Properties

Label 66.4
Level 66
Weight 4
Dimension 88
Nonzero newspaces 4
Newform subspaces 11
Sturm bound 960
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 11 \)
Sturm bound: \(960\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(66))\).

Total New Old
Modular forms 400 88 312
Cusp forms 320 88 232
Eisenstein series 80 0 80

Trace form

\( 88 q + 4 q^{2} + 6 q^{3} - 8 q^{4} - 12 q^{5} - 62 q^{6} - 8 q^{7} + 16 q^{8} + 142 q^{9} + 224 q^{10} + 188 q^{11} + 104 q^{12} + 4 q^{13} - 104 q^{14} - 374 q^{15} - 32 q^{16} - 368 q^{17} - 194 q^{18}+ \cdots - 7998 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
66.4.a \(\chi_{66}(1, \cdot)\) 66.4.a.a 1 1
66.4.a.b 1
66.4.a.c 2
66.4.b \(\chi_{66}(65, \cdot)\) 66.4.b.a 6 1
66.4.b.b 6
66.4.e \(\chi_{66}(25, \cdot)\) 66.4.e.a 4 4
66.4.e.b 4
66.4.e.c 8
66.4.e.d 8
66.4.h \(\chi_{66}(17, \cdot)\) 66.4.h.a 24 4
66.4.h.b 24

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(66))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(66)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)