(0.531045\pi\)
\(174\) 0 0
\(175\) −2.56155 −0.193635
\(176\) 2.56155 0.193084
\(177\) 0 0
\(178\) 15.9309 1.19407
\(179\) −1.12311 −0.0839449 −0.0419724 0.999119i \(-0.513364\pi\)
−0.0419724 + 0.999119i \(0.513364\pi\)
\(180\) 0 0
\(181\) −18.4924 −1.37453 −0.687265 0.726406i \(-0.741189\pi\)
−0.687265 + 0.726406i \(0.741189\pi\)
\(182\) −14.5616 −1.07937
\(183\) 0 0
\(184\) −3.68466 −0.271637
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) −1.43845 −0.105190
\(188\) 6.24621 0.455552
\(189\) 0 0
\(190\) 1.12311 0.0814786
\(191\) 6.56155 0.474777 0.237389 0.971415i \(-0.423709\pi\)
0.237389 + 0.971415i \(0.423709\pi\)
\(192\) 0 0
\(193\) 25.3693 1.82612 0.913062 0.407821i \(-0.133711\pi\)
0.913062 + 0.407821i \(0.133711\pi\)
\(194\) 11.1231 0.798592
\(195\) 0 0
\(196\) −0.438447 −0.0313177
\(197\) −8.80776 −0.627527 −0.313764 0.949501i \(-0.601590\pi\)
−0.313764 + 0.949501i \(0.601590\pi\)
\(198\) 0 0
\(199\) 4.87689 0.345714 0.172857 0.984947i \(-0.444700\pi\)
0.172857 + 0.984947i \(0.444700\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −2.87689 −0.202418
\(203\) 18.2462 1.28063
\(204\) 0 0
\(205\) 5.75379 0.401862
\(206\) −10.0000 −0.696733
\(207\) 0 0
\(208\) −5.68466 −0.394160
\(209\) 1.43845 0.0994995
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 2.56155 0.175928
\(213\) 0 0
\(214\) −10.5616 −0.721973
\(215\) −14.2462 −0.971584
\(216\) 0 0
\(217\) −2.24621 −0.152483
\(218\) −0.561553 −0.0380332
\(219\) 0 0
\(220\) 5.12311 0.345400
\(221\) 3.19224 0.214733
\(222\) 0 0
\(223\) −4.49242 −0.300835 −0.150417 0.988623i \(-0.548062\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(224\) 2.56155 0.171151
\(225\) 0 0
\(226\) 4.24621 0.282454
\(227\) 19.3693 1.28559 0.642793 0.766040i \(-0.277775\pi\)
0.642793 + 0.766040i \(0.277775\pi\)
\(228\) 0 0
\(229\) 2.63068 0.173840 0.0869202 0.996215i \(-0.472297\pi\)
0.0869202 + 0.996215i \(0.472297\pi\)
\(230\) −7.36932 −0.485918
\(231\) 0 0
\(232\) 7.12311 0.467655
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 12.4924 0.814916
\(236\) 9.12311 0.593864
\(237\) 0 0
\(238\) −1.43845 −0.0932407
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 8.24621 0.531185 0.265593 0.964085i \(-0.414432\pi\)
0.265593 + 0.964085i \(0.414432\pi\)
\(242\) −4.43845 −0.285314
\(243\) 0 0
\(244\) 4.24621 0.271836
\(245\) −0.876894 −0.0560227
\(246\) 0 0
\(247\) −3.19224 −0.203117
\(248\) −0.876894 −0.0556828
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −1.12311 −0.0708898 −0.0354449 0.999372i \(-0.511285\pi\)
−0.0354449 + 0.999372i \(0.511285\pi\)
\(252\) 0 0
\(253\) −9.43845 −0.593390
\(254\) 1.43845 0.0902562
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.4384 1.21254 0.606269 0.795260i \(-0.292666\pi\)
0.606269 + 0.795260i \(0.292666\pi\)
\(258\) 0 0
\(259\) −2.56155 −0.159167
\(260\) −11.3693 −0.705095
\(261\) 0 0
\(262\) 6.87689 0.424856
\(263\) 30.2462 1.86506 0.932531 0.361091i \(-0.117596\pi\)
0.932531 + 0.361091i \(0.117596\pi\)
\(264\) 0 0
\(265\) 5.12311 0.314710
\(266\) 1.43845 0.0881969
\(267\) 0 0
\(268\) −14.2462 −0.870226
\(269\) −19.0540 −1.16174 −0.580871 0.813996i \(-0.697288\pi\)
−0.580871 + 0.813996i \(0.697288\pi\)
\(270\) 0 0
\(271\) −22.2462 −1.35136 −0.675681 0.737195i \(-0.736150\pi\)
−0.675681 + 0.737195i \(0.736150\pi\)
\(272\) −0.561553 −0.0340491
\(273\) 0 0
\(274\) −22.2462 −1.34394
\(275\) −2.56155 −0.154467
\(276\) 0 0
\(277\) 23.4384 1.40828 0.704140 0.710061i \(-0.251333\pi\)
0.704140 + 0.710061i \(0.251333\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 5.12311 0.306164
\(281\) 15.9309 0.950356 0.475178 0.879890i \(-0.342384\pi\)
0.475178 + 0.879890i \(0.342384\pi\)
\(282\) 0 0
\(283\) −26.8078 −1.59356 −0.796778 0.604272i \(-0.793464\pi\)
−0.796778 + 0.604272i \(0.793464\pi\)
\(284\) −14.2462 −0.845357
\(285\) 0 0
\(286\) −14.5616 −0.861043
\(287\) 7.36932 0.434997
\(288\) 0 0
\(289\) −16.6847 −0.981450
\(290\) 14.2462 0.836566
\(291\) 0 0
\(292\) −0.561553 −0.0328624
\(293\) 25.3002 1.47805 0.739026 0.673677i \(-0.235286\pi\)
0.739026 + 0.673677i \(0.235286\pi\)
\(294\) 0 0
\(295\) 18.2462 1.06234
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) −5.12311 −0.296774
\(299\) 20.9460 1.21134
\(300\) 0 0
\(301\) −18.2462 −1.05169
\(302\) 15.6847 0.902551
\(303\) 0 0
\(304\) 0.561553 0.0322073
\(305\) 8.49242 0.486275
\(306\) 0 0
\(307\) 7.36932 0.420589 0.210295 0.977638i \(-0.432558\pi\)
0.210295 + 0.977638i \(0.432558\pi\)
\(308\) 6.56155 0.373879
\(309\) 0 0
\(310\) −1.75379 −0.0996085
\(311\) 13.7538 0.779906 0.389953 0.920835i \(-0.372491\pi\)
0.389953 + 0.920835i \(0.372491\pi\)
\(312\) 0 0
\(313\) −11.1231 −0.628715 −0.314358 0.949305i \(-0.601789\pi\)
−0.314358 + 0.949305i \(0.601789\pi\)
\(314\) 22.4924 1.26932
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) 1.12311 0.0630799 0.0315399 0.999502i \(-0.489959\pi\)
0.0315399 + 0.999502i \(0.489959\pi\)
\(318\) 0 0
\(319\) 18.2462 1.02159
\(320\) 2.00000 0.111803
\(321\) 0 0
\(322\) −9.43845 −0.525984
\(323\) −0.315342 −0.0175461
\(324\) 0 0
\(325\) 5.68466 0.315328
\(326\) 7.93087 0.439250
\(327\) 0 0
\(328\) 2.87689 0.158850
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 1.36932 0.0752645 0.0376322 0.999292i \(-0.488018\pi\)
0.0376322 + 0.999292i \(0.488018\pi\)
\(332\) −13.9309 −0.764556
\(333\) 0 0
\(334\) −4.31534 −0.236125
\(335\) −28.4924 −1.55671
\(336\) 0 0
\(337\) 23.9309 1.30360 0.651799 0.758392i \(-0.274015\pi\)
0.651799 + 0.758392i \(0.274015\pi\)
\(338\) 19.3153 1.05062
\(339\) 0 0
\(340\) −1.12311 −0.0609090
\(341\) −2.24621 −0.121639
\(342\) 0 0
\(343\) −19.0540 −1.02882
\(344\) −7.12311 −0.384052
\(345\) 0 0
\(346\) −2.56155 −0.137710
\(347\) −29.6155 −1.58984 −0.794922 0.606711i \(-0.792488\pi\)
−0.794922 + 0.606711i \(0.792488\pi\)
\(348\) 0 0
\(349\) 26.4924 1.41811 0.709053 0.705155i \(-0.249122\pi\)
0.709053 + 0.705155i \(0.249122\pi\)
\(350\) −2.56155 −0.136921
\(351\) 0 0
\(352\) 2.56155 0.136531
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) −28.4924 −1.51222
\(356\) 15.9309 0.844334
\(357\) 0 0
\(358\) −1.12311 −0.0593580
\(359\) 4.49242 0.237101 0.118550 0.992948i \(-0.462175\pi\)
0.118550 + 0.992948i \(0.462175\pi\)
\(360\) 0 0
\(361\) −18.6847 −0.983403
\(362\) −18.4924 −0.971940
\(363\) 0 0
\(364\) −14.5616 −0.763233
\(365\) −1.12311 −0.0587860
\(366\) 0 0
\(367\) 12.3153 0.642856 0.321428 0.946934i \(-0.395837\pi\)
0.321428 + 0.946934i \(0.395837\pi\)
\(368\) −3.68466 −0.192076
\(369\) 0 0
\(370\) −2.00000 −0.103975
\(371\) 6.56155 0.340659
\(372\) 0 0
\(373\) 2.63068 0.136212 0.0681058 0.997678i \(-0.478304\pi\)
0.0681058 + 0.997678i \(0.478304\pi\)
\(374\) −1.43845 −0.0743803
\(375\) 0 0
\(376\) 6.24621 0.322124
\(377\) −40.4924 −2.08547
\(378\) 0 0
\(379\) −2.24621 −0.115380 −0.0576901 0.998335i \(-0.518374\pi\)
−0.0576901 + 0.998335i \(0.518374\pi\)
\(380\) 1.12311 0.0576141
\(381\) 0 0
\(382\) 6.56155 0.335718
\(383\) −8.80776 −0.450056 −0.225028 0.974352i \(-0.572247\pi\)
−0.225028 + 0.974352i \(0.572247\pi\)
\(384\) 0 0
\(385\) 13.1231 0.668815
\(386\) 25.3693 1.29126
\(387\) 0 0
\(388\) 11.1231 0.564690
\(389\) −32.7386 −1.65991 −0.829957 0.557827i \(-0.811635\pi\)
−0.829957 + 0.557827i \(0.811635\pi\)
\(390\) 0 0
\(391\) 2.06913 0.104640
\(392\) −0.438447 −0.0221449
\(393\) 0 0
\(394\) −8.80776 −0.443729
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) 18.4924 0.928108 0.464054 0.885807i \(-0.346394\pi\)
0.464054 + 0.885807i \(0.346394\pi\)
\(398\) 4.87689 0.244457
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 7.43845 0.371458 0.185729 0.982601i \(-0.440535\pi\)
0.185729 + 0.982601i \(0.440535\pi\)
\(402\) 0 0
\(403\) 4.98485 0.248313
\(404\) −2.87689 −0.143131
\(405\) 0 0
\(406\) 18.2462 0.905544
\(407\) −2.56155 −0.126971
\(408\) 0 0
\(409\) 3.75379 0.185613 0.0928065 0.995684i \(-0.470416\pi\)
0.0928065 + 0.995684i \(0.470416\pi\)
\(410\) 5.75379 0.284159
\(411\) 0 0
\(412\) −10.0000 −0.492665
\(413\) 23.3693 1.14993
\(414\) 0 0
\(415\) −27.8617 −1.36768
\(416\) −5.68466 −0.278713
\(417\) 0 0
\(418\) 1.43845 0.0703568
\(419\) 35.6847 1.74331 0.871655 0.490120i \(-0.163047\pi\)
0.871655 + 0.490120i \(0.163047\pi\)
\(420\) 0 0
\(421\) 3.75379 0.182948 0.0914742 0.995807i \(-0.470842\pi\)
0.0914742 + 0.995807i \(0.470842\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) 2.56155 0.124400
\(425\) 0.561553 0.0272393
\(426\) 0 0
\(427\) 10.8769 0.526370
\(428\) −10.5616 −0.510512
\(429\) 0 0
\(430\) −14.2462 −0.687013
\(431\) 8.17708 0.393876 0.196938 0.980416i \(-0.436900\pi\)
0.196938 + 0.980416i \(0.436900\pi\)
\(432\) 0 0
\(433\) 24.5616 1.18035 0.590176 0.807274i \(-0.299058\pi\)
0.590176 + 0.807274i \(0.299058\pi\)
\(434\) −2.24621 −0.107822
\(435\) 0 0
\(436\) −0.561553 −0.0268935
\(437\) −2.06913 −0.0989799
\(438\) 0 0
\(439\) 22.4924 1.07350 0.536752 0.843740i \(-0.319651\pi\)
0.536752 + 0.843740i \(0.319651\pi\)
\(440\) 5.12311 0.244234
\(441\) 0 0
\(442\) 3.19224 0.151839
\(443\) 30.7386 1.46044 0.730218 0.683214i \(-0.239418\pi\)
0.730218 + 0.683214i \(0.239418\pi\)
\(444\) 0 0
\(445\) 31.8617 1.51039
\(446\) −4.49242 −0.212722
\(447\) 0 0
\(448\) 2.56155 0.121022
\(449\) 15.7538 0.743467 0.371734 0.928339i \(-0.378763\pi\)
0.371734 + 0.928339i \(0.378763\pi\)
\(450\) 0 0
\(451\) 7.36932 0.347008
\(452\) 4.24621 0.199725
\(453\) 0 0
\(454\) 19.3693 0.909047
\(455\) −29.1231 −1.36531
\(456\) 0 0
\(457\) −35.6155 −1.66602 −0.833012 0.553255i \(-0.813386\pi\)
−0.833012 + 0.553255i \(0.813386\pi\)
\(458\) 2.63068 0.122924
\(459\) 0 0
\(460\) −7.36932 −0.343596
\(461\) 38.9848 1.81571 0.907853 0.419289i \(-0.137721\pi\)
0.907853 + 0.419289i \(0.137721\pi\)
\(462\) 0 0
\(463\) 13.3693 0.621325 0.310662 0.950520i \(-0.399449\pi\)
0.310662 + 0.950520i \(0.399449\pi\)
\(464\) 7.12311 0.330682
\(465\) 0 0
\(466\) −16.0000 −0.741186
\(467\) 21.6155 1.00025 0.500124 0.865954i \(-0.333288\pi\)
0.500124 + 0.865954i \(0.333288\pi\)
\(468\) 0 0
\(469\) −36.4924 −1.68506
\(470\) 12.4924 0.576232
\(471\) 0 0
\(472\) 9.12311 0.419925
\(473\) −18.2462 −0.838962
\(474\) 0 0
\(475\) −0.561553 −0.0257658
\(476\) −1.43845 −0.0659311
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 4.94602 0.225990 0.112995 0.993596i \(-0.463956\pi\)
0.112995 + 0.993596i \(0.463956\pi\)
\(480\) 0 0
\(481\) 5.68466 0.259198
\(482\) 8.24621 0.375605
\(483\) 0 0
\(484\) −4.43845 −0.201748
\(485\) 22.2462 1.01015
\(486\) 0 0
\(487\) 4.87689 0.220993 0.110497 0.993877i \(-0.464756\pi\)
0.110497 + 0.993877i \(0.464756\pi\)
\(488\) 4.24621 0.192217
\(489\) 0 0
\(490\) −0.876894 −0.0396140
\(491\) −29.9309 −1.35076 −0.675381 0.737469i \(-0.736021\pi\)
−0.675381 + 0.737469i \(0.736021\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) −3.19224 −0.143625
\(495\) 0 0
\(496\) −0.876894 −0.0393737
\(497\) −36.4924 −1.63691
\(498\) 0 0
\(499\) 28.4233 1.27240 0.636201 0.771524i \(-0.280505\pi\)
0.636201 + 0.771524i \(0.280505\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) −1.12311 −0.0501267
\(503\) −32.9848 −1.47072 −0.735361 0.677676i \(-0.762987\pi\)
−0.735361 + 0.677676i \(0.762987\pi\)
\(504\) 0 0
\(505\) −5.75379 −0.256040
\(506\) −9.43845 −0.419590
\(507\) 0 0
\(508\) 1.43845 0.0638208
\(509\) 39.0540 1.73104 0.865519 0.500877i \(-0.166989\pi\)
0.865519 + 0.500877i \(0.166989\pi\)
\(510\) 0 0
\(511\) −1.43845 −0.0636332
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 19.4384 0.857393
\(515\) −20.0000 −0.881305
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) −2.56155 −0.112548
\(519\) 0 0
\(520\) −11.3693 −0.498578
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −20.8769 −0.912883 −0.456441 0.889753i \(-0.650876\pi\)
−0.456441 + 0.889753i \(0.650876\pi\)
\(524\) 6.87689 0.300419
\(525\) 0 0
\(526\) 30.2462 1.31880
\(527\) 0.492423 0.0214503
\(528\) 0 0
\(529\) −9.42329 −0.409708
\(530\) 5.12311 0.222533
\(531\) 0 0
\(532\) 1.43845 0.0623646
\(533\) −16.3542 −0.708377
\(534\) 0 0
\(535\) −21.1231 −0.913231
\(536\) −14.2462 −0.615343
\(537\) 0 0
\(538\) −19.0540 −0.821475
\(539\) −1.12311 −0.0483756
\(540\) 0 0
\(541\) −31.9309 −1.37282 −0.686408 0.727217i \(-0.740813\pi\)
−0.686408 + 0.727217i \(0.740813\pi\)
\(542\) −22.2462 −0.955557
\(543\) 0 0
\(544\) −0.561553 −0.0240764
\(545\) −1.12311 −0.0481086
\(546\) 0 0
\(547\) −22.8078 −0.975190 −0.487595 0.873070i \(-0.662126\pi\)
−0.487595 + 0.873070i \(0.662126\pi\)
\(548\) −22.2462 −0.950311
\(549\) 0 0
\(550\) −2.56155 −0.109225
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) −15.3693 −0.653570
\(554\) 23.4384 0.995804
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) −34.0000 −1.44063 −0.720313 0.693649i \(-0.756002\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(558\) 0 0
\(559\) 40.4924 1.71265
\(560\) 5.12311 0.216491
\(561\) 0 0
\(562\) 15.9309 0.672003
\(563\) −17.1231 −0.721653 −0.360826 0.932633i \(-0.617505\pi\)
−0.360826 + 0.932633i \(0.617505\pi\)
\(564\) 0 0
\(565\) 8.49242 0.357279
\(566\) −26.8078 −1.12681
\(567\) 0 0
\(568\) −14.2462 −0.597758
\(569\) 15.3002 0.641417 0.320709 0.947178i \(-0.396079\pi\)
0.320709 + 0.947178i \(0.396079\pi\)
\(570\) 0 0
\(571\) −38.7386 −1.62116 −0.810581 0.585627i \(-0.800848\pi\)
−0.810581 + 0.585627i \(0.800848\pi\)
\(572\) −14.5616 −0.608849
\(573\) 0 0
\(574\) 7.36932 0.307589
\(575\) 3.68466 0.153661
\(576\) 0 0
\(577\) −0.876894 −0.0365056 −0.0182528 0.999833i \(-0.505810\pi\)
−0.0182528 + 0.999833i \(0.505810\pi\)
\(578\) −16.6847 −0.693990
\(579\) 0 0
\(580\) 14.2462 0.591542
\(581\) −35.6847 −1.48045
\(582\) 0 0
\(583\) 6.56155 0.271752
\(584\) −0.561553 −0.0232372
\(585\) 0 0
\(586\) 25.3002 1.04514
\(587\) −30.2462 −1.24839 −0.624197 0.781267i \(-0.714574\pi\)
−0.624197 + 0.781267i \(0.714574\pi\)
\(588\) 0 0
\(589\) −0.492423 −0.0202899
\(590\) 18.2462 0.751185
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 8.63068 0.354420 0.177210 0.984173i \(-0.443293\pi\)
0.177210 + 0.984173i \(0.443293\pi\)
\(594\) 0 0
\(595\) −2.87689 −0.117941
\(596\) −5.12311 −0.209851
\(597\) 0 0
\(598\) 20.9460 0.856547
\(599\) −17.7538 −0.725400 −0.362700 0.931906i \(-0.618145\pi\)
−0.362700 + 0.931906i \(0.618145\pi\)
\(600\) 0 0
\(601\) −21.6847 −0.884536 −0.442268 0.896883i \(-0.645826\pi\)
−0.442268 + 0.896883i \(0.645826\pi\)
\(602\) −18.2462 −0.743660
\(603\) 0 0
\(604\) 15.6847 0.638200
\(605\) −8.87689 −0.360897
\(606\) 0 0
\(607\) −21.8617 −0.887341 −0.443670 0.896190i \(-0.646324\pi\)
−0.443670 + 0.896190i \(0.646324\pi\)
\(608\) 0.561553 0.0227740
\(609\) 0 0
\(610\) 8.49242 0.343848
\(611\) −35.5076 −1.43648
\(612\) 0 0
\(613\) 34.9848 1.41302 0.706512 0.707701i \(-0.250268\pi\)
0.706512 + 0.707701i \(0.250268\pi\)
\(614\) 7.36932 0.297401
\(615\) 0 0
\(616\) 6.56155 0.264372
\(617\) −14.8769 −0.598921 −0.299461 0.954109i \(-0.596807\pi\)
−0.299461 + 0.954109i \(0.596807\pi\)
\(618\) 0 0
\(619\) −30.7386 −1.23549 −0.617745 0.786378i \(-0.711954\pi\)
−0.617745 + 0.786378i \(0.711954\pi\)
\(620\) −1.75379 −0.0704339
\(621\) 0 0
\(622\) 13.7538 0.551477
\(623\) 40.8078 1.63493
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −11.1231 −0.444569
\(627\) 0 0
\(628\) 22.4924 0.897545
\(629\) 0.561553 0.0223906
\(630\) 0 0
\(631\) 36.7386 1.46254 0.731271 0.682087i \(-0.238928\pi\)
0.731271 + 0.682087i \(0.238928\pi\)
\(632\) −6.00000 −0.238667
\(633\) 0 0
\(634\) 1.12311 0.0446042
\(635\) 2.87689 0.114166
\(636\) 0 0
\(637\) 2.49242 0.0987534
\(638\) 18.2462 0.722374
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 35.8617 1.41645 0.708227 0.705985i \(-0.249495\pi\)
0.708227 + 0.705985i \(0.249495\pi\)
\(642\) 0 0
\(643\) 22.8078 0.899450 0.449725 0.893167i \(-0.351522\pi\)
0.449725 + 0.893167i \(0.351522\pi\)
\(644\) −9.43845 −0.371927
\(645\) 0 0
\(646\) −0.315342 −0.0124069
\(647\) −13.9309 −0.547679 −0.273840 0.961775i \(-0.588294\pi\)
−0.273840 + 0.961775i \(0.588294\pi\)
\(648\) 0 0
\(649\) 23.3693 0.917326
\(650\) 5.68466 0.222971
\(651\) 0 0
\(652\) 7.93087 0.310597
\(653\) −32.7386 −1.28116 −0.640581 0.767891i \(-0.721306\pi\)
−0.640581 + 0.767891i \(0.721306\pi\)
\(654\) 0 0
\(655\) 13.7538 0.537405
\(656\) 2.87689 0.112324
\(657\) 0 0
\(658\) 16.0000 0.623745
\(659\) −1.75379 −0.0683179 −0.0341590 0.999416i \(-0.510875\pi\)
−0.0341590 + 0.999416i \(0.510875\pi\)
\(660\) 0 0
\(661\) −15.4384 −0.600486 −0.300243 0.953863i \(-0.597068\pi\)
−0.300243 + 0.953863i \(0.597068\pi\)
\(662\) 1.36932 0.0532200
\(663\) 0 0
\(664\) −13.9309 −0.540623
\(665\) 2.87689 0.111561
\(666\) 0 0
\(667\) −26.2462 −1.01626
\(668\) −4.31534 −0.166966
\(669\) 0 0
\(670\) −28.4924 −1.10076
\(671\) 10.8769 0.419898
\(672\) 0 0
\(673\) −37.0540 −1.42833 −0.714163 0.699980i \(-0.753192\pi\)
−0.714163 + 0.699980i \(0.753192\pi\)
\(674\) 23.9309 0.921783
\(675\) 0 0
\(676\) 19.3153 0.742898
\(677\) −26.5616 −1.02084 −0.510422 0.859924i \(-0.670511\pi\)
−0.510422 + 0.859924i \(0.670511\pi\)
\(678\) 0 0
\(679\) 28.4924 1.09344
\(680\) −1.12311 −0.0430691
\(681\) 0 0
\(682\) −2.24621 −0.0860119
\(683\) −50.1080 −1.91733 −0.958664 0.284542i \(-0.908159\pi\)
−0.958664 + 0.284542i \(0.908159\pi\)
\(684\) 0 0
\(685\) −44.4924 −1.69997
\(686\) −19.0540 −0.727484
\(687\) 0 0
\(688\) −7.12311 −0.271566
\(689\) −14.5616 −0.554751
\(690\) 0 0
\(691\) −22.8769 −0.870278 −0.435139 0.900363i \(-0.643301\pi\)
−0.435139 + 0.900363i \(0.643301\pi\)
\(692\) −2.56155 −0.0973756
\(693\) 0 0
\(694\) −29.6155 −1.12419
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) −1.61553 −0.0611925
\(698\) 26.4924 1.00275
\(699\) 0 0
\(700\) −2.56155 −0.0968176
\(701\) 45.3693 1.71358 0.856788 0.515669i \(-0.172457\pi\)
0.856788 + 0.515669i \(0.172457\pi\)
\(702\) 0 0
\(703\) −0.561553 −0.0211794
\(704\) 2.56155 0.0965422
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) −7.36932 −0.277152
\(708\) 0 0
\(709\) 11.3002 0.424387 0.212194 0.977228i \(-0.431939\pi\)
0.212194 + 0.977228i \(0.431939\pi\)
\(710\) −28.4924 −1.06930
\(711\) 0 0
\(712\) 15.9309 0.597035
\(713\) 3.23106 0.121004
\(714\) 0 0
\(715\) −29.1231 −1.08914
\(716\) −1.12311 −0.0419724
\(717\) 0 0
\(718\) 4.49242 0.167656
\(719\) 47.3693 1.76658 0.883289 0.468829i \(-0.155324\pi\)
0.883289 + 0.468829i \(0.155324\pi\)
\(720\) 0 0
\(721\) −25.6155 −0.953972
\(722\) −18.6847 −0.695371
\(723\) 0 0
\(724\) −18.4924 −0.687265
\(725\) −7.12311 −0.264546
\(726\) 0 0
\(727\) −6.63068 −0.245918 −0.122959 0.992412i \(-0.539238\pi\)
−0.122959 + 0.992412i \(0.539238\pi\)
\(728\) −14.5616 −0.539687
\(729\) 0 0
\(730\) −1.12311 −0.0415680
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 9.86174 0.364252 0.182126 0.983275i \(-0.441702\pi\)
0.182126 + 0.983275i \(0.441702\pi\)
\(734\) 12.3153 0.454568
\(735\) 0 0
\(736\) −3.68466 −0.135818
\(737\) −36.4924 −1.34422
\(738\) 0 0
\(739\) 6.38447 0.234857 0.117428 0.993081i \(-0.462535\pi\)
0.117428 + 0.993081i \(0.462535\pi\)
\(740\) −2.00000 −0.0735215
\(741\) 0 0
\(742\) 6.56155 0.240882
\(743\) 52.9848 1.94383 0.971913 0.235342i \(-0.0756209\pi\)
0.971913 + 0.235342i \(0.0756209\pi\)
\(744\) 0 0
\(745\) −10.2462 −0.375392
\(746\) 2.63068 0.0963162
\(747\) 0 0
\(748\) −1.43845 −0.0525948
\(749\) −27.0540 −0.988531
\(750\) 0 0
\(751\) 43.2311 1.57752 0.788762 0.614699i \(-0.210722\pi\)
0.788762 + 0.614699i \(0.210722\pi\)
\(752\) 6.24621 0.227776
\(753\) 0 0
\(754\) −40.4924 −1.47465
\(755\) 31.3693 1.14165
\(756\) 0 0
\(757\) 1.68466 0.0612300 0.0306150 0.999531i \(-0.490253\pi\)
0.0306150 + 0.999531i \(0.490253\pi\)
\(758\) −2.24621 −0.0815861
\(759\) 0 0
\(760\) 1.12311 0.0407393
\(761\) −34.1080 −1.23641 −0.618206 0.786016i \(-0.712140\pi\)
−0.618206 + 0.786016i \(0.712140\pi\)
\(762\) 0 0
\(763\) −1.43845 −0.0520753
\(764\) 6.56155 0.237389
\(765\) 0 0
\(766\) −8.80776 −0.318237
\(767\) −51.8617 −1.87262
\(768\) 0 0
\(769\) 35.6155 1.28433 0.642164 0.766567i \(-0.278037\pi\)
0.642164 + 0.766567i \(0.278037\pi\)
\(770\) 13.1231 0.472924
\(771\) 0 0
\(772\) 25.3693 0.913062
\(773\) −4.31534 −0.155212 −0.0776060 0.996984i \(-0.524728\pi\)
−0.0776060 + 0.996984i \(0.524728\pi\)
\(774\) 0 0
\(775\) 0.876894 0.0314990
\(776\) 11.1231 0.399296
\(777\) 0 0
\(778\) −32.7386 −1.17374
\(779\) 1.61553 0.0578823
\(780\) 0 0
\(781\) −36.4924 −1.30580
\(782\) 2.06913 0.0739919
\(783\) 0 0
\(784\) −0.438447 −0.0156588
\(785\) 44.9848 1.60558
\(786\) 0 0
\(787\) −47.2311 −1.68361 −0.841803 0.539785i \(-0.818505\pi\)
−0.841803 + 0.539785i \(0.818505\pi\)
\(788\) −8.80776 −0.313764
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 10.8769 0.386738
\(792\) 0 0
\(793\) −24.1383 −0.857175
\(794\) 18.4924 0.656272
\(795\) 0 0
\(796\) 4.87689 0.172857
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) −3.50758 −0.124089
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 7.43845 0.262661
\(803\) −1.43845 −0.0507617
\(804\) 0 0
\(805\) −18.8769 −0.665323
\(806\) 4.98485 0.175584
\(807\) 0 0
\(808\) −2.87689 −0.101209
\(809\) 24.4233 0.858677 0.429339 0.903144i \(-0.358747\pi\)
0.429339 + 0.903144i \(0.358747\pi\)
\(810\) 0 0
\(811\) −7.36932 −0.258772 −0.129386 0.991594i \(-0.541301\pi\)
−0.129386 + 0.991594i \(0.541301\pi\)
\(812\) 18.2462 0.640316
\(813\) 0 0
\(814\) −2.56155 −0.0897824
\(815\) 15.8617 0.555612
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 3.75379 0.131248
\(819\) 0 0
\(820\) 5.75379 0.200931
\(821\) −47.6847 −1.66421 −0.832103 0.554621i \(-0.812863\pi\)
−0.832103 + 0.554621i \(0.812863\pi\)
\(822\) 0 0
\(823\) −0.807764 −0.0281569 −0.0140784 0.999901i \(-0.504481\pi\)
−0.0140784 + 0.999901i \(0.504481\pi\)
\(824\) −10.0000 −0.348367
\(825\) 0 0
\(826\) 23.3693 0.813123
\(827\) −33.7538 −1.17373 −0.586867 0.809683i \(-0.699639\pi\)
−0.586867 + 0.809683i \(0.699639\pi\)
\(828\) 0 0
\(829\) −0.561553 −0.0195035 −0.00975177 0.999952i \(-0.503104\pi\)
−0.00975177 + 0.999952i \(0.503104\pi\)
\(830\) −27.8617 −0.967095
\(831\) 0 0
\(832\) −5.68466 −0.197080
\(833\) 0.246211 0.00853071
\(834\) 0 0
\(835\) −8.63068 −0.298677
\(836\) 1.43845 0.0497497
\(837\) 0 0
\(838\) 35.6847 1.23271
\(839\) 22.8769 0.789798 0.394899 0.918725i \(-0.370780\pi\)
0.394899 + 0.918725i \(0.370780\pi\)
\(840\) 0 0
\(841\) 21.7386 0.749608
\(842\) 3.75379 0.129364
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 38.6307 1.32894
\(846\) 0 0
\(847\) −11.3693 −0.390654
\(848\) 2.56155 0.0879641
\(849\) 0 0
\(850\) 0.561553 0.0192611
\(851\) 3.68466 0.126308
\(852\) 0 0
\(853\) 40.5616 1.38880 0.694401 0.719589i \(-0.255670\pi\)
0.694401 + 0.719589i \(0.255670\pi\)
\(854\) 10.8769 0.372200
\(855\) 0 0
\(856\) −10.5616 −0.360986
\(857\) −34.6695 −1.18429 −0.592144 0.805832i \(-0.701718\pi\)
−0.592144 + 0.805832i \(0.701718\pi\)
\(858\) 0 0
\(859\) −37.0540 −1.26427 −0.632133 0.774860i \(-0.717820\pi\)
−0.632133 + 0.774860i \(0.717820\pi\)
\(860\) −14.2462 −0.485792
\(861\) 0 0
\(862\) 8.17708 0.278512
\(863\) 32.6307 1.11076 0.555381 0.831596i \(-0.312573\pi\)
0.555381 + 0.831596i \(0.312573\pi\)
\(864\) 0 0
\(865\) −5.12311 −0.174191
\(866\) 24.5616 0.834636
\(867\) 0 0
\(868\) −2.24621 −0.0762414
\(869\) −15.3693 −0.521368
\(870\) 0 0
\(871\) 80.9848 2.74407
\(872\) −0.561553 −0.0190166
\(873\) 0 0
\(874\) −2.06913 −0.0699894
\(875\) −30.7386 −1.03916
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 22.4924 0.759082
\(879\) 0 0
\(880\) 5.12311 0.172700
\(881\) −16.4924 −0.555644 −0.277822 0.960633i \(-0.589613\pi\)
−0.277822 + 0.960633i \(0.589613\pi\)
\(882\) 0 0
\(883\) −32.5616 −1.09578 −0.547892 0.836549i \(-0.684569\pi\)
−0.547892 + 0.836549i \(0.684569\pi\)
\(884\) 3.19224 0.107367
\(885\) 0 0
\(886\) 30.7386 1.03268
\(887\) 14.8769 0.499517 0.249759 0.968308i \(-0.419649\pi\)
0.249759 + 0.968308i \(0.419649\pi\)
\(888\) 0 0
\(889\) 3.68466 0.123579
\(890\) 31.8617 1.06801
\(891\) 0 0
\(892\) −4.49242 −0.150417
\(893\) 3.50758 0.117377
\(894\) 0 0
\(895\) −2.24621 −0.0750826
\(896\) 2.56155 0.0855755
\(897\) 0 0
\(898\) 15.7538 0.525711
\(899\) −6.24621 −0.208323
\(900\) 0 0
\(901\) −1.43845 −0.0479216
\(902\) 7.36932 0.245371
\(903\) 0 0
\(904\) 4.24621 0.141227
\(905\) −36.9848 −1.22942
\(906\) 0 0
\(907\) −15.3002 −0.508034 −0.254017 0.967200i \(-0.581752\pi\)
−0.254017 + 0.967200i \(0.581752\pi\)
\(908\) 19.3693 0.642793
\(909\) 0 0
\(910\) −29.1231 −0.965422
\(911\) 3.50758 0.116211 0.0581056 0.998310i \(-0.481494\pi\)
0.0581056 + 0.998310i \(0.481494\pi\)
\(912\) 0 0
\(913\) −35.6847 −1.18099
\(914\) −35.6155 −1.17806
\(915\) 0 0
\(916\) 2.63068 0.0869202
\(917\) 17.6155 0.581716
\(918\) 0 0
\(919\) 27.7538 0.915513 0.457757 0.889078i \(-0.348653\pi\)
0.457757 + 0.889078i \(0.348653\pi\)
\(920\) −7.36932 −0.242959
\(921\) 0 0
\(922\) 38.9848 1.28390
\(923\) 80.9848 2.66565
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 13.3693 0.439343
\(927\) 0 0
\(928\) 7.12311 0.233827
\(929\) 29.7538 0.976190 0.488095 0.872790i \(-0.337692\pi\)
0.488095 + 0.872790i \(0.337692\pi\)
\(930\) 0 0
\(931\) −0.246211 −0.00806925
\(932\) −16.0000 −0.524097
\(933\) 0 0
\(934\) 21.6155 0.707282
\(935\) −2.87689 −0.0940845
\(936\) 0 0
\(937\) −15.7538 −0.514654 −0.257327 0.966324i \(-0.582842\pi\)
−0.257327 + 0.966324i \(0.582842\pi\)
\(938\) −36.4924 −1.19152
\(939\) 0 0
\(940\) 12.4924 0.407458
\(941\) 7.86174 0.256285 0.128143 0.991756i \(-0.459098\pi\)
0.128143 + 0.991756i \(0.459098\pi\)
\(942\) 0 0
\(943\) −10.6004 −0.345196
\(944\) 9.12311 0.296932
\(945\) 0 0
\(946\) −18.2462 −0.593235
\(947\) 19.3693 0.629418 0.314709 0.949188i \(-0.398093\pi\)
0.314709 + 0.949188i \(0.398093\pi\)
\(948\) 0 0
\(949\) 3.19224 0.103624
\(950\) −0.561553 −0.0182192
\(951\) 0 0
\(952\) −1.43845 −0.0466203
\(953\) −7.86174 −0.254667 −0.127333 0.991860i \(-0.540642\pi\)
−0.127333 + 0.991860i \(0.540642\pi\)
\(954\) 0 0
\(955\) 13.1231 0.424654
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 4.94602 0.159799
\(959\) −56.9848 −1.84014
\(960\) 0 0
\(961\) −30.2311 −0.975195
\(962\) 5.68466 0.183281
\(963\) 0 0
\(964\) 8.24621 0.265593
\(965\) 50.7386 1.63333
\(966\) 0 0
\(967\) 21.3693 0.687191 0.343595 0.939118i \(-0.388355\pi\)
0.343595 + 0.939118i \(0.388355\pi\)
\(968\) −4.43845 −0.142657
\(969\) 0 0
\(970\) 22.2462 0.714283
\(971\) 26.2462 0.842281 0.421141 0.906995i \(-0.361630\pi\)
0.421141 + 0.906995i \(0.361630\pi\)
\(972\) 0 0
\(973\) −30.7386 −0.985435
\(974\) 4.87689 0.156266
\(975\) 0 0
\(976\) 4.24621 0.135918
\(977\) 60.9157 1.94887 0.974433 0.224677i \(-0.0721328\pi\)
0.974433 + 0.224677i \(0.0721328\pi\)
\(978\) 0 0
\(979\) 40.8078 1.30422
\(980\) −0.876894 −0.0280114
\(981\) 0 0
\(982\) −29.9309 −0.955132
\(983\) 21.6155 0.689428 0.344714 0.938708i \(-0.387976\pi\)
0.344714 + 0.938708i \(0.387976\pi\)
\(984\) 0 0
\(985\) −17.6155 −0.561277
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) −3.19224 −0.101559
\(989\) 26.2462 0.834581
\(990\) 0 0
\(991\) 11.2614 0.357729 0.178865 0.983874i \(-0.442758\pi\)
0.178865 + 0.983874i \(0.442758\pi\)
\(992\) −0.876894 −0.0278414
\(993\) 0 0
\(994\) −36.4924 −1.15747
\(995\) 9.75379 0.309216
\(996\) 0 0
\(997\) −8.06913 −0.255552 −0.127776 0.991803i \(-0.540784\pi\)
−0.127776 + 0.991803i \(0.540784\pi\)
\(998\) 28.4233 0.899724
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 666.2.a.k.1.2 yes 2
3.2 odd 2 666.2.a.h.1.2 2
4.3 odd 2 5328.2.a.bh.1.1 2
12.11 even 2 5328.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.a.h.1.2 2 3.2 odd 2
666.2.a.k.1.2 yes 2 1.1 even 1 trivial
5328.2.a.y.1.1 2 12.11 even 2
5328.2.a.bh.1.1 2 4.3 odd 2