Properties

Label 6647.2.a.b
Level $6647$
Weight $2$
Character orbit 6647.a
Self dual yes
Analytic conductor $53.077$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6647,2,Mod(1,6647)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6647.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6647, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6647 = 17^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6647.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.0765622235\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + ( - 2 \beta + 1) q^{3} + (\beta - 1) q^{4} + 2 \beta q^{5} + (\beta + 2) q^{6} + (2 \beta - 2) q^{7} + (2 \beta - 1) q^{8} + 2 q^{9} + ( - 2 \beta - 2) q^{10} + ( - 2 \beta + 4) q^{11} + \cdots + ( - 4 \beta + 8) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{5} + 5 q^{6} - 2 q^{7} + 4 q^{9} - 6 q^{10} + 6 q^{11} - 5 q^{12} + 6 q^{13} - 4 q^{14} - 10 q^{15} - 3 q^{16} - 2 q^{18} - 4 q^{19} + 4 q^{20} - 10 q^{21} + 2 q^{22} - 2 q^{23}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−1.61803 −2.23607 0.618034 3.23607 3.61803 1.23607 2.23607 2.00000 −5.23607
1.2 0.618034 2.23607 −1.61803 −1.23607 1.38197 −3.23607 −2.23607 2.00000 −0.763932
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(17\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6647.2.a.b 2
17.b even 2 1 23.2.a.a 2
51.c odd 2 1 207.2.a.d 2
68.d odd 2 1 368.2.a.h 2
85.c even 2 1 575.2.a.f 2
85.g odd 4 2 575.2.b.d 4
119.d odd 2 1 1127.2.a.c 2
136.e odd 2 1 1472.2.a.s 2
136.h even 2 1 1472.2.a.t 2
187.b odd 2 1 2783.2.a.c 2
204.h even 2 1 3312.2.a.ba 2
221.b even 2 1 3887.2.a.i 2
255.h odd 2 1 5175.2.a.be 2
323.c odd 2 1 8303.2.a.e 2
340.d odd 2 1 9200.2.a.bt 2
391.c odd 2 1 529.2.a.a 2
391.m odd 22 10 529.2.c.n 20
391.n even 22 10 529.2.c.o 20
1173.b even 2 1 4761.2.a.w 2
1564.h even 2 1 8464.2.a.bb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.2.a.a 2 17.b even 2 1
207.2.a.d 2 51.c odd 2 1
368.2.a.h 2 68.d odd 2 1
529.2.a.a 2 391.c odd 2 1
529.2.c.n 20 391.m odd 22 10
529.2.c.o 20 391.n even 22 10
575.2.a.f 2 85.c even 2 1
575.2.b.d 4 85.g odd 4 2
1127.2.a.c 2 119.d odd 2 1
1472.2.a.s 2 136.e odd 2 1
1472.2.a.t 2 136.h even 2 1
2783.2.a.c 2 187.b odd 2 1
3312.2.a.ba 2 204.h even 2 1
3887.2.a.i 2 221.b even 2 1
4761.2.a.w 2 1173.b even 2 1
5175.2.a.be 2 255.h odd 2 1
6647.2.a.b 2 1.a even 1 1 trivial
8303.2.a.e 2 323.c odd 2 1
8464.2.a.bb 2 1564.h even 2 1
9200.2.a.bt 2 340.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6647))\):

\( T_{2}^{2} + T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 5 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$13$ \( (T - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 45 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 5 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$71$ \( T^{2} + 20T + 95 \) Copy content Toggle raw display
$73$ \( T^{2} + 22T + 101 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$83$ \( T^{2} + 22T + 116 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 22T + 76 \) Copy content Toggle raw display
show more
show less