Properties

Label 6627.2.a.i
Level $6627$
Weight $2$
Character orbit 6627.a
Self dual yes
Analytic conductor $52.917$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6627 = 3 \cdot 47^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6627.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(52.9168614195\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 141)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + q^{3} + 2q^{4} + q^{5} + 2q^{6} - 3q^{7} + q^{9} + O(q^{10}) \) \( q + 2q^{2} + q^{3} + 2q^{4} + q^{5} + 2q^{6} - 3q^{7} + q^{9} + 2q^{10} - q^{11} + 2q^{12} + 2q^{13} - 6q^{14} + q^{15} - 4q^{16} + 2q^{17} + 2q^{18} - 6q^{19} + 2q^{20} - 3q^{21} - 2q^{22} - 3q^{23} - 4q^{25} + 4q^{26} + q^{27} - 6q^{28} - 3q^{29} + 2q^{30} - 2q^{31} - 8q^{32} - q^{33} + 4q^{34} - 3q^{35} + 2q^{36} - 7q^{37} - 12q^{38} + 2q^{39} - 10q^{41} - 6q^{42} + 10q^{43} - 2q^{44} + q^{45} - 6q^{46} - 4q^{48} + 2q^{49} - 8q^{50} + 2q^{51} + 4q^{52} + 4q^{53} + 2q^{54} - q^{55} - 6q^{57} - 6q^{58} + 8q^{59} + 2q^{60} - 10q^{61} - 4q^{62} - 3q^{63} - 8q^{64} + 2q^{65} - 2q^{66} - 10q^{67} + 4q^{68} - 3q^{69} - 6q^{70} - 14q^{71} + 10q^{73} - 14q^{74} - 4q^{75} - 12q^{76} + 3q^{77} + 4q^{78} + 17q^{79} - 4q^{80} + q^{81} - 20q^{82} + 8q^{83} - 6q^{84} + 2q^{85} + 20q^{86} - 3q^{87} + 6q^{89} + 2q^{90} - 6q^{91} - 6q^{92} - 2q^{93} - 6q^{95} - 8q^{96} + q^{97} + 4q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 1.00000 2.00000 1.00000 2.00000 −3.00000 0 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(47\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6627.2.a.i 1
47.b odd 2 1 141.2.a.e 1
141.c even 2 1 423.2.a.b 1
188.b even 2 1 2256.2.a.e 1
235.b odd 2 1 3525.2.a.c 1
329.c even 2 1 6909.2.a.k 1
376.e odd 2 1 9024.2.a.n 1
376.h even 2 1 9024.2.a.bq 1
564.f odd 2 1 6768.2.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
141.2.a.e 1 47.b odd 2 1
423.2.a.b 1 141.c even 2 1
2256.2.a.e 1 188.b even 2 1
3525.2.a.c 1 235.b odd 2 1
6627.2.a.i 1 1.a even 1 1 trivial
6768.2.a.n 1 564.f odd 2 1
6909.2.a.k 1 329.c even 2 1
9024.2.a.n 1 376.e odd 2 1
9024.2.a.bq 1 376.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6627))\):

\( T_{2} - 2 \)
\( T_{5} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( 3 + T \)
$11$ \( 1 + T \)
$13$ \( -2 + T \)
$17$ \( -2 + T \)
$19$ \( 6 + T \)
$23$ \( 3 + T \)
$29$ \( 3 + T \)
$31$ \( 2 + T \)
$37$ \( 7 + T \)
$41$ \( 10 + T \)
$43$ \( -10 + T \)
$47$ \( T \)
$53$ \( -4 + T \)
$59$ \( -8 + T \)
$61$ \( 10 + T \)
$67$ \( 10 + T \)
$71$ \( 14 + T \)
$73$ \( -10 + T \)
$79$ \( -17 + T \)
$83$ \( -8 + T \)
$89$ \( -6 + T \)
$97$ \( -1 + T \)
show more
show less