Properties

Label 665.2.i
Level $665$
Weight $2$
Character orbit 665.i
Rep. character $\chi_{665}(106,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $8$
Sturm bound $160$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(160\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(665, [\chi])\).

Total New Old
Modular forms 168 80 88
Cusp forms 152 80 72
Eisenstein series 16 0 16

Trace form

\( 80 q + 4 q^{2} - 4 q^{3} - 44 q^{4} - 8 q^{6} - 24 q^{8} - 52 q^{9} - 4 q^{10} + 8 q^{11} + 24 q^{12} + 8 q^{15} - 52 q^{16} + 20 q^{17} - 16 q^{18} + 24 q^{19} - 4 q^{22} + 12 q^{23} + 4 q^{24} - 40 q^{25}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(665, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
665.2.i.a 665.i 19.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.i.a \(-2\) \(-2\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}+(-2+2\zeta_{6})q^{3}+\cdots\)
665.2.i.b 665.i 19.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.i.b \(2\) \(0\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-2\zeta_{6}q^{4}+(-1+\zeta_{6})q^{5}+\cdots\)
665.2.i.c 665.i 19.c $4$ $5.310$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 665.2.i.c \(-4\) \(-2\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2-2\beta _{1})q^{2}+(-1-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
665.2.i.d 665.i 19.c $6$ $5.310$ 6.0.954288.1 None 665.2.i.d \(0\) \(-2\) \(3\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2}-\beta _{3})q^{3}+2\beta _{2}q^{4}+(1+\cdots)q^{5}+\cdots\)
665.2.i.e 665.i 19.c $14$ $5.310$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 665.2.i.e \(1\) \(-3\) \(7\) \(14\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{4}+\beta _{6}+\beta _{8})q^{2}+\beta _{7}q^{3}+(-3+\cdots)q^{4}+\cdots\)
665.2.i.f 665.i 19.c $16$ $5.310$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 665.2.i.f \(1\) \(5\) \(-8\) \(16\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(1+\beta _{7}+\beta _{8}-\beta _{12})q^{3}+\cdots\)
665.2.i.g 665.i 19.c $16$ $5.310$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 665.2.i.g \(3\) \(1\) \(-8\) \(-16\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+\beta _{15}q^{3}+(\beta _{1}-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
665.2.i.h 665.i 19.c $20$ $5.310$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 665.2.i.h \(3\) \(-1\) \(10\) \(-20\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+(\beta _{6}-\beta _{8}-\beta _{12}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)