Defining parameters
Level: | \( N \) | \(=\) | \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 660.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(660))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 8 | 148 |
Cusp forms | 133 | 8 | 125 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(2\) | |||
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(660))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 11 | |||||||
660.2.a.a | $1$ | $5.270$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}+2q^{13}+\cdots\) | |
660.2.a.b | $1$ | $5.270$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}+q^{9}+q^{11}-4q^{13}+q^{15}+\cdots\) | |
660.2.a.c | $1$ | $5.270$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-q^{5}-4q^{7}+q^{9}-q^{11}-4q^{13}+\cdots\) | |
660.2.a.d | $1$ | $5.270$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}+2q^{7}+q^{9}+q^{11}+2q^{13}+\cdots\) | |
660.2.a.e | $2$ | $5.270$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{5}+(1+\beta )q^{7}+q^{9}+q^{11}+\cdots\) | |
660.2.a.f | $2$ | $5.270$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}+(1+\beta )q^{7}+q^{9}-q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(660))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(660)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 2}\)