Properties

Label 660.2.bj.a
Level $660$
Weight $2$
Character orbit 660.bj
Analytic conductor $5.270$
Analytic rank $0$
Dimension $384$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [660,2,Mod(71,660)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(660, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("660.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 660.bj (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.27012653340\)
Analytic rank: \(0\)
Dimension: \(384\)
Relative dimension: \(96\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 384 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 384 q + 8 q^{9} + 32 q^{16} + 64 q^{22} - 16 q^{24} + 96 q^{25} + 24 q^{28} - 16 q^{30} + 36 q^{33} + 24 q^{34} - 44 q^{36} - 86 q^{42} - 64 q^{46} - 46 q^{48} + 96 q^{49} - 8 q^{52} - 80 q^{54} - 28 q^{57} - 80 q^{58} - 42 q^{60} - 12 q^{64} - 110 q^{66} - 32 q^{69} - 36 q^{70} + 8 q^{72} - 48 q^{73} - 112 q^{76} - 132 q^{78} - 40 q^{81} - 108 q^{82} - 72 q^{84} - 44 q^{88} + 32 q^{93} - 72 q^{94} + 6 q^{96} - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
71.1 −1.41130 0.0908036i −1.73204 0.00469833i 1.98351 + 0.256302i 0.951057 + 0.309017i 2.44400 + 0.163907i 0.187462 + 0.258020i −2.77604 0.541827i 2.99996 + 0.0162754i −1.31416 0.522474i
71.2 −1.40997 0.109415i 1.52937 0.813028i 1.97606 + 0.308545i −0.951057 0.309017i −2.24534 + 0.979012i −1.91048 2.62955i −2.75243 0.651251i 1.67797 2.48685i 1.30715 + 0.539766i
71.3 −1.40848 0.127236i 1.02229 + 1.39819i 1.96762 + 0.358420i 0.951057 + 0.309017i −1.26197 2.09939i −2.37843 3.27363i −2.72575 0.755179i −0.909858 + 2.85870i −1.30022 0.556253i
71.4 −1.39698 0.220121i −1.59073 0.685246i 1.90309 + 0.615009i −0.951057 0.309017i 2.07138 + 1.30743i 0.581332 + 0.800134i −2.52320 1.27807i 2.06088 + 2.18009i 1.26058 + 0.641038i
71.5 −1.39567 + 0.228243i −0.784428 1.54424i 1.89581 0.637105i 0.951057 + 0.309017i 1.44727 + 1.97621i −3.00265 4.13279i −2.50052 + 1.32190i −1.76935 + 2.42269i −1.39790 0.214215i
71.6 −1.38865 0.267689i −1.13068 + 1.31209i 1.85669 + 0.743452i −0.951057 0.309017i 1.92134 1.51936i 1.77229 + 2.43935i −2.37927 1.52941i −0.443142 2.96709i 1.23796 + 0.683703i
71.7 −1.38681 + 0.277038i 1.32639 + 1.11386i 1.84650 0.768400i −0.951057 0.309017i −2.14803 1.17726i 1.08183 + 1.48902i −2.34787 + 1.57718i 0.518610 + 2.95483i 1.40455 + 0.165070i
71.8 −1.37243 0.341209i −0.144068 + 1.72605i 1.76715 + 0.936575i 0.951057 + 0.309017i 0.786668 2.31973i 1.33149 + 1.83264i −2.10573 1.88836i −2.95849 0.497338i −1.19982 0.748615i
71.9 −1.36993 0.351120i 0.980365 1.42789i 1.75343 + 0.962022i 0.951057 + 0.309017i −1.84440 + 1.61189i 1.40074 + 1.92795i −2.06429 1.93357i −1.07777 2.79972i −1.19438 0.757267i
71.10 −1.35344 + 0.410137i 1.03524 1.38862i 1.66358 1.11019i 0.951057 + 0.309017i −0.831609 + 2.30400i 0.778127 + 1.07100i −1.79621 + 2.18486i −0.856545 2.87512i −1.41393 0.0281712i
71.11 −1.34941 + 0.423209i −0.340068 + 1.69834i 1.64179 1.14216i −0.951057 0.309017i −0.259863 2.43567i −1.62402 2.23527i −1.73206 + 2.23606i −2.76871 1.15510i 1.41414 + 0.0144934i
71.12 −1.34045 + 0.450777i 0.340068 1.69834i 1.59360 1.20849i −0.951057 0.309017i 0.309729 + 2.42983i 1.62402 + 2.23527i −1.59138 + 2.33827i −2.76871 1.15510i 1.41414 0.0144934i
71.13 −1.33602 + 0.463722i −1.03524 + 1.38862i 1.56992 1.23909i 0.951057 + 0.309017i 0.739175 2.33530i −0.778127 1.07100i −1.52287 + 2.38346i −0.856545 2.87512i −1.41393 + 0.0281712i
71.14 −1.28479 + 0.591020i −1.32639 1.11386i 1.30139 1.51868i −0.951057 0.309017i 2.36245 + 0.647166i −1.08183 1.48902i −0.774452 + 2.72034i 0.518610 + 2.95483i 1.40455 0.165070i
71.15 −1.27089 0.620349i 1.66241 0.486202i 1.23033 + 1.57679i −0.951057 0.309017i −2.41436 0.413364i 2.29207 + 3.15477i −0.585461 2.76717i 2.52722 1.61653i 1.01699 + 0.982714i
71.16 −1.26328 + 0.635704i 0.784428 + 1.54424i 1.19176 1.60615i 0.951057 + 0.309017i −1.97263 1.45214i 3.00265 + 4.13279i −0.484494 + 2.78662i −1.76935 + 2.42269i −1.39790 + 0.214215i
71.17 −1.25725 0.647552i 0.531844 + 1.64838i 1.16135 + 1.62827i −0.951057 0.309017i 0.398748 2.41682i −0.883665 1.21626i −0.405720 2.79918i −2.43428 + 1.75336i 0.995611 + 1.00437i
71.18 −1.13077 0.849335i −1.45608 0.937994i 0.557261 + 1.92080i −0.951057 0.309017i 0.849814 + 2.29735i −1.54729 2.12967i 1.00127 2.64527i 1.24033 + 2.73159i 0.812963 + 1.15719i
71.19 −1.08839 + 0.903000i 1.73204 + 0.00469833i 0.369181 1.96563i 0.951057 + 0.309017i −1.88938 + 1.55892i −0.187462 0.258020i 1.37315 + 2.47274i 2.99996 + 0.0162754i −1.31416 + 0.522474i
71.20 −1.07638 + 0.917281i −1.52937 + 0.813028i 0.317191 1.97469i −0.951057 0.309017i 0.900414 2.27799i 1.91048 + 2.62955i 1.46992 + 2.41647i 1.67797 2.48685i 1.30715 0.539766i
See next 80 embeddings (of 384 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 71.96
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
11.c even 5 1 inner
12.b even 2 1 inner
33.h odd 10 1 inner
44.h odd 10 1 inner
132.o even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 660.2.bj.a 384
3.b odd 2 1 inner 660.2.bj.a 384
4.b odd 2 1 inner 660.2.bj.a 384
11.c even 5 1 inner 660.2.bj.a 384
12.b even 2 1 inner 660.2.bj.a 384
33.h odd 10 1 inner 660.2.bj.a 384
44.h odd 10 1 inner 660.2.bj.a 384
132.o even 10 1 inner 660.2.bj.a 384
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
660.2.bj.a 384 1.a even 1 1 trivial
660.2.bj.a 384 3.b odd 2 1 inner
660.2.bj.a 384 4.b odd 2 1 inner
660.2.bj.a 384 11.c even 5 1 inner
660.2.bj.a 384 12.b even 2 1 inner
660.2.bj.a 384 33.h odd 10 1 inner
660.2.bj.a 384 44.h odd 10 1 inner
660.2.bj.a 384 132.o even 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(660, [\chi])\).