Properties

Label 6600.2.a.n
Level $6600$
Weight $2$
Character orbit 6600.a
Self dual yes
Analytic conductor $52.701$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6600 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6600.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(52.7012653340\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1320)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + 2 q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} + 2 q^{7} + q^{9} + q^{11} + 8 q^{17} - 8 q^{19} - 2 q^{21} - 4 q^{23} - q^{27} - 6 q^{29} - q^{33} - 6 q^{37} - 2 q^{41} - 2 q^{43} + 4 q^{47} - 3 q^{49} - 8 q^{51} + 2 q^{53} + 8 q^{57} - 12 q^{59} - 6 q^{61} + 2 q^{63} - 8 q^{67} + 4 q^{69} + 8 q^{73} + 2 q^{77} + 4 q^{79} + q^{81} + 6 q^{83} + 6 q^{87} - 10 q^{89} + 10 q^{97} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6600.2.a.n 1
5.b even 2 1 1320.2.a.k 1
5.c odd 4 2 6600.2.d.y 2
15.d odd 2 1 3960.2.a.k 1
20.d odd 2 1 2640.2.a.c 1
60.h even 2 1 7920.2.a.bj 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1320.2.a.k 1 5.b even 2 1
2640.2.a.c 1 20.d odd 2 1
3960.2.a.k 1 15.d odd 2 1
6600.2.a.n 1 1.a even 1 1 trivial
6600.2.d.y 2 5.c odd 4 2
7920.2.a.bj 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6600))\):

\( T_{7} - 2 \)
\( T_{13} \)
\( T_{17} - 8 \)
\( T_{19} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( -2 + T \)
$11$ \( -1 + T \)
$13$ \( T \)
$17$ \( -8 + T \)
$19$ \( 8 + T \)
$23$ \( 4 + T \)
$29$ \( 6 + T \)
$31$ \( T \)
$37$ \( 6 + T \)
$41$ \( 2 + T \)
$43$ \( 2 + T \)
$47$ \( -4 + T \)
$53$ \( -2 + T \)
$59$ \( 12 + T \)
$61$ \( 6 + T \)
$67$ \( 8 + T \)
$71$ \( T \)
$73$ \( -8 + T \)
$79$ \( -4 + T \)
$83$ \( -6 + T \)
$89$ \( 10 + T \)
$97$ \( -10 + T \)
show more
show less