Properties

Label 66.3.c.a.23.4
Level $66$
Weight $3$
Character 66.23
Analytic conductor $1.798$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [66,3,Mod(23,66)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("66.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(66, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 66.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.79836974478\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 5x^{6} - 50x^{5} - 34x^{4} + 586x^{3} - 431x^{2} - 1830x + 3051 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 23.4
Root \(-2.28135 + 0.533982i\) of defining polynomial
Character \(\chi\) \(=\) 66.23
Dual form 66.3.c.a.23.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(2.28135 + 1.94820i) q^{3} -2.00000 q^{4} -5.56529i q^{5} +(2.75516 - 3.22631i) q^{6} +9.94529 q^{7} +2.82843i q^{8} +(1.40907 + 8.88901i) q^{9} -7.87050 q^{10} -3.31662i q^{11} +(-4.56269 - 3.89639i) q^{12} -18.1460 q^{13} -14.0648i q^{14} +(10.8423 - 12.6963i) q^{15} +4.00000 q^{16} +18.4880i q^{17} +(12.5710 - 1.99273i) q^{18} -29.8323 q^{19} +11.1306i q^{20} +(22.6886 + 19.3754i) q^{21} -4.69042 q^{22} +13.1449i q^{23} +(-5.51033 + 6.45262i) q^{24} -5.97241 q^{25} +25.6624i q^{26} +(-14.1030 + 23.0240i) q^{27} -19.8906 q^{28} -15.8427i q^{29} +(-17.9553 - 15.3333i) q^{30} +22.6040 q^{31} -5.65685i q^{32} +(6.46143 - 7.56637i) q^{33} +26.1460 q^{34} -55.3484i q^{35} +(-2.81814 - 17.7780i) q^{36} +21.8376 q^{37} +42.1893i q^{38} +(-41.3974 - 35.3520i) q^{39} +15.7410 q^{40} -9.61310i q^{41} +(27.4009 - 32.0866i) q^{42} -44.2559 q^{43} +6.63325i q^{44} +(49.4699 - 7.84188i) q^{45} +18.5897 q^{46} -52.9352i q^{47} +(9.12538 + 7.79278i) q^{48} +49.9088 q^{49} +8.44626i q^{50} +(-36.0183 + 42.1776i) q^{51} +36.2921 q^{52} +51.1232i q^{53} +(32.5609 + 19.9446i) q^{54} -18.4580 q^{55} +28.1295i q^{56} +(-68.0579 - 58.1192i) q^{57} -22.4050 q^{58} -54.9673i q^{59} +(-21.6845 + 25.3927i) q^{60} +24.0552 q^{61} -31.9669i q^{62} +(14.0136 + 88.4038i) q^{63} -8.00000 q^{64} +100.988i q^{65} +(-10.7005 - 9.13785i) q^{66} +107.181 q^{67} -36.9761i q^{68} +(-25.6088 + 29.9881i) q^{69} -78.2745 q^{70} -46.5360i q^{71} +(-25.1419 + 3.98545i) q^{72} +6.88285 q^{73} -30.8831i q^{74} +(-13.6251 - 11.6354i) q^{75} +59.6647 q^{76} -32.9848i q^{77} +(-49.9953 + 58.5447i) q^{78} -63.7079 q^{79} -22.2611i q^{80} +(-77.0290 + 25.0505i) q^{81} -13.5950 q^{82} -57.4231i q^{83} +(-45.3773 - 38.7507i) q^{84} +102.891 q^{85} +62.5873i q^{86} +(30.8648 - 36.1428i) q^{87} +9.38083 q^{88} +108.987i q^{89} +(-11.0901 - 69.9610i) q^{90} -180.468 q^{91} -26.2898i q^{92} +(51.5675 + 44.0370i) q^{93} -74.8617 q^{94} +166.025i q^{95} +(11.0207 - 12.9052i) q^{96} -87.7799 q^{97} -70.5818i q^{98} +(29.4815 - 4.67336i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 16 q^{4} + 8 q^{6} + 8 q^{7} - 6 q^{9} - 16 q^{10} + 4 q^{12} - 8 q^{13} - 18 q^{15} + 32 q^{16} - 32 q^{18} + 64 q^{19} + 100 q^{21} - 16 q^{24} - 132 q^{25} - 44 q^{27} - 16 q^{28} - 24 q^{30}+ \cdots + 110 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 2.28135 + 1.94820i 0.760448 + 0.649398i
\(4\) −2.00000 −0.500000
\(5\) 5.56529i 1.11306i −0.830828 0.556529i \(-0.812133\pi\)
0.830828 0.556529i \(-0.187867\pi\)
\(6\) 2.75516 3.22631i 0.459194 0.537718i
\(7\) 9.94529 1.42076 0.710378 0.703820i \(-0.248524\pi\)
0.710378 + 0.703820i \(0.248524\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 1.40907 + 8.88901i 0.156563 + 0.987668i
\(10\) −7.87050 −0.787050
\(11\) 3.31662i 0.301511i
\(12\) −4.56269 3.89639i −0.380224 0.324699i
\(13\) −18.1460 −1.39585 −0.697924 0.716171i \(-0.745893\pi\)
−0.697924 + 0.716171i \(0.745893\pi\)
\(14\) 14.0648i 1.00463i
\(15\) 10.8423 12.6963i 0.722818 0.846423i
\(16\) 4.00000 0.250000
\(17\) 18.4880i 1.08753i 0.839237 + 0.543766i \(0.183002\pi\)
−0.839237 + 0.543766i \(0.816998\pi\)
\(18\) 12.5710 1.99273i 0.698387 0.110707i
\(19\) −29.8323 −1.57012 −0.785061 0.619418i \(-0.787369\pi\)
−0.785061 + 0.619418i \(0.787369\pi\)
\(20\) 11.1306i 0.556529i
\(21\) 22.6886 + 19.3754i 1.08041 + 0.922637i
\(22\) −4.69042 −0.213201
\(23\) 13.1449i 0.571518i 0.958302 + 0.285759i \(0.0922456\pi\)
−0.958302 + 0.285759i \(0.907754\pi\)
\(24\) −5.51033 + 6.45262i −0.229597 + 0.268859i
\(25\) −5.97241 −0.238896
\(26\) 25.6624i 0.987014i
\(27\) −14.1030 + 23.0240i −0.522332 + 0.852742i
\(28\) −19.8906 −0.710378
\(29\) 15.8427i 0.546302i −0.961971 0.273151i \(-0.911934\pi\)
0.961971 0.273151i \(-0.0880658\pi\)
\(30\) −17.9553 15.3333i −0.598511 0.511109i
\(31\) 22.6040 0.729161 0.364581 0.931172i \(-0.381212\pi\)
0.364581 + 0.931172i \(0.381212\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 6.46143 7.56637i 0.195801 0.229284i
\(34\) 26.1460 0.769001
\(35\) 55.3484i 1.58138i
\(36\) −2.81814 17.7780i −0.0782817 0.493834i
\(37\) 21.8376 0.590207 0.295103 0.955465i \(-0.404646\pi\)
0.295103 + 0.955465i \(0.404646\pi\)
\(38\) 42.1893i 1.11024i
\(39\) −41.3974 35.3520i −1.06147 0.906462i
\(40\) 15.7410 0.393525
\(41\) 9.61310i 0.234466i −0.993104 0.117233i \(-0.962598\pi\)
0.993104 0.117233i \(-0.0374024\pi\)
\(42\) 27.4009 32.0866i 0.652403 0.763966i
\(43\) −44.2559 −1.02921 −0.514604 0.857428i \(-0.672061\pi\)
−0.514604 + 0.857428i \(0.672061\pi\)
\(44\) 6.63325i 0.150756i
\(45\) 49.4699 7.84188i 1.09933 0.174264i
\(46\) 18.5897 0.404124
\(47\) 52.9352i 1.12628i −0.826361 0.563141i \(-0.809593\pi\)
0.826361 0.563141i \(-0.190407\pi\)
\(48\) 9.12538 + 7.79278i 0.190112 + 0.162350i
\(49\) 49.9088 1.01855
\(50\) 8.44626i 0.168925i
\(51\) −36.0183 + 42.1776i −0.706241 + 0.827012i
\(52\) 36.2921 0.697924
\(53\) 51.1232i 0.964589i 0.876009 + 0.482295i \(0.160197\pi\)
−0.876009 + 0.482295i \(0.839803\pi\)
\(54\) 32.5609 + 19.9446i 0.602980 + 0.369344i
\(55\) −18.4580 −0.335599
\(56\) 28.1295i 0.502313i
\(57\) −68.0579 58.1192i −1.19400 1.01964i
\(58\) −22.4050 −0.386294
\(59\) 54.9673i 0.931649i −0.884877 0.465824i \(-0.845758\pi\)
0.884877 0.465824i \(-0.154242\pi\)
\(60\) −21.6845 + 25.3927i −0.361409 + 0.423211i
\(61\) 24.0552 0.394347 0.197174 0.980369i \(-0.436824\pi\)
0.197174 + 0.980369i \(0.436824\pi\)
\(62\) 31.9669i 0.515595i
\(63\) 14.0136 + 88.4038i 0.222438 + 1.40324i
\(64\) −8.00000 −0.125000
\(65\) 100.988i 1.55366i
\(66\) −10.7005 9.13785i −0.162128 0.138452i
\(67\) 107.181 1.59972 0.799859 0.600188i \(-0.204908\pi\)
0.799859 + 0.600188i \(0.204908\pi\)
\(68\) 36.9761i 0.543766i
\(69\) −25.6088 + 29.9881i −0.371143 + 0.434610i
\(70\) −78.2745 −1.11821
\(71\) 46.5360i 0.655436i −0.944776 0.327718i \(-0.893720\pi\)
0.944776 0.327718i \(-0.106280\pi\)
\(72\) −25.1419 + 3.98545i −0.349193 + 0.0553535i
\(73\) 6.88285 0.0942857 0.0471428 0.998888i \(-0.484988\pi\)
0.0471428 + 0.998888i \(0.484988\pi\)
\(74\) 30.8831i 0.417339i
\(75\) −13.6251 11.6354i −0.181668 0.155139i
\(76\) 59.6647 0.785061
\(77\) 32.9848i 0.428374i
\(78\) −49.9953 + 58.5447i −0.640966 + 0.750573i
\(79\) −63.7079 −0.806429 −0.403215 0.915105i \(-0.632107\pi\)
−0.403215 + 0.915105i \(0.632107\pi\)
\(80\) 22.2611i 0.278264i
\(81\) −77.0290 + 25.0505i −0.950976 + 0.309265i
\(82\) −13.5950 −0.165792
\(83\) 57.4231i 0.691844i −0.938263 0.345922i \(-0.887566\pi\)
0.938263 0.345922i \(-0.112434\pi\)
\(84\) −45.3773 38.7507i −0.540206 0.461318i
\(85\) 102.891 1.21049
\(86\) 62.5873i 0.727760i
\(87\) 30.8648 36.1428i 0.354767 0.415434i
\(88\) 9.38083 0.106600
\(89\) 108.987i 1.22457i 0.790636 + 0.612286i \(0.209750\pi\)
−0.790636 + 0.612286i \(0.790250\pi\)
\(90\) −11.0901 69.9610i −0.123223 0.777344i
\(91\) −180.468 −1.98316
\(92\) 26.2898i 0.285759i
\(93\) 51.5675 + 44.0370i 0.554490 + 0.473516i
\(94\) −74.8617 −0.796401
\(95\) 166.025i 1.74764i
\(96\) 11.0207 12.9052i 0.114799 0.134430i
\(97\) −87.7799 −0.904947 −0.452474 0.891778i \(-0.649458\pi\)
−0.452474 + 0.891778i \(0.649458\pi\)
\(98\) 70.5818i 0.720222i
\(99\) 29.4815 4.67336i 0.297793 0.0472056i
\(100\) 11.9448 0.119448
\(101\) 176.529i 1.74781i 0.486093 + 0.873907i \(0.338422\pi\)
−0.486093 + 0.873907i \(0.661578\pi\)
\(102\) 59.6481 + 50.9376i 0.584786 + 0.499388i
\(103\) 125.829 1.22164 0.610822 0.791768i \(-0.290839\pi\)
0.610822 + 0.791768i \(0.290839\pi\)
\(104\) 51.3247i 0.493507i
\(105\) 107.829 126.269i 1.02695 1.20256i
\(106\) 72.2992 0.682068
\(107\) 112.226i 1.04884i −0.851458 0.524422i \(-0.824281\pi\)
0.851458 0.524422i \(-0.175719\pi\)
\(108\) 28.2059 46.0481i 0.261166 0.426371i
\(109\) 77.2632 0.708837 0.354418 0.935087i \(-0.384679\pi\)
0.354418 + 0.935087i \(0.384679\pi\)
\(110\) 26.1035i 0.237305i
\(111\) 49.8192 + 42.5440i 0.448822 + 0.383279i
\(112\) 39.7812 0.355189
\(113\) 207.293i 1.83445i −0.398370 0.917225i \(-0.630424\pi\)
0.398370 0.917225i \(-0.369576\pi\)
\(114\) −82.1930 + 96.2483i −0.720991 + 0.844284i
\(115\) 73.1552 0.636132
\(116\) 31.6855i 0.273151i
\(117\) −25.5690 161.300i −0.218539 1.37864i
\(118\) −77.7354 −0.658775
\(119\) 183.869i 1.54512i
\(120\) 35.9107 + 30.6666i 0.299256 + 0.255555i
\(121\) −11.0000 −0.0909091
\(122\) 34.0192i 0.278846i
\(123\) 18.7282 21.9308i 0.152262 0.178299i
\(124\) −45.2080 −0.364581
\(125\) 105.894i 0.847152i
\(126\) 125.022 19.8183i 0.992237 0.157288i
\(127\) 77.1097 0.607163 0.303581 0.952805i \(-0.401818\pi\)
0.303581 + 0.952805i \(0.401818\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −100.963 86.2192i −0.782659 0.668366i
\(130\) 142.818 1.09860
\(131\) 67.8077i 0.517616i −0.965929 0.258808i \(-0.916670\pi\)
0.965929 0.258808i \(-0.0833297\pi\)
\(132\) −12.9229 + 15.1327i −0.0979005 + 0.114642i
\(133\) −296.691 −2.23076
\(134\) 151.577i 1.13117i
\(135\) 128.135 + 78.4870i 0.949151 + 0.581385i
\(136\) −52.2921 −0.384501
\(137\) 12.2030i 0.0890729i 0.999008 + 0.0445364i \(0.0141811\pi\)
−0.999008 + 0.0445364i \(0.985819\pi\)
\(138\) 42.4095 + 36.2164i 0.307315 + 0.262437i
\(139\) −100.084 −0.720031 −0.360016 0.932946i \(-0.617229\pi\)
−0.360016 + 0.932946i \(0.617229\pi\)
\(140\) 110.697i 0.790691i
\(141\) 103.128 120.763i 0.731405 0.856479i
\(142\) −65.8118 −0.463463
\(143\) 60.1836i 0.420864i
\(144\) 5.63628 + 35.5560i 0.0391409 + 0.246917i
\(145\) −88.1694 −0.608065
\(146\) 9.73382i 0.0666700i
\(147\) 113.859 + 97.2322i 0.774553 + 0.661443i
\(148\) −43.6753 −0.295103
\(149\) 172.468i 1.15750i 0.815504 + 0.578752i \(0.196460\pi\)
−0.815504 + 0.578752i \(0.803540\pi\)
\(150\) −16.4550 + 19.2688i −0.109700 + 0.128459i
\(151\) 6.75844 0.0447579 0.0223790 0.999750i \(-0.492876\pi\)
0.0223790 + 0.999750i \(0.492876\pi\)
\(152\) 84.3786i 0.555122i
\(153\) −164.340 + 26.0510i −1.07412 + 0.170268i
\(154\) −46.6476 −0.302906
\(155\) 125.798i 0.811598i
\(156\) 82.7947 + 70.7040i 0.530736 + 0.453231i
\(157\) −28.6116 −0.182239 −0.0911197 0.995840i \(-0.529045\pi\)
−0.0911197 + 0.995840i \(0.529045\pi\)
\(158\) 90.0966i 0.570232i
\(159\) −99.5980 + 116.630i −0.626403 + 0.733520i
\(160\) −31.4820 −0.196763
\(161\) 130.730i 0.811987i
\(162\) 35.4267 + 108.936i 0.218684 + 0.672441i
\(163\) −38.2298 −0.234539 −0.117269 0.993100i \(-0.537414\pi\)
−0.117269 + 0.993100i \(0.537414\pi\)
\(164\) 19.2262i 0.117233i
\(165\) −42.1090 35.9597i −0.255206 0.217938i
\(166\) −81.2085 −0.489208
\(167\) 7.40637i 0.0443495i −0.999754 0.0221747i \(-0.992941\pi\)
0.999754 0.0221747i \(-0.00705902\pi\)
\(168\) −54.8018 + 64.1732i −0.326201 + 0.381983i
\(169\) 160.279 0.948394
\(170\) 145.510i 0.855942i
\(171\) −42.0359 265.180i −0.245824 1.55076i
\(172\) 88.5118 0.514604
\(173\) 171.502i 0.991341i −0.868511 0.495670i \(-0.834922\pi\)
0.868511 0.495670i \(-0.165078\pi\)
\(174\) −51.1136 43.6494i −0.293756 0.250858i
\(175\) −59.3974 −0.339414
\(176\) 13.2665i 0.0753778i
\(177\) 107.087 125.399i 0.605011 0.708471i
\(178\) 154.131 0.865903
\(179\) 274.694i 1.53460i 0.641288 + 0.767301i \(0.278401\pi\)
−0.641288 + 0.767301i \(0.721599\pi\)
\(180\) −98.9398 + 15.6838i −0.549665 + 0.0871320i
\(181\) −303.937 −1.67921 −0.839606 0.543196i \(-0.817214\pi\)
−0.839606 + 0.543196i \(0.817214\pi\)
\(182\) 255.220i 1.40231i
\(183\) 54.8782 + 46.8642i 0.299881 + 0.256088i
\(184\) −37.1794 −0.202062
\(185\) 121.533i 0.656934i
\(186\) 62.2777 72.9275i 0.334827 0.392083i
\(187\) 61.3179 0.327903
\(188\) 105.870i 0.563141i
\(189\) −140.258 + 228.981i −0.742106 + 1.21154i
\(190\) 234.795 1.23577
\(191\) 222.456i 1.16469i −0.812941 0.582346i \(-0.802135\pi\)
0.812941 0.582346i \(-0.197865\pi\)
\(192\) −18.2508 15.5856i −0.0950560 0.0811748i
\(193\) 143.274 0.742353 0.371177 0.928562i \(-0.378954\pi\)
0.371177 + 0.928562i \(0.378954\pi\)
\(194\) 124.139i 0.639894i
\(195\) −196.744 + 230.388i −1.00894 + 1.18148i
\(196\) −99.8177 −0.509274
\(197\) 6.60585i 0.0335322i 0.999859 + 0.0167661i \(0.00533707\pi\)
−0.999859 + 0.0167661i \(0.994663\pi\)
\(198\) −6.60913 41.6932i −0.0333794 0.210572i
\(199\) −10.1627 −0.0510689 −0.0255344 0.999674i \(-0.508129\pi\)
−0.0255344 + 0.999674i \(0.508129\pi\)
\(200\) 16.8925i 0.0844626i
\(201\) 244.517 + 208.810i 1.21650 + 1.03885i
\(202\) 249.650 1.23589
\(203\) 157.561i 0.776161i
\(204\) 72.0366 84.3552i 0.353121 0.413506i
\(205\) −53.4996 −0.260974
\(206\) 177.949i 0.863832i
\(207\) −116.845 + 18.5221i −0.564470 + 0.0894788i
\(208\) −72.5841 −0.348962
\(209\) 98.9427i 0.473410i
\(210\) −178.571 152.494i −0.850338 0.726162i
\(211\) 196.251 0.930101 0.465051 0.885284i \(-0.346036\pi\)
0.465051 + 0.885284i \(0.346036\pi\)
\(212\) 102.246i 0.482295i
\(213\) 90.6611 106.165i 0.425639 0.498425i
\(214\) −158.712 −0.741645
\(215\) 246.297i 1.14557i
\(216\) −65.1218 39.8892i −0.301490 0.184672i
\(217\) 224.803 1.03596
\(218\) 109.267i 0.501223i
\(219\) 15.7022 + 13.4091i 0.0716994 + 0.0612290i
\(220\) 36.9159 0.167800
\(221\) 335.485i 1.51803i
\(222\) 60.1663 70.4550i 0.271019 0.317365i
\(223\) 344.258 1.54376 0.771880 0.635768i \(-0.219317\pi\)
0.771880 + 0.635768i \(0.219317\pi\)
\(224\) 56.2591i 0.251157i
\(225\) −8.41555 53.0888i −0.0374024 0.235950i
\(226\) −293.156 −1.29715
\(227\) 376.155i 1.65707i −0.559937 0.828535i \(-0.689175\pi\)
0.559937 0.828535i \(-0.310825\pi\)
\(228\) 136.116 + 116.238i 0.596999 + 0.509818i
\(229\) 28.1230 0.122808 0.0614040 0.998113i \(-0.480442\pi\)
0.0614040 + 0.998113i \(0.480442\pi\)
\(230\) 103.457i 0.449813i
\(231\) 64.2608 75.2497i 0.278185 0.325756i
\(232\) 44.8101 0.193147
\(233\) 307.576i 1.32007i 0.751236 + 0.660034i \(0.229458\pi\)
−0.751236 + 0.660034i \(0.770542\pi\)
\(234\) −228.113 + 36.1601i −0.974842 + 0.154530i
\(235\) −294.600 −1.25362
\(236\) 109.935i 0.465824i
\(237\) −145.340 124.115i −0.613248 0.523694i
\(238\) 260.030 1.09256
\(239\) 195.774i 0.819137i 0.912279 + 0.409569i \(0.134321\pi\)
−0.912279 + 0.409569i \(0.865679\pi\)
\(240\) 43.3691 50.7854i 0.180704 0.211606i
\(241\) −94.8734 −0.393666 −0.196833 0.980437i \(-0.563066\pi\)
−0.196833 + 0.980437i \(0.563066\pi\)
\(242\) 15.5563i 0.0642824i
\(243\) −224.533 92.9188i −0.924004 0.382382i
\(244\) −48.1104 −0.197174
\(245\) 277.757i 1.13370i
\(246\) −31.0148 26.4857i −0.126076 0.107665i
\(247\) 541.339 2.19165
\(248\) 63.9338i 0.257797i
\(249\) 111.871 131.002i 0.449282 0.526112i
\(250\) −149.757 −0.599027
\(251\) 297.104i 1.18368i 0.806055 + 0.591840i \(0.201598\pi\)
−0.806055 + 0.591840i \(0.798402\pi\)
\(252\) −28.0272 176.808i −0.111219 0.701618i
\(253\) 43.5967 0.172319
\(254\) 109.050i 0.429329i
\(255\) 234.730 + 200.452i 0.920511 + 0.786087i
\(256\) 16.0000 0.0625000
\(257\) 375.940i 1.46280i 0.681948 + 0.731401i \(0.261133\pi\)
−0.681948 + 0.731401i \(0.738867\pi\)
\(258\) −121.932 + 142.783i −0.472606 + 0.553424i
\(259\) 217.182 0.838540
\(260\) 201.976i 0.776830i
\(261\) 140.826 22.3236i 0.539565 0.0855309i
\(262\) −95.8946 −0.366010
\(263\) 138.319i 0.525927i −0.964806 0.262963i \(-0.915300\pi\)
0.964806 0.262963i \(-0.0846998\pi\)
\(264\) 21.4009 + 18.2757i 0.0810641 + 0.0692261i
\(265\) 284.515 1.07364
\(266\) 419.585i 1.57739i
\(267\) −212.328 + 248.637i −0.795235 + 0.931224i
\(268\) −214.362 −0.799859
\(269\) 25.8825i 0.0962173i 0.998842 + 0.0481087i \(0.0153194\pi\)
−0.998842 + 0.0481087i \(0.984681\pi\)
\(270\) 110.997 181.211i 0.411101 0.671151i
\(271\) −250.001 −0.922512 −0.461256 0.887267i \(-0.652601\pi\)
−0.461256 + 0.887267i \(0.652601\pi\)
\(272\) 73.9522i 0.271883i
\(273\) −411.709 351.586i −1.50809 1.28786i
\(274\) 17.2576 0.0629840
\(275\) 19.8082i 0.0720300i
\(276\) 51.2177 59.9761i 0.185571 0.217305i
\(277\) 256.366 0.925511 0.462755 0.886486i \(-0.346861\pi\)
0.462755 + 0.886486i \(0.346861\pi\)
\(278\) 141.541i 0.509139i
\(279\) 31.8506 + 200.927i 0.114160 + 0.720169i
\(280\) 156.549 0.559103
\(281\) 132.023i 0.469834i 0.972015 + 0.234917i \(0.0754818\pi\)
−0.972015 + 0.234917i \(0.924518\pi\)
\(282\) −170.785 145.845i −0.605622 0.517182i
\(283\) −282.713 −0.998984 −0.499492 0.866318i \(-0.666480\pi\)
−0.499492 + 0.866318i \(0.666480\pi\)
\(284\) 93.0719i 0.327718i
\(285\) −323.450 + 378.761i −1.13491 + 1.32899i
\(286\) 85.1125 0.297596
\(287\) 95.6050i 0.333119i
\(288\) 50.2838 7.97091i 0.174597 0.0276768i
\(289\) −52.8076 −0.182725
\(290\) 124.690i 0.429967i
\(291\) −200.256 171.012i −0.688166 0.587671i
\(292\) −13.7657 −0.0471428
\(293\) 307.689i 1.05013i 0.851061 + 0.525066i \(0.175959\pi\)
−0.851061 + 0.525066i \(0.824041\pi\)
\(294\) 137.507 161.021i 0.467711 0.547692i
\(295\) −305.909 −1.03698
\(296\) 61.7662i 0.208670i
\(297\) 76.3621 + 46.7742i 0.257112 + 0.157489i
\(298\) 243.907 0.818478
\(299\) 238.528i 0.797752i
\(300\) 27.2503 + 23.2708i 0.0908342 + 0.0775695i
\(301\) −440.138 −1.46225
\(302\) 9.55788i 0.0316486i
\(303\) −343.913 + 402.724i −1.13503 + 1.32912i
\(304\) −119.329 −0.392531
\(305\) 133.874i 0.438931i
\(306\) 36.8416 + 232.412i 0.120397 + 0.759518i
\(307\) −24.7602 −0.0806521 −0.0403260 0.999187i \(-0.512840\pi\)
−0.0403260 + 0.999187i \(0.512840\pi\)
\(308\) 65.9696i 0.214187i
\(309\) 287.060 + 245.140i 0.928997 + 0.793333i
\(310\) −177.905 −0.573887
\(311\) 227.492i 0.731486i −0.930716 0.365743i \(-0.880815\pi\)
0.930716 0.365743i \(-0.119185\pi\)
\(312\) 99.9906 117.089i 0.320483 0.375287i
\(313\) −491.341 −1.56978 −0.784889 0.619636i \(-0.787280\pi\)
−0.784889 + 0.619636i \(0.787280\pi\)
\(314\) 40.4629i 0.128863i
\(315\) 491.993 77.9898i 1.56188 0.247587i
\(316\) 127.416 0.403215
\(317\) 69.5592i 0.219430i −0.993963 0.109715i \(-0.965006\pi\)
0.993963 0.109715i \(-0.0349938\pi\)
\(318\) 164.939 + 140.853i 0.518677 + 0.442934i
\(319\) −52.5445 −0.164716
\(320\) 44.5223i 0.139132i
\(321\) 218.639 256.027i 0.681118 0.797592i
\(322\) 184.880 0.574162
\(323\) 551.541i 1.70756i
\(324\) 154.058 50.1010i 0.475488 0.154633i
\(325\) 108.376 0.333463
\(326\) 54.0651i 0.165844i
\(327\) 176.264 + 150.524i 0.539034 + 0.460317i
\(328\) 27.1899 0.0828962
\(329\) 526.456i 1.60017i
\(330\) −50.8547 + 59.5511i −0.154105 + 0.180458i
\(331\) −480.359 −1.45124 −0.725618 0.688098i \(-0.758446\pi\)
−0.725618 + 0.688098i \(0.758446\pi\)
\(332\) 114.846i 0.345922i
\(333\) 30.7708 + 194.115i 0.0924048 + 0.582928i
\(334\) −10.4742 −0.0313598
\(335\) 596.493i 1.78058i
\(336\) 90.7546 + 77.5015i 0.270103 + 0.230659i
\(337\) −168.133 −0.498911 −0.249456 0.968386i \(-0.580252\pi\)
−0.249456 + 0.968386i \(0.580252\pi\)
\(338\) 226.668i 0.670616i
\(339\) 403.847 472.906i 1.19129 1.39500i
\(340\) −205.782 −0.605243
\(341\) 74.9690i 0.219850i
\(342\) −375.021 + 59.4477i −1.09655 + 0.173824i
\(343\) 9.03876 0.0263521
\(344\) 125.175i 0.363880i
\(345\) 166.892 + 142.521i 0.483745 + 0.413103i
\(346\) −242.540 −0.700984
\(347\) 253.016i 0.729152i 0.931174 + 0.364576i \(0.118786\pi\)
−0.931174 + 0.364576i \(0.881214\pi\)
\(348\) −61.7295 + 72.2856i −0.177384 + 0.207717i
\(349\) 266.422 0.763385 0.381693 0.924289i \(-0.375341\pi\)
0.381693 + 0.924289i \(0.375341\pi\)
\(350\) 84.0006i 0.240002i
\(351\) 255.913 417.795i 0.729096 1.19030i
\(352\) −18.7617 −0.0533002
\(353\) 224.309i 0.635436i 0.948185 + 0.317718i \(0.102917\pi\)
−0.948185 + 0.317718i \(0.897083\pi\)
\(354\) −177.341 151.444i −0.500964 0.427807i
\(355\) −258.986 −0.729538
\(356\) 217.974i 0.612286i
\(357\) −358.213 + 419.469i −1.00340 + 1.17498i
\(358\) 388.475 1.08513
\(359\) 243.464i 0.678172i 0.940755 + 0.339086i \(0.110118\pi\)
−0.940755 + 0.339086i \(0.889882\pi\)
\(360\) 22.1802 + 139.922i 0.0616116 + 0.388672i
\(361\) 528.968 1.46529
\(362\) 429.832i 1.18738i
\(363\) −25.0948 21.4301i −0.0691317 0.0590362i
\(364\) 360.935 0.991580
\(365\) 38.3050i 0.104945i
\(366\) 66.2760 77.6094i 0.181082 0.212048i
\(367\) 287.112 0.782322 0.391161 0.920322i \(-0.372074\pi\)
0.391161 + 0.920322i \(0.372074\pi\)
\(368\) 52.5796i 0.142879i
\(369\) 85.4509 13.5455i 0.231574 0.0367088i
\(370\) −171.873 −0.464522
\(371\) 508.435i 1.37045i
\(372\) −103.135 88.0740i −0.277245 0.236758i
\(373\) 509.085 1.36484 0.682419 0.730961i \(-0.260928\pi\)
0.682419 + 0.730961i \(0.260928\pi\)
\(374\) 86.7166i 0.231863i
\(375\) 206.302 241.581i 0.550139 0.644215i
\(376\) 149.723 0.398201
\(377\) 287.483i 0.762555i
\(378\) 323.828 + 198.355i 0.856687 + 0.524748i
\(379\) 330.575 0.872229 0.436115 0.899891i \(-0.356354\pi\)
0.436115 + 0.899891i \(0.356354\pi\)
\(380\) 332.051i 0.873818i
\(381\) 175.914 + 150.225i 0.461716 + 0.394291i
\(382\) −314.601 −0.823562
\(383\) 9.41868i 0.0245918i 0.999924 + 0.0122959i \(0.00391401\pi\)
−0.999924 + 0.0122959i \(0.996086\pi\)
\(384\) −22.0413 + 25.8105i −0.0573993 + 0.0672148i
\(385\) −183.570 −0.476805
\(386\) 202.620i 0.524923i
\(387\) −62.3597 393.391i −0.161136 1.01652i
\(388\) 175.560 0.452474
\(389\) 118.462i 0.304531i −0.988340 0.152265i \(-0.951343\pi\)
0.988340 0.152265i \(-0.0486568\pi\)
\(390\) 325.818 + 278.238i 0.835431 + 0.713431i
\(391\) −243.024 −0.621544
\(392\) 141.164i 0.360111i
\(393\) 132.103 154.693i 0.336139 0.393620i
\(394\) 9.34208 0.0237109
\(395\) 354.553i 0.897602i
\(396\) −58.9630 + 9.34672i −0.148897 + 0.0236028i
\(397\) −503.584 −1.26847 −0.634237 0.773139i \(-0.718685\pi\)
−0.634237 + 0.773139i \(0.718685\pi\)
\(398\) 14.3722i 0.0361112i
\(399\) −676.855 578.013i −1.69638 1.44865i
\(400\) −23.8896 −0.0597241
\(401\) 261.527i 0.652187i 0.945338 + 0.326093i \(0.105732\pi\)
−0.945338 + 0.326093i \(0.894268\pi\)
\(402\) 295.301 345.799i 0.734581 0.860197i
\(403\) −410.173 −1.01780
\(404\) 353.058i 0.873907i
\(405\) 139.413 + 428.689i 0.344230 + 1.05849i
\(406\) −222.825 −0.548829
\(407\) 72.4273i 0.177954i
\(408\) −119.296 101.875i −0.292393 0.249694i
\(409\) −602.515 −1.47314 −0.736571 0.676360i \(-0.763556\pi\)
−0.736571 + 0.676360i \(0.763556\pi\)
\(410\) 75.6599i 0.184536i
\(411\) −23.7738 + 27.8392i −0.0578438 + 0.0677353i
\(412\) −251.659 −0.610822
\(413\) 546.666i 1.32365i
\(414\) 26.1942 + 165.244i 0.0632710 + 0.399140i
\(415\) −319.576 −0.770062
\(416\) 102.649i 0.246754i
\(417\) −228.327 194.984i −0.547547 0.467587i
\(418\) 139.926 0.334751
\(419\) 388.828i 0.927991i 0.885837 + 0.463996i \(0.153585\pi\)
−0.885837 + 0.463996i \(0.846415\pi\)
\(420\) −215.659 + 252.538i −0.513474 + 0.601280i
\(421\) 659.919 1.56750 0.783751 0.621075i \(-0.213304\pi\)
0.783751 + 0.621075i \(0.213304\pi\)
\(422\) 277.541i 0.657681i
\(423\) 470.542 74.5895i 1.11239 0.176334i
\(424\) −144.598 −0.341034
\(425\) 110.418i 0.259807i
\(426\) −150.139 128.214i −0.352440 0.300972i
\(427\) 239.236 0.560271
\(428\) 224.453i 0.524422i
\(429\) −117.249 + 137.300i −0.273309 + 0.320046i
\(430\) 348.316 0.810038
\(431\) 263.846i 0.612171i −0.952004 0.306086i \(-0.900981\pi\)
0.952004 0.306086i \(-0.0990194\pi\)
\(432\) −56.4118 + 92.0962i −0.130583 + 0.213186i
\(433\) −118.654 −0.274028 −0.137014 0.990569i \(-0.543751\pi\)
−0.137014 + 0.990569i \(0.543751\pi\)
\(434\) 317.920i 0.732535i
\(435\) −201.145 171.771i −0.462402 0.394876i
\(436\) −154.526 −0.354418
\(437\) 392.143i 0.897353i
\(438\) 18.9634 22.2062i 0.0432954 0.0506991i
\(439\) 339.275 0.772837 0.386419 0.922324i \(-0.373712\pi\)
0.386419 + 0.922324i \(0.373712\pi\)
\(440\) 52.2070i 0.118652i
\(441\) 70.3251 + 443.640i 0.159467 + 1.00599i
\(442\) −474.447 −1.07341
\(443\) 399.434i 0.901658i 0.892610 + 0.450829i \(0.148872\pi\)
−0.892610 + 0.450829i \(0.851128\pi\)
\(444\) −99.6384 85.0880i −0.224411 0.191640i
\(445\) 606.543 1.36302
\(446\) 486.855i 1.09160i
\(447\) −336.001 + 393.459i −0.751681 + 0.880221i
\(448\) −79.5623 −0.177595
\(449\) 508.464i 1.13244i 0.824255 + 0.566218i \(0.191594\pi\)
−0.824255 + 0.566218i \(0.808406\pi\)
\(450\) −75.0789 + 11.9014i −0.166842 + 0.0264475i
\(451\) −31.8830 −0.0706941
\(452\) 414.586i 0.917225i
\(453\) 15.4183 + 13.1668i 0.0340361 + 0.0290657i
\(454\) −531.963 −1.17173
\(455\) 1004.35i 2.20737i
\(456\) 164.386 192.497i 0.360496 0.422142i
\(457\) −214.301 −0.468929 −0.234465 0.972125i \(-0.575334\pi\)
−0.234465 + 0.972125i \(0.575334\pi\)
\(458\) 39.7720i 0.0868384i
\(459\) −425.669 260.736i −0.927385 0.568052i
\(460\) −146.310 −0.318066
\(461\) 235.232i 0.510265i 0.966906 + 0.255133i \(0.0821192\pi\)
−0.966906 + 0.255133i \(0.917881\pi\)
\(462\) −106.419 90.8785i −0.230345 0.196707i
\(463\) −554.128 −1.19682 −0.598410 0.801190i \(-0.704201\pi\)
−0.598410 + 0.801190i \(0.704201\pi\)
\(464\) 63.3710i 0.136575i
\(465\) 245.079 286.988i 0.527051 0.617179i
\(466\) 434.978 0.933428
\(467\) 598.471i 1.28152i 0.767740 + 0.640761i \(0.221381\pi\)
−0.767740 + 0.640761i \(0.778619\pi\)
\(468\) 51.1381 + 322.601i 0.109269 + 0.689318i
\(469\) 1065.95 2.27281
\(470\) 416.627i 0.886440i
\(471\) −65.2729 55.7409i −0.138584 0.118346i
\(472\) 155.471 0.329387
\(473\) 146.780i 0.310318i
\(474\) −175.526 + 205.541i −0.370307 + 0.433632i
\(475\) 178.171 0.375097
\(476\) 367.738i 0.772559i
\(477\) −454.435 + 72.0362i −0.952694 + 0.151019i
\(478\) 276.866 0.579218
\(479\) 24.3883i 0.0509151i −0.999676 0.0254575i \(-0.991896\pi\)
0.999676 0.0254575i \(-0.00810426\pi\)
\(480\) −71.8213 61.3331i −0.149628 0.127777i
\(481\) −396.267 −0.823839
\(482\) 134.171i 0.278364i
\(483\) −254.687 + 298.240i −0.527303 + 0.617474i
\(484\) 22.0000 0.0454545
\(485\) 488.520i 1.00726i
\(486\) −131.407 + 317.538i −0.270385 + 0.653370i
\(487\) −335.376 −0.688658 −0.344329 0.938849i \(-0.611894\pi\)
−0.344329 + 0.938849i \(0.611894\pi\)
\(488\) 68.0383i 0.139423i
\(489\) −87.2154 74.4791i −0.178355 0.152309i
\(490\) −392.808 −0.801648
\(491\) 476.704i 0.970884i −0.874269 0.485442i \(-0.838659\pi\)
0.874269 0.485442i \(-0.161341\pi\)
\(492\) −37.4564 + 43.8616i −0.0761308 + 0.0891495i
\(493\) 292.901 0.594120
\(494\) 765.568i 1.54973i
\(495\) −26.0086 164.073i −0.0525426 0.331461i
\(496\) 90.4160 0.182290
\(497\) 462.814i 0.931215i
\(498\) −185.265 158.210i −0.372017 0.317691i
\(499\) 353.684 0.708785 0.354393 0.935097i \(-0.384688\pi\)
0.354393 + 0.935097i \(0.384688\pi\)
\(500\) 211.788i 0.423576i
\(501\) 14.4290 16.8965i 0.0288005 0.0337255i
\(502\) 420.168 0.836989
\(503\) 250.745i 0.498500i −0.968439 0.249250i \(-0.919816\pi\)
0.968439 0.249250i \(-0.0801840\pi\)
\(504\) −250.044 + 39.6365i −0.496119 + 0.0786439i
\(505\) 982.436 1.94542
\(506\) 61.6551i 0.121848i
\(507\) 365.651 + 312.254i 0.721205 + 0.615886i
\(508\) −154.219 −0.303581
\(509\) 677.779i 1.33159i −0.746135 0.665795i \(-0.768093\pi\)
0.746135 0.665795i \(-0.231907\pi\)
\(510\) 283.482 331.959i 0.555848 0.650900i
\(511\) 68.4520 0.133957
\(512\) 22.6274i 0.0441942i
\(513\) 420.724 686.861i 0.820125 1.33891i
\(514\) 531.659 1.03436
\(515\) 700.276i 1.35976i
\(516\) 201.926 + 172.438i 0.391330 + 0.334183i
\(517\) −175.566 −0.339587
\(518\) 307.141i 0.592937i
\(519\) 334.119 391.255i 0.643775 0.753864i
\(520\) −285.637 −0.549302
\(521\) 570.949i 1.09587i 0.836520 + 0.547936i \(0.184586\pi\)
−0.836520 + 0.547936i \(0.815414\pi\)
\(522\) −31.5703 199.159i −0.0604794 0.381530i
\(523\) 512.547 0.980013 0.490006 0.871719i \(-0.336994\pi\)
0.490006 + 0.871719i \(0.336994\pi\)
\(524\) 135.615i 0.258808i
\(525\) −135.506 115.718i −0.258106 0.220415i
\(526\) −195.612 −0.371886
\(527\) 417.904i 0.792986i
\(528\) 25.8457 30.2655i 0.0489502 0.0573210i
\(529\) 356.211 0.673368
\(530\) 402.366i 0.759180i
\(531\) 488.605 77.4528i 0.920159 0.145862i
\(532\) 593.383 1.11538
\(533\) 174.440i 0.327279i
\(534\) 351.626 + 300.277i 0.658475 + 0.562316i
\(535\) −624.572 −1.16742
\(536\) 303.154i 0.565586i
\(537\) −535.157 + 626.671i −0.996568 + 1.16698i
\(538\) 36.6033 0.0680359
\(539\) 165.529i 0.307104i
\(540\) −256.271 156.974i −0.474576 0.290692i
\(541\) −706.578 −1.30606 −0.653030 0.757332i \(-0.726502\pi\)
−0.653030 + 0.757332i \(0.726502\pi\)
\(542\) 353.555i 0.652315i
\(543\) −693.386 592.129i −1.27695 1.09048i
\(544\) 104.584 0.192250
\(545\) 429.992i 0.788976i
\(546\) −497.218 + 582.244i −0.910656 + 1.06638i
\(547\) 769.246 1.40630 0.703150 0.711042i \(-0.251776\pi\)
0.703150 + 0.711042i \(0.251776\pi\)
\(548\) 24.4060i 0.0445364i
\(549\) 33.8954 + 213.827i 0.0617403 + 0.389484i
\(550\) 28.0131 0.0509329
\(551\) 472.626i 0.857761i
\(552\) −84.8191 72.4327i −0.153658 0.131219i
\(553\) −633.594 −1.14574
\(554\) 362.557i 0.654435i
\(555\) 236.770 277.258i 0.426612 0.499564i
\(556\) 200.169 0.360016
\(557\) 913.366i 1.63980i −0.572510 0.819898i \(-0.694030\pi\)
0.572510 0.819898i \(-0.305970\pi\)
\(558\) 284.154 45.0436i 0.509237 0.0807233i
\(559\) 803.070 1.43662
\(560\) 221.394i 0.395346i
\(561\) 139.887 + 119.459i 0.249353 + 0.212940i
\(562\) 186.709 0.332223
\(563\) 734.690i 1.30496i −0.757808 0.652478i \(-0.773730\pi\)
0.757808 0.652478i \(-0.226270\pi\)
\(564\) −206.256 + 241.527i −0.365703 + 0.428239i
\(565\) −1153.64 −2.04185
\(566\) 399.816i 0.706389i
\(567\) −766.076 + 249.134i −1.35110 + 0.439391i
\(568\) 131.624 0.231732
\(569\) 325.569i 0.572177i 0.958203 + 0.286089i \(0.0923552\pi\)
−0.958203 + 0.286089i \(0.907645\pi\)
\(570\) 535.650 + 457.427i 0.939736 + 0.802504i
\(571\) 110.422 0.193383 0.0966915 0.995314i \(-0.469174\pi\)
0.0966915 + 0.995314i \(0.469174\pi\)
\(572\) 120.367i 0.210432i
\(573\) 433.388 507.499i 0.756349 0.885688i
\(574\) −135.206 −0.235550
\(575\) 78.5068i 0.136534i
\(576\) −11.2726 71.1121i −0.0195704 0.123458i
\(577\) −860.135 −1.49070 −0.745351 0.666672i \(-0.767718\pi\)
−0.745351 + 0.666672i \(0.767718\pi\)
\(578\) 74.6813i 0.129206i
\(579\) 326.858 + 279.126i 0.564521 + 0.482083i
\(580\) 176.339 0.304033
\(581\) 571.089i 0.982942i
\(582\) −241.848 + 283.205i −0.415546 + 0.486607i
\(583\) 169.557 0.290835
\(584\) 19.4676i 0.0333350i
\(585\) −897.682 + 142.299i −1.53450 + 0.243246i
\(586\) 435.138 0.742556
\(587\) 167.636i 0.285581i 0.989753 + 0.142791i \(0.0456076\pi\)
−0.989753 + 0.142791i \(0.954392\pi\)
\(588\) −227.719 194.464i −0.387277 0.330722i
\(589\) −674.330 −1.14487
\(590\) 432.620i 0.733254i
\(591\) −12.8695 + 15.0702i −0.0217758 + 0.0254995i
\(592\) 87.3506 0.147552
\(593\) 560.335i 0.944915i −0.881353 0.472458i \(-0.843367\pi\)
0.881353 0.472458i \(-0.156633\pi\)
\(594\) 66.1487 107.992i 0.111361 0.181805i
\(595\) 1023.28 1.71980
\(596\) 344.936i 0.578752i
\(597\) −23.1846 19.7989i −0.0388353 0.0331641i
\(598\) −337.329 −0.564096
\(599\) 202.084i 0.337368i 0.985670 + 0.168684i \(0.0539518\pi\)
−0.985670 + 0.168684i \(0.946048\pi\)
\(600\) 32.9099 38.5377i 0.0548499 0.0642295i
\(601\) −302.803 −0.503831 −0.251916 0.967749i \(-0.581061\pi\)
−0.251916 + 0.967749i \(0.581061\pi\)
\(602\) 622.449i 1.03397i
\(603\) 151.026 + 952.734i 0.250457 + 1.57999i
\(604\) −13.5169 −0.0223790
\(605\) 61.2181i 0.101187i
\(606\) 569.538 + 486.367i 0.939831 + 0.802586i
\(607\) 639.850 1.05412 0.527059 0.849829i \(-0.323295\pi\)
0.527059 + 0.849829i \(0.323295\pi\)
\(608\) 168.757i 0.277561i
\(609\) 306.959 359.450i 0.504038 0.590231i
\(610\) −189.326 −0.310371
\(611\) 960.564i 1.57212i
\(612\) 328.681 52.1019i 0.537060 0.0851338i
\(613\) 618.980 1.00975 0.504877 0.863191i \(-0.331538\pi\)
0.504877 + 0.863191i \(0.331538\pi\)
\(614\) 35.0162i 0.0570296i
\(615\) −122.051 104.228i −0.198457 0.169476i
\(616\) 93.2951 0.151453
\(617\) 426.575i 0.691370i −0.938351 0.345685i \(-0.887647\pi\)
0.938351 0.345685i \(-0.112353\pi\)
\(618\) 346.680 405.964i 0.560971 0.656900i
\(619\) −799.993 −1.29240 −0.646198 0.763170i \(-0.723642\pi\)
−0.646198 + 0.763170i \(0.723642\pi\)
\(620\) 251.595i 0.405799i
\(621\) −302.649 185.382i −0.487357 0.298522i
\(622\) −321.723 −0.517239
\(623\) 1083.91i 1.73982i
\(624\) −165.589 141.408i −0.265368 0.226616i
\(625\) −738.641 −1.18182
\(626\) 694.860i 1.11000i
\(627\) −192.760 + 225.722i −0.307432 + 0.360004i
\(628\) 57.2232 0.0911197
\(629\) 403.735i 0.641869i
\(630\) −110.294 695.783i −0.175070 1.10442i
\(631\) 108.289 0.171614 0.0858072 0.996312i \(-0.472653\pi\)
0.0858072 + 0.996312i \(0.472653\pi\)
\(632\) 180.193i 0.285116i
\(633\) 447.717 + 382.336i 0.707294 + 0.604006i
\(634\) −98.3716 −0.155160
\(635\) 429.137i 0.675807i
\(636\) 199.196 233.259i 0.313201 0.366760i
\(637\) −905.648 −1.42174
\(638\) 74.3091i 0.116472i
\(639\) 413.659 65.5725i 0.647353 0.102617i
\(640\) 62.9640 0.0983813
\(641\) 593.109i 0.925286i −0.886545 0.462643i \(-0.846901\pi\)
0.886545 0.462643i \(-0.153099\pi\)
\(642\) −362.077 309.202i −0.563983 0.481623i
\(643\) −55.2692 −0.0859551 −0.0429776 0.999076i \(-0.513684\pi\)
−0.0429776 + 0.999076i \(0.513684\pi\)
\(644\) 261.460i 0.405994i
\(645\) −479.834 + 561.888i −0.743929 + 0.871144i
\(646\) −779.997 −1.20743
\(647\) 1178.46i 1.82142i −0.413046 0.910710i \(-0.635535\pi\)
0.413046 0.910710i \(-0.364465\pi\)
\(648\) −70.8535 217.871i −0.109342 0.336221i
\(649\) −182.306 −0.280903
\(650\) 153.266i 0.235794i
\(651\) 512.854 + 437.961i 0.787794 + 0.672751i
\(652\) 76.4596 0.117269
\(653\) 14.0119i 0.0214577i 0.999942 + 0.0107289i \(0.00341517\pi\)
−0.999942 + 0.0107289i \(0.996585\pi\)
\(654\) 212.873 249.275i 0.325494 0.381154i
\(655\) −377.369 −0.576136
\(656\) 38.4524i 0.0586164i
\(657\) 9.69843 + 61.1818i 0.0147617 + 0.0931229i
\(658\) −744.521 −1.13149
\(659\) 1184.59i 1.79755i 0.438408 + 0.898776i \(0.355542\pi\)
−0.438408 + 0.898776i \(0.644458\pi\)
\(660\) 84.2180 + 71.9194i 0.127603 + 0.108969i
\(661\) −259.706 −0.392898 −0.196449 0.980514i \(-0.562941\pi\)
−0.196449 + 0.980514i \(0.562941\pi\)
\(662\) 679.330i 1.02618i
\(663\) 653.590 765.356i 0.985806 1.15438i
\(664\) 162.417 0.244604
\(665\) 1651.17i 2.48297i
\(666\) 274.520 43.5165i 0.412193 0.0653400i
\(667\) 208.251 0.312221
\(668\) 14.8127i 0.0221747i
\(669\) 785.372 + 670.683i 1.17395 + 1.00252i
\(670\) −843.569 −1.25906
\(671\) 79.7820i 0.118900i
\(672\) 109.604 128.346i 0.163101 0.190992i
\(673\) 982.316 1.45961 0.729804 0.683657i \(-0.239611\pi\)
0.729804 + 0.683657i \(0.239611\pi\)
\(674\) 237.776i 0.352784i
\(675\) 84.2286 137.509i 0.124783 0.203717i
\(676\) −320.557 −0.474197
\(677\) 1348.52i 1.99190i −0.0899183 0.995949i \(-0.528661\pi\)
0.0899183 0.995949i \(-0.471339\pi\)
\(678\) −668.791 571.126i −0.986417 0.842368i
\(679\) −872.997 −1.28571
\(680\) 291.020i 0.427971i
\(681\) 732.823 858.139i 1.07610 1.26012i
\(682\) −106.022 −0.155458
\(683\) 122.188i 0.178899i −0.995991 0.0894495i \(-0.971489\pi\)
0.995991 0.0894495i \(-0.0285108\pi\)
\(684\) 84.0717 + 530.360i 0.122912 + 0.775380i
\(685\) 67.9131 0.0991432
\(686\) 12.7827i 0.0186337i
\(687\) 64.1583 + 54.7892i 0.0933891 + 0.0797513i
\(688\) −177.024 −0.257302
\(689\) 927.684i 1.34642i
\(690\) 201.554 236.021i 0.292108 0.342060i
\(691\) −351.379 −0.508508 −0.254254 0.967138i \(-0.581830\pi\)
−0.254254 + 0.967138i \(0.581830\pi\)
\(692\) 343.004i 0.495670i
\(693\) 293.202 46.4779i 0.423091 0.0670677i
\(694\) 357.818 0.515588
\(695\) 556.998i 0.801436i
\(696\) 102.227 + 87.2987i 0.146878 + 0.125429i
\(697\) 177.727 0.254989
\(698\) 376.777i 0.539795i
\(699\) −599.217 + 701.686i −0.857249 + 1.00384i
\(700\) 118.795 0.169707
\(701\) 285.995i 0.407982i 0.978973 + 0.203991i \(0.0653913\pi\)
−0.978973 + 0.203991i \(0.934609\pi\)
\(702\) −590.852 361.915i −0.841669 0.515549i
\(703\) −651.468 −0.926697
\(704\) 26.5330i 0.0376889i
\(705\) −672.083 573.938i −0.953310 0.814096i
\(706\) 317.221 0.449321
\(707\) 1755.63i 2.48322i
\(708\) −214.174 + 250.799i −0.302506 + 0.354235i
\(709\) 447.807 0.631603 0.315801 0.948825i \(-0.397727\pi\)
0.315801 + 0.948825i \(0.397727\pi\)
\(710\) 366.261i 0.515861i
\(711\) −89.7689 566.300i −0.126257 0.796484i
\(712\) −308.262 −0.432952
\(713\) 297.128i 0.416729i
\(714\) 593.218 + 506.589i 0.830838 + 0.709509i
\(715\) 334.939 0.468446
\(716\) 549.387i 0.767301i
\(717\) −381.406 + 446.628i −0.531947 + 0.622912i
\(718\) 344.310 0.479540
\(719\) 845.198i 1.17552i −0.809036 0.587760i \(-0.800010\pi\)
0.809036 0.587760i \(-0.199990\pi\)
\(720\) 197.880 31.3675i 0.274833 0.0435660i
\(721\) 1251.41 1.73566
\(722\) 748.074i 1.03611i
\(723\) −216.439 184.832i −0.299362 0.255646i
\(724\) 607.875 0.839606
\(725\) 94.6194i 0.130510i
\(726\) −30.3068 + 35.4894i −0.0417449 + 0.0488835i
\(727\) −354.124 −0.487103 −0.243551 0.969888i \(-0.578312\pi\)
−0.243551 + 0.969888i \(0.578312\pi\)
\(728\) 510.440i 0.701153i
\(729\) −331.213 649.414i −0.454339 0.890829i
\(730\) −54.1715 −0.0742076
\(731\) 818.205i 1.11930i
\(732\) −109.756 93.7284i −0.149940 0.128044i
\(733\) 646.262 0.881667 0.440834 0.897589i \(-0.354683\pi\)
0.440834 + 0.897589i \(0.354683\pi\)
\(734\) 406.038i 0.553185i
\(735\) 541.125 633.660i 0.736224 0.862122i
\(736\) 74.3588 0.101031
\(737\) 355.479i 0.482333i
\(738\) −19.1563 120.846i −0.0259570 0.163748i
\(739\) −102.126 −0.138195 −0.0690975 0.997610i \(-0.522012\pi\)
−0.0690975 + 0.997610i \(0.522012\pi\)
\(740\) 243.066i 0.328467i
\(741\) 1234.98 + 1054.63i 1.66664 + 1.42326i
\(742\) 719.036 0.969052
\(743\) 874.107i 1.17646i −0.808695 0.588228i \(-0.799826\pi\)
0.808695 0.588228i \(-0.200174\pi\)
\(744\) −124.555 + 145.855i −0.167413 + 0.196042i
\(745\) 959.834 1.28837
\(746\) 719.954i 0.965086i
\(747\) 510.434 80.9131i 0.683312 0.108317i
\(748\) −122.636 −0.163952
\(749\) 1116.12i 1.49015i
\(750\) −341.647 291.755i −0.455529 0.389007i
\(751\) −40.8837 −0.0544390 −0.0272195 0.999629i \(-0.508665\pi\)
−0.0272195 + 0.999629i \(0.508665\pi\)
\(752\) 211.741i 0.281570i
\(753\) −578.816 + 677.796i −0.768680 + 0.900128i
\(754\) 406.563 0.539208
\(755\) 37.6127i 0.0498181i
\(756\) 280.516 457.962i 0.371053 0.605770i
\(757\) −956.794 −1.26393 −0.631965 0.774997i \(-0.717751\pi\)
−0.631965 + 0.774997i \(0.717751\pi\)
\(758\) 467.504i 0.616759i
\(759\) 99.4592 + 84.9349i 0.131040 + 0.111904i
\(760\) −469.591 −0.617883
\(761\) 362.644i 0.476536i −0.971199 0.238268i \(-0.923420\pi\)
0.971199 0.238268i \(-0.0765797\pi\)
\(762\) 212.450 248.780i 0.278806 0.326483i
\(763\) 768.405 1.00708
\(764\) 444.912i 0.582346i
\(765\) 144.981 + 914.601i 0.189518 + 1.19556i
\(766\) 13.3200 0.0173891
\(767\) 997.438i 1.30044i
\(768\) 36.5015 + 31.1711i 0.0475280 + 0.0405874i
\(769\) −495.032 −0.643735 −0.321867 0.946785i \(-0.604311\pi\)
−0.321867 + 0.946785i \(0.604311\pi\)
\(770\) 259.607i 0.337152i
\(771\) −732.404 + 857.649i −0.949941 + 1.11239i
\(772\) −286.548 −0.371177
\(773\) 992.365i 1.28378i 0.766795 + 0.641892i \(0.221850\pi\)
−0.766795 + 0.641892i \(0.778150\pi\)
\(774\) −556.339 + 88.1900i −0.718785 + 0.113941i
\(775\) −135.000 −0.174194
\(776\) 248.279i 0.319947i
\(777\) 495.467 + 423.113i 0.637666 + 0.544546i
\(778\) −167.531 −0.215336
\(779\) 286.781i 0.368140i
\(780\) 393.488 460.776i 0.504472 0.590739i
\(781\) −154.342 −0.197621
\(782\) 343.687i 0.439498i
\(783\) 364.764 + 223.430i 0.465855 + 0.285351i
\(784\) 199.635 0.254637
\(785\) 159.232i 0.202843i
\(786\) −218.769 186.821i −0.278332 0.237686i
\(787\) −783.433 −0.995468 −0.497734 0.867330i \(-0.665834\pi\)
−0.497734 + 0.867330i \(0.665834\pi\)
\(788\) 13.2117i 0.0167661i
\(789\) 269.472 315.553i 0.341536 0.399940i
\(790\) 501.413 0.634700
\(791\) 2061.59i 2.60630i
\(792\) 13.2183 + 83.3863i 0.0166897 + 0.105286i
\(793\) −436.506 −0.550449
\(794\) 712.175i 0.896946i
\(795\) 649.078 + 554.292i 0.816450 + 0.697222i
\(796\) 20.3254 0.0255344
\(797\) 1017.08i 1.27613i −0.769983 0.638065i \(-0.779735\pi\)
0.769983 0.638065i \(-0.220265\pi\)
\(798\) −817.433 + 957.218i −1.02435 + 1.19952i
\(799\) 978.668 1.22487
\(800\) 33.7851i 0.0422313i
\(801\) −968.786 + 153.570i −1.20947 + 0.191723i
\(802\) 369.855 0.461166
\(803\) 22.8278i 0.0284282i
\(804\) −489.034 417.619i −0.608251 0.519427i
\(805\) 727.550 0.903788
\(806\) 580.072i 0.719693i
\(807\) −50.4241 + 59.0468i −0.0624834 + 0.0731683i
\(808\) −499.300 −0.617946
\(809\) 631.715i 0.780859i 0.920633 + 0.390429i \(0.127673\pi\)
−0.920633 + 0.390429i \(0.872327\pi\)
\(810\) 606.257 197.160i 0.748466 0.243407i
\(811\) −187.481 −0.231173 −0.115586 0.993297i \(-0.536875\pi\)
−0.115586 + 0.993297i \(0.536875\pi\)
\(812\) 315.122i 0.388081i
\(813\) −570.338 487.050i −0.701523 0.599078i
\(814\) −102.428 −0.125832
\(815\) 212.760i 0.261055i
\(816\) −144.073 + 168.710i −0.176560 + 0.206753i
\(817\) 1320.26 1.61598
\(818\) 852.085i 1.04167i
\(819\) −254.292 1604.18i −0.310490 1.95870i
\(820\) 106.999 0.130487
\(821\) 552.000i 0.672351i 0.941799 + 0.336176i \(0.109134\pi\)
−0.941799 + 0.336176i \(0.890866\pi\)
\(822\) 39.3706 + 33.6212i 0.0478961 + 0.0409017i
\(823\) −625.501 −0.760026 −0.380013 0.924981i \(-0.624080\pi\)
−0.380013 + 0.924981i \(0.624080\pi\)
\(824\) 355.899i 0.431916i
\(825\) −38.5903 + 45.1894i −0.0467762 + 0.0547751i
\(826\) −773.102 −0.935959
\(827\) 785.480i 0.949795i 0.880041 + 0.474897i \(0.157515\pi\)
−0.880041 + 0.474897i \(0.842485\pi\)
\(828\) 233.690 37.0442i 0.282235 0.0447394i
\(829\) −766.063 −0.924081 −0.462040 0.886859i \(-0.652882\pi\)
−0.462040 + 0.886859i \(0.652882\pi\)
\(830\) 451.948i 0.544516i
\(831\) 584.860 + 499.452i 0.703803 + 0.601025i
\(832\) 145.168 0.174481
\(833\) 922.717i 1.10770i
\(834\) −275.749 + 322.903i −0.330634 + 0.387174i
\(835\) −41.2185 −0.0493635
\(836\) 197.885i 0.236705i
\(837\) −318.783 + 520.436i −0.380864 + 0.621787i
\(838\) 549.886 0.656189
\(839\) 46.5567i 0.0554907i 0.999615 + 0.0277454i \(0.00883276\pi\)
−0.999615 + 0.0277454i \(0.991167\pi\)
\(840\) 357.142 + 304.988i 0.425169 + 0.363081i
\(841\) 590.007 0.701554
\(842\) 933.266i 1.10839i
\(843\) −257.207 + 301.191i −0.305109 + 0.357284i
\(844\) −392.503 −0.465051
\(845\) 891.997i 1.05562i
\(846\) −105.485 665.446i −0.124687 0.786580i
\(847\) −109.398 −0.129160
\(848\) 204.493i 0.241147i
\(849\) −644.965 550.779i −0.759676 0.648739i
\(850\) −156.155 −0.183712
\(851\) 287.054i 0.337314i
\(852\) −181.322 + 212.329i −0.212820 + 0.249213i
\(853\) 761.049 0.892203 0.446102 0.894982i \(-0.352812\pi\)
0.446102 + 0.894982i \(0.352812\pi\)
\(854\) 338.330i 0.396172i
\(855\) −1475.80 + 233.942i −1.72608 + 0.273616i
\(856\) 317.424 0.370823
\(857\) 571.655i 0.667042i 0.942743 + 0.333521i \(0.108237\pi\)
−0.942743 + 0.333521i \(0.891763\pi\)
\(858\) 194.171 + 165.816i 0.226306 + 0.193258i
\(859\) −390.487 −0.454584 −0.227292 0.973827i \(-0.572987\pi\)
−0.227292 + 0.973827i \(0.572987\pi\)
\(860\) 492.594i 0.572783i
\(861\) 186.257 218.108i 0.216327 0.253320i
\(862\) −373.134 −0.432871
\(863\) 1182.37i 1.37007i −0.728512 0.685033i \(-0.759788\pi\)
0.728512 0.685033i \(-0.240212\pi\)
\(864\) 130.244 + 79.7783i 0.150745 + 0.0923361i
\(865\) −954.458 −1.10342
\(866\) 167.802i 0.193767i
\(867\) −120.472 102.880i −0.138953 0.118662i
\(868\) −449.607 −0.517980
\(869\) 211.295i 0.243148i
\(870\) −242.921 + 284.462i −0.279220 + 0.326968i
\(871\) −1944.91 −2.23296
\(872\) 218.533i 0.250612i
\(873\) −123.688 780.276i −0.141682 0.893787i
\(874\) −554.574 −0.634524
\(875\) 1053.15i 1.20360i
\(876\) −31.4043 26.8183i −0.0358497 0.0306145i
\(877\) 94.2282 0.107444 0.0537219 0.998556i \(-0.482892\pi\)
0.0537219 + 0.998556i \(0.482892\pi\)
\(878\) 479.808i 0.546478i
\(879\) −599.438 + 701.944i −0.681954 + 0.798572i
\(880\) −73.8319 −0.0838998
\(881\) 783.438i 0.889260i −0.895714 0.444630i \(-0.853335\pi\)
0.895714 0.444630i \(-0.146665\pi\)
\(882\) 627.402 99.4547i 0.711340 0.112760i
\(883\) 220.393 0.249596 0.124798 0.992182i \(-0.460172\pi\)
0.124798 + 0.992182i \(0.460172\pi\)
\(884\) 670.969i 0.759015i
\(885\) −697.883 595.970i −0.788568 0.673412i
\(886\) 564.886 0.637568
\(887\) 122.340i 0.137925i −0.997619 0.0689626i \(-0.978031\pi\)
0.997619 0.0689626i \(-0.0219689\pi\)
\(888\) −120.333 + 140.910i −0.135510 + 0.158682i
\(889\) 766.878 0.862630
\(890\) 857.782i 0.963800i
\(891\) 83.0831 + 255.476i 0.0932470 + 0.286730i
\(892\) −688.517 −0.771880
\(893\) 1579.18i 1.76840i
\(894\) 556.435 + 475.178i 0.622410 + 0.531519i
\(895\) 1528.75 1.70810
\(896\) 112.518i 0.125578i
\(897\) 464.699 544.165i 0.518059 0.606649i
\(898\) 719.077 0.800754
\(899\) 358.110i 0.398342i
\(900\) 16.8311 + 106.178i 0.0187012 + 0.117975i
\(901\) −945.168 −1.04902
\(902\) 45.0894i 0.0499883i
\(903\) −1004.11 857.475i −1.11197 0.949585i
\(904\) 586.312 0.648576
\(905\) 1691.50i 1.86906i
\(906\) 18.6206 21.8048i 0.0205526 0.0240671i
\(907\) 1341.47 1.47902 0.739508 0.673148i \(-0.235058\pi\)
0.739508 + 0.673148i \(0.235058\pi\)
\(908\) 752.310i 0.828535i
\(909\) −1569.17 + 248.742i −1.72626 + 0.273644i
\(910\) 1420.37 1.56085
\(911\) 838.576i 0.920500i −0.887789 0.460250i \(-0.847760\pi\)
0.887789 0.460250i \(-0.152240\pi\)
\(912\) −272.231 232.477i −0.298499 0.254909i
\(913\) −190.451 −0.208599
\(914\) 303.067i 0.331583i
\(915\) 260.813 305.413i 0.285041 0.333784i
\(916\) −56.2461 −0.0614040
\(917\) 674.368i 0.735406i
\(918\) −368.736 + 601.988i −0.401674 + 0.655760i
\(919\) 1542.64 1.67861 0.839304 0.543662i \(-0.182963\pi\)
0.839304 + 0.543662i \(0.182963\pi\)
\(920\) 206.914i 0.224907i
\(921\) −56.4865 48.2377i −0.0613318 0.0523753i
\(922\) 332.669 0.360812
\(923\) 844.443i 0.914890i
\(924\) −128.522 + 150.499i −0.139093 + 0.162878i
\(925\) −130.423 −0.140998
\(926\) 783.655i 0.846280i
\(927\) 177.302 + 1118.50i 0.191265 + 1.20658i
\(928\) −89.6201 −0.0965734
\(929\) 316.465i 0.340651i 0.985388 + 0.170326i \(0.0544819\pi\)
−0.985388 + 0.170326i \(0.945518\pi\)
\(930\) −405.862 346.593i −0.436411 0.372681i
\(931\) −1488.90 −1.59925
\(932\) 615.151i 0.660034i
\(933\) 443.199 518.988i 0.475026 0.556258i
\(934\) 846.365 0.906173
\(935\) 341.252i 0.364975i
\(936\) 456.226 72.3202i 0.487421 0.0772652i
\(937\) 1744.49 1.86178 0.930891 0.365298i \(-0.119033\pi\)
0.930891 + 0.365298i \(0.119033\pi\)
\(938\) 1507.48i 1.60712i
\(939\) −1120.92 957.227i −1.19374 1.01941i
\(940\) 589.199 0.626808
\(941\) 867.051i 0.921415i 0.887552 + 0.460707i \(0.152404\pi\)
−0.887552 + 0.460707i \(0.847596\pi\)
\(942\) −78.8296 + 92.3098i −0.0836832 + 0.0979934i
\(943\) 126.363 0.134001
\(944\) 219.869i 0.232912i
\(945\) 1274.34 + 780.576i 1.34851 + 0.826006i
\(946\) 207.579 0.219428
\(947\) 957.148i 1.01072i −0.862910 0.505358i \(-0.831360\pi\)
0.862910 0.505358i \(-0.168640\pi\)
\(948\) 290.679 + 248.231i 0.306624 + 0.261847i
\(949\) −124.896 −0.131609
\(950\) 251.972i 0.265233i
\(951\) 135.515 158.689i 0.142497 0.166865i
\(952\) −520.060 −0.546281
\(953\) 1044.56i 1.09607i 0.836455 + 0.548036i \(0.184624\pi\)
−0.836455 + 0.548036i \(0.815376\pi\)
\(954\) 101.875 + 642.668i 0.106787 + 0.673656i
\(955\) −1238.03 −1.29637
\(956\) 391.548i 0.409569i
\(957\) −119.872 102.367i −0.125258 0.106966i
\(958\) −34.4903 −0.0360024
\(959\) 121.362i 0.126551i
\(960\) −86.7381 + 101.571i −0.0903522 + 0.105803i
\(961\) −450.059 −0.468324
\(962\) 560.406i 0.582542i
\(963\) 997.582 158.135i 1.03591 0.164211i
\(964\) 189.747 0.196833
\(965\) 797.362i 0.826282i
\(966\) 421.775 + 360.182i 0.436620 + 0.372860i
\(967\) 62.2081 0.0643310 0.0321655 0.999483i \(-0.489760\pi\)
0.0321655 + 0.999483i \(0.489760\pi\)
\(968\) 31.1127i 0.0321412i
\(969\) 1074.51 1258.26i 1.10889 1.29851i
\(970\) 690.872 0.712239
\(971\) 774.251i 0.797375i −0.917087 0.398688i \(-0.869466\pi\)
0.917087 0.398688i \(-0.130534\pi\)
\(972\) 449.066 + 185.838i 0.462002 + 0.191191i
\(973\) −995.368 −1.02299
\(974\) 474.294i 0.486955i
\(975\) 247.242 + 211.137i 0.253582 + 0.216551i
\(976\) 96.2207 0.0985868
\(977\) 735.185i 0.752492i 0.926520 + 0.376246i \(0.122785\pi\)
−0.926520 + 0.376246i \(0.877215\pi\)
\(978\) −105.329 + 123.341i −0.107699 + 0.126116i
\(979\) 361.469 0.369222
\(980\) 555.514i 0.566851i
\(981\) 108.869 + 686.793i 0.110978 + 0.700095i
\(982\) −674.161 −0.686519
\(983\) 1151.37i 1.17128i 0.810572 + 0.585638i \(0.199156\pi\)
−0.810572 + 0.585638i \(0.800844\pi\)
\(984\) 62.0296 + 52.9713i 0.0630382 + 0.0538326i
\(985\) 36.7634 0.0373233
\(986\) 414.225i 0.420107i
\(987\) 1025.64 1201.03i 1.03915 1.21685i
\(988\) −1082.68 −1.09583
\(989\) 581.740i 0.588210i
\(990\) −232.034 + 36.7817i −0.234378 + 0.0371532i
\(991\) 775.178 0.782218 0.391109 0.920344i \(-0.372091\pi\)
0.391109 + 0.920344i \(0.372091\pi\)
\(992\) 127.868i 0.128899i
\(993\) −1095.86 935.833i −1.10359 0.942430i
\(994\) −654.517 −0.658468
\(995\) 56.5584i 0.0568426i
\(996\) −223.743 + 262.004i −0.224641 + 0.263056i
\(997\) −13.1448 −0.0131844 −0.00659219 0.999978i \(-0.502098\pi\)
−0.00659219 + 0.999978i \(0.502098\pi\)
\(998\) 500.184i 0.501187i
\(999\) −307.975 + 502.791i −0.308284 + 0.503294i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 66.3.c.a.23.4 8
3.2 odd 2 inner 66.3.c.a.23.8 yes 8
4.3 odd 2 528.3.i.e.353.1 8
11.10 odd 2 726.3.c.e.485.8 8
12.11 even 2 528.3.i.e.353.2 8
33.32 even 2 726.3.c.e.485.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.c.a.23.4 8 1.1 even 1 trivial
66.3.c.a.23.8 yes 8 3.2 odd 2 inner
528.3.i.e.353.1 8 4.3 odd 2
528.3.i.e.353.2 8 12.11 even 2
726.3.c.e.485.4 8 33.32 even 2
726.3.c.e.485.8 8 11.10 odd 2