Properties

Label 66.2.h.a.41.1
Level $66$
Weight $2$
Character 66.41
Analytic conductor $0.527$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [66,2,Mod(17,66)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(66, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("66.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.527012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.185640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.1
Root \(-1.52536 + 0.820539i\) of defining polynomial
Character \(\chi\) \(=\) 66.41
Dual form 66.2.h.a.29.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.751740 - 1.56041i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.56076 - 2.14820i) q^{5} +(1.52536 + 0.820539i) q^{6} +(1.56076 + 0.507121i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-1.86977 + 2.34605i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.751740 - 1.56041i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.56076 - 2.14820i) q^{5} +(1.52536 + 0.820539i) q^{6} +(1.56076 + 0.507121i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-1.86977 + 2.34605i) q^{9} +2.65532i q^{10} +(-2.77710 - 1.81321i) q^{11} +(-1.71634 + 0.232753i) q^{12} +(0.885446 + 1.21871i) q^{13} +(-1.56076 + 0.507121i) q^{14} +(-4.52536 - 0.820539i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(5.49344 + 3.99122i) q^{17} +(0.133706 - 2.99702i) q^{18} +(-5.21982 + 1.69602i) q^{19} +(-1.56076 - 2.14820i) q^{20} +(-0.381966 - 2.81665i) q^{21} +(3.31250 - 0.165420i) q^{22} +4.78856i q^{23} +(1.25174 - 1.19714i) q^{24} +(-0.633706 - 1.95035i) q^{25} +(-1.43268 - 0.465507i) q^{26} +(5.06639 + 1.15400i) q^{27} +(0.964601 - 1.32766i) q^{28} +(0.143392 - 0.441315i) q^{29} +(4.14339 - 1.99611i) q^{30} +(4.20067 - 3.05196i) q^{31} +1.00000 q^{32} +(-0.741699 + 5.69648i) q^{33} -6.79026 q^{34} +(3.52536 - 2.56132i) q^{35} +(1.65343 + 2.50323i) q^{36} +(0.311168 - 0.957676i) q^{37} +(3.22603 - 4.44024i) q^{38} +(1.23607 - 2.29782i) q^{39} +(2.52536 + 0.820539i) q^{40} +(-0.486479 - 1.49723i) q^{41} +(1.96460 + 2.05420i) q^{42} -3.42500i q^{43} +(-2.58263 + 2.08086i) q^{44} +(2.12151 + 7.67826i) q^{45} +(-2.81465 - 3.87403i) q^{46} +(-9.52285 + 3.09416i) q^{47} +(-0.309017 + 1.70426i) q^{48} +(-3.48433 - 2.53151i) q^{49} +(1.65906 + 1.20538i) q^{50} +(2.09831 - 11.5724i) q^{51} +(1.43268 - 0.465507i) q^{52} +(-5.77495 - 7.94853i) q^{53} +(-4.77710 + 2.04434i) q^{54} +(-8.22951 + 3.13578i) q^{55} +1.64108i q^{56} +(6.57044 + 6.87011i) q^{57} +(0.143392 + 0.441315i) q^{58} +(5.81307 + 1.88878i) q^{59} +(-2.17879 + 4.05031i) q^{60} +(-8.17223 + 11.2481i) q^{61} +(-1.60451 + 4.93818i) q^{62} +(-4.10799 + 2.71341i) q^{63} +(-0.809017 + 0.587785i) q^{64} +4.00000 q^{65} +(-2.74826 - 5.04451i) q^{66} +11.7972 q^{67} +(5.49344 - 3.99122i) q^{68} +(7.47214 - 3.59976i) q^{69} +(-1.34657 + 4.14431i) q^{70} +(-0.527864 + 0.726543i) q^{71} +(-2.80902 - 1.05329i) q^{72} +(-4.40076 - 1.42989i) q^{73} +(0.311168 + 0.957676i) q^{74} +(-2.56696 + 2.45500i) q^{75} +5.48844i q^{76} +(-3.41486 - 4.23830i) q^{77} +(0.350622 + 2.58551i) q^{78} +(-1.86762 - 2.57056i) q^{79} +(-2.52536 + 0.820539i) q^{80} +(-2.00789 - 8.77316i) q^{81} +(1.27362 + 0.925338i) q^{82} +(1.51625 + 1.10162i) q^{83} +(-2.79682 - 0.507121i) q^{84} +(17.1478 - 5.57167i) q^{85} +(2.01317 + 2.77089i) q^{86} +(-0.796426 + 0.108003i) q^{87} +(0.866294 - 3.20149i) q^{88} -12.8092i q^{89} +(-6.22951 - 4.96485i) q^{90} +(0.763932 + 2.35114i) q^{91} +(4.55420 + 1.47975i) q^{92} +(-7.92013 - 4.26049i) q^{93} +(5.88545 - 8.10062i) q^{94} +(-4.50348 + 13.8603i) q^{95} +(-0.751740 - 1.56041i) q^{96} +(2.90517 - 2.11073i) q^{97} +4.30687 q^{98} +(9.44642 - 3.12492i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9} + q^{11} - 3 q^{12} - 21 q^{15} - 2 q^{16} + 10 q^{17} + 2 q^{18} - 15 q^{19} - 12 q^{21} + 6 q^{22} + 2 q^{24} - 6 q^{25} + 10 q^{26} + 20 q^{27} + 5 q^{28} - 23 q^{29} + 9 q^{30} + 13 q^{31} + 8 q^{32} + 20 q^{33} + 10 q^{34} + 13 q^{35} + 7 q^{36} + 6 q^{37} - 10 q^{38} - 8 q^{39} + 5 q^{40} - 2 q^{41} + 13 q^{42} - 9 q^{44} - 8 q^{45} - 10 q^{46} - 10 q^{47} + 2 q^{48} - 18 q^{49} - q^{50} + 15 q^{51} - 10 q^{52} - 15 q^{53} - 15 q^{54} - 14 q^{55} + 15 q^{57} - 23 q^{58} + 25 q^{59} + 4 q^{60} - 10 q^{61} - 2 q^{62} - 6 q^{63} - 2 q^{64} + 32 q^{65} - 30 q^{66} - 2 q^{67} + 10 q^{68} + 24 q^{69} - 17 q^{70} - 40 q^{71} - 18 q^{72} + 5 q^{73} + 6 q^{74} + q^{75} + 12 q^{77} - 8 q^{78} + 10 q^{79} - 5 q^{80} - 26 q^{81} + 3 q^{82} + 21 q^{83} + 8 q^{84} + 30 q^{85} - 25 q^{86} - 42 q^{87} + 6 q^{88} + 2 q^{90} + 24 q^{91} - 10 q^{92} + 27 q^{93} + 40 q^{94} - 20 q^{95} + 2 q^{96} + 9 q^{97} + 22 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.751740 1.56041i −0.434017 0.900905i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 1.56076 2.14820i 0.697992 0.960703i −0.301981 0.953314i \(-0.597648\pi\)
0.999973 0.00738926i \(-0.00235209\pi\)
\(6\) 1.52536 + 0.820539i 0.622725 + 0.334983i
\(7\) 1.56076 + 0.507121i 0.589911 + 0.191674i 0.588736 0.808326i \(-0.299626\pi\)
0.00117514 + 0.999999i \(0.499626\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −1.86977 + 2.34605i −0.623258 + 0.782016i
\(10\) 2.65532i 0.839685i
\(11\) −2.77710 1.81321i −0.837327 0.546703i
\(12\) −1.71634 + 0.232753i −0.495465 + 0.0671901i
\(13\) 0.885446 + 1.21871i 0.245579 + 0.338010i 0.913957 0.405812i \(-0.133011\pi\)
−0.668378 + 0.743822i \(0.733011\pi\)
\(14\) −1.56076 + 0.507121i −0.417130 + 0.135534i
\(15\) −4.52536 0.820539i −1.16844 0.211862i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 5.49344 + 3.99122i 1.33235 + 0.968012i 0.999688 + 0.0249677i \(0.00794828\pi\)
0.332666 + 0.943045i \(0.392052\pi\)
\(18\) 0.133706 2.99702i 0.0315148 0.706404i
\(19\) −5.21982 + 1.69602i −1.19751 + 0.389094i −0.838844 0.544372i \(-0.816768\pi\)
−0.358665 + 0.933466i \(0.616768\pi\)
\(20\) −1.56076 2.14820i −0.348996 0.480352i
\(21\) −0.381966 2.81665i −0.0833518 0.614643i
\(22\) 3.31250 0.165420i 0.706227 0.0352677i
\(23\) 4.78856i 0.998485i 0.866462 + 0.499242i \(0.166388\pi\)
−0.866462 + 0.499242i \(0.833612\pi\)
\(24\) 1.25174 1.19714i 0.255510 0.244365i
\(25\) −0.633706 1.95035i −0.126741 0.390069i
\(26\) −1.43268 0.465507i −0.280972 0.0912933i
\(27\) 5.06639 + 1.15400i 0.975027 + 0.222087i
\(28\) 0.964601 1.32766i 0.182292 0.250904i
\(29\) 0.143392 0.441315i 0.0266272 0.0819501i −0.936860 0.349705i \(-0.886282\pi\)
0.963487 + 0.267755i \(0.0862818\pi\)
\(30\) 4.14339 1.99611i 0.756476 0.364438i
\(31\) 4.20067 3.05196i 0.754462 0.548149i −0.142744 0.989760i \(-0.545593\pi\)
0.897207 + 0.441611i \(0.145593\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.741699 + 5.69648i −0.129113 + 0.991630i
\(34\) −6.79026 −1.16452
\(35\) 3.52536 2.56132i 0.595894 0.432943i
\(36\) 1.65343 + 2.50323i 0.275572 + 0.417205i
\(37\) 0.311168 0.957676i 0.0511557 0.157441i −0.922215 0.386677i \(-0.873623\pi\)
0.973371 + 0.229236i \(0.0736228\pi\)
\(38\) 3.22603 4.44024i 0.523331 0.720303i
\(39\) 1.23607 2.29782i 0.197929 0.367945i
\(40\) 2.52536 + 0.820539i 0.399294 + 0.129739i
\(41\) −0.486479 1.49723i −0.0759752 0.233828i 0.905855 0.423587i \(-0.139229\pi\)
−0.981831 + 0.189759i \(0.939229\pi\)
\(42\) 1.96460 + 2.05420i 0.303144 + 0.316970i
\(43\) 3.42500i 0.522308i −0.965297 0.261154i \(-0.915897\pi\)
0.965297 0.261154i \(-0.0841030\pi\)
\(44\) −2.58263 + 2.08086i −0.389347 + 0.313702i
\(45\) 2.12151 + 7.67826i 0.316257 + 1.14461i
\(46\) −2.81465 3.87403i −0.414997 0.571195i
\(47\) −9.52285 + 3.09416i −1.38905 + 0.451330i −0.905634 0.424060i \(-0.860604\pi\)
−0.483417 + 0.875390i \(0.660604\pi\)
\(48\) −0.309017 + 1.70426i −0.0446028 + 0.245989i
\(49\) −3.48433 2.53151i −0.497761 0.361645i
\(50\) 1.65906 + 1.20538i 0.234627 + 0.170467i
\(51\) 2.09831 11.5724i 0.293822 1.62046i
\(52\) 1.43268 0.465507i 0.198677 0.0645541i
\(53\) −5.77495 7.94853i −0.793250 1.09181i −0.993696 0.112110i \(-0.964239\pi\)
0.200446 0.979705i \(-0.435761\pi\)
\(54\) −4.77710 + 2.04434i −0.650081 + 0.278200i
\(55\) −8.22951 + 3.13578i −1.10967 + 0.422828i
\(56\) 1.64108i 0.219298i
\(57\) 6.57044 + 6.87011i 0.870276 + 0.909968i
\(58\) 0.143392 + 0.441315i 0.0188283 + 0.0579475i
\(59\) 5.81307 + 1.88878i 0.756798 + 0.245898i 0.661904 0.749589i \(-0.269749\pi\)
0.0948939 + 0.995487i \(0.469749\pi\)
\(60\) −2.17879 + 4.05031i −0.281281 + 0.522893i
\(61\) −8.17223 + 11.2481i −1.04635 + 1.44017i −0.154413 + 0.988006i \(0.549349\pi\)
−0.891934 + 0.452166i \(0.850651\pi\)
\(62\) −1.60451 + 4.93818i −0.203773 + 0.627150i
\(63\) −4.10799 + 2.71341i −0.517558 + 0.341858i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 4.00000 0.496139
\(66\) −2.74826 5.04451i −0.338287 0.620936i
\(67\) 11.7972 1.44126 0.720630 0.693320i \(-0.243853\pi\)
0.720630 + 0.693320i \(0.243853\pi\)
\(68\) 5.49344 3.99122i 0.666177 0.484006i
\(69\) 7.47214 3.59976i 0.899539 0.433360i
\(70\) −1.34657 + 4.14431i −0.160946 + 0.495339i
\(71\) −0.527864 + 0.726543i −0.0626459 + 0.0862247i −0.839190 0.543838i \(-0.816971\pi\)
0.776544 + 0.630062i \(0.216971\pi\)
\(72\) −2.80902 1.05329i −0.331046 0.124132i
\(73\) −4.40076 1.42989i −0.515070 0.167356i 0.0399366 0.999202i \(-0.487284\pi\)
−0.555007 + 0.831846i \(0.687284\pi\)
\(74\) 0.311168 + 0.957676i 0.0361725 + 0.111328i
\(75\) −2.56696 + 2.45500i −0.296407 + 0.283479i
\(76\) 5.48844i 0.629568i
\(77\) −3.41486 4.23830i −0.389159 0.482999i
\(78\) 0.350622 + 2.58551i 0.0397001 + 0.292752i
\(79\) −1.86762 2.57056i −0.210124 0.289211i 0.690927 0.722925i \(-0.257203\pi\)
−0.901051 + 0.433714i \(0.857203\pi\)
\(80\) −2.52536 + 0.820539i −0.282344 + 0.0917390i
\(81\) −2.00789 8.77316i −0.223099 0.974796i
\(82\) 1.27362 + 0.925338i 0.140648 + 0.102186i
\(83\) 1.51625 + 1.10162i 0.166430 + 0.120918i 0.667882 0.744267i \(-0.267201\pi\)
−0.501453 + 0.865185i \(0.667201\pi\)
\(84\) −2.79682 0.507121i −0.305159 0.0553314i
\(85\) 17.1478 5.57167i 1.85994 0.604333i
\(86\) 2.01317 + 2.77089i 0.217085 + 0.298792i
\(87\) −0.796426 + 0.108003i −0.0853859 + 0.0115792i
\(88\) 0.866294 3.20149i 0.0923473 0.341280i
\(89\) 12.8092i 1.35777i −0.734244 0.678886i \(-0.762463\pi\)
0.734244 0.678886i \(-0.237537\pi\)
\(90\) −6.22951 4.96485i −0.656648 0.523341i
\(91\) 0.763932 + 2.35114i 0.0800818 + 0.246467i
\(92\) 4.55420 + 1.47975i 0.474808 + 0.154274i
\(93\) −7.92013 4.26049i −0.821280 0.441792i
\(94\) 5.88545 8.10062i 0.607037 0.835515i
\(95\) −4.50348 + 13.8603i −0.462047 + 1.42204i
\(96\) −0.751740 1.56041i −0.0767241 0.159259i
\(97\) 2.90517 2.11073i 0.294976 0.214312i −0.430447 0.902616i \(-0.641644\pi\)
0.725423 + 0.688303i \(0.241644\pi\)
\(98\) 4.30687 0.435059
\(99\) 9.44642 3.12492i 0.949401 0.314066i
\(100\) −2.05072 −0.205072
\(101\) −9.84754 + 7.15466i −0.979867 + 0.711915i −0.957679 0.287839i \(-0.907063\pi\)
−0.0221881 + 0.999754i \(0.507063\pi\)
\(102\) 5.10451 + 10.5956i 0.505422 + 1.04912i
\(103\) 0.273973 0.843203i 0.0269954 0.0830833i −0.936651 0.350264i \(-0.886092\pi\)
0.963647 + 0.267180i \(0.0860920\pi\)
\(104\) −0.885446 + 1.21871i −0.0868251 + 0.119505i
\(105\) −6.64687 3.57556i −0.648668 0.348939i
\(106\) 9.34406 + 3.03607i 0.907575 + 0.294889i
\(107\) 0.689654 + 2.12254i 0.0666713 + 0.205193i 0.978842 0.204617i \(-0.0655949\pi\)
−0.912171 + 0.409810i \(0.865595\pi\)
\(108\) 2.66312 4.46182i 0.256259 0.429338i
\(109\) 4.73524i 0.453554i −0.973947 0.226777i \(-0.927181\pi\)
0.973947 0.226777i \(-0.0728188\pi\)
\(110\) 4.81465 7.37408i 0.459059 0.703091i
\(111\) −1.72829 + 0.234373i −0.164042 + 0.0222457i
\(112\) −0.964601 1.32766i −0.0911462 0.125452i
\(113\) −3.70508 + 1.20385i −0.348545 + 0.113249i −0.478057 0.878329i \(-0.658659\pi\)
0.129512 + 0.991578i \(0.458659\pi\)
\(114\) −9.35375 1.69602i −0.876059 0.158847i
\(115\) 10.2868 + 7.47379i 0.959248 + 0.696934i
\(116\) −0.375405 0.272747i −0.0348555 0.0253240i
\(117\) −4.51474 0.201416i −0.417388 0.0186209i
\(118\) −5.81307 + 1.88878i −0.535137 + 0.173876i
\(119\) 6.54989 + 9.01516i 0.600428 + 0.826418i
\(120\) −0.618034 4.55743i −0.0564185 0.416035i
\(121\) 4.42454 + 10.0709i 0.402231 + 0.915538i
\(122\) 13.9034i 1.25876i
\(123\) −1.97059 + 1.88463i −0.177682 + 0.169932i
\(124\) −1.60451 4.93818i −0.144089 0.443462i
\(125\) 7.44800 + 2.42000i 0.666169 + 0.216451i
\(126\) 1.72853 4.60981i 0.153990 0.410675i
\(127\) −0.138938 + 0.191232i −0.0123288 + 0.0169691i −0.815137 0.579268i \(-0.803338\pi\)
0.802808 + 0.596237i \(0.203338\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) −5.34442 + 2.57471i −0.470550 + 0.226691i
\(130\) −3.23607 + 2.35114i −0.283822 + 0.206209i
\(131\) 5.26741 0.460216 0.230108 0.973165i \(-0.426092\pi\)
0.230108 + 0.973165i \(0.426092\pi\)
\(132\) 5.18848 + 2.46571i 0.451599 + 0.214612i
\(133\) −9.00696 −0.781002
\(134\) −9.54415 + 6.93423i −0.824489 + 0.599027i
\(135\) 10.3864 9.08249i 0.893921 0.781696i
\(136\) −2.09831 + 6.45792i −0.179928 + 0.553762i
\(137\) −0.545331 + 0.750584i −0.0465908 + 0.0641267i −0.831677 0.555260i \(-0.812619\pi\)
0.785086 + 0.619387i \(0.212619\pi\)
\(138\) −3.92920 + 7.30427i −0.334476 + 0.621781i
\(139\) −8.03945 2.61218i −0.681898 0.221562i −0.0524716 0.998622i \(-0.516710\pi\)
−0.629426 + 0.777060i \(0.716710\pi\)
\(140\) −1.34657 4.14431i −0.113806 0.350258i
\(141\) 11.9869 + 12.5336i 1.00948 + 1.05552i
\(142\) 0.898056i 0.0753632i
\(143\) −0.249191 4.98998i −0.0208384 0.417283i
\(144\) 2.89165 0.798968i 0.240971 0.0665807i
\(145\) −0.724231 0.996819i −0.0601441 0.0827813i
\(146\) 4.40076 1.42989i 0.364210 0.118339i
\(147\) −1.33089 + 7.34003i −0.109770 + 0.605395i
\(148\) −0.814648 0.591876i −0.0669636 0.0486519i
\(149\) −14.6202 10.6222i −1.19774 0.870206i −0.203676 0.979038i \(-0.565289\pi\)
−0.994060 + 0.108832i \(0.965289\pi\)
\(150\) 0.633706 3.49496i 0.0517419 0.285362i
\(151\) −12.6775 + 4.11917i −1.03168 + 0.335213i −0.775454 0.631403i \(-0.782479\pi\)
−0.256226 + 0.966617i \(0.582479\pi\)
\(152\) −3.22603 4.44024i −0.261665 0.360151i
\(153\) −19.6351 + 5.42520i −1.58740 + 0.438602i
\(154\) 5.25389 + 1.42166i 0.423371 + 0.114560i
\(155\) 13.7872i 1.10742i
\(156\) −1.80339 1.88563i −0.144386 0.150972i
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 3.02188 + 0.981868i 0.240408 + 0.0781132i
\(159\) −8.06173 + 14.9865i −0.639337 + 1.18851i
\(160\) 1.56076 2.14820i 0.123389 0.169830i
\(161\) −2.42838 + 7.47379i −0.191383 + 0.589017i
\(162\) 6.78115 + 5.91743i 0.532778 + 0.464917i
\(163\) −5.72951 + 4.16273i −0.448770 + 0.326050i −0.789110 0.614252i \(-0.789458\pi\)
0.340340 + 0.940302i \(0.389458\pi\)
\(164\) −1.57428 −0.122930
\(165\) 11.0796 + 10.4841i 0.862542 + 0.816189i
\(166\) −1.87418 −0.145465
\(167\) −2.05072 + 1.48993i −0.158689 + 0.115294i −0.664296 0.747470i \(-0.731269\pi\)
0.505607 + 0.862764i \(0.331269\pi\)
\(168\) 2.56076 1.23366i 0.197567 0.0951792i
\(169\) 3.31598 10.2055i 0.255075 0.785041i
\(170\) −10.5980 + 14.5868i −0.812826 + 1.11876i
\(171\) 5.78093 15.4171i 0.442079 1.17898i
\(172\) −3.25737 1.05838i −0.248372 0.0807010i
\(173\) −0.293345 0.902823i −0.0223026 0.0686404i 0.939286 0.343136i \(-0.111489\pi\)
−0.961588 + 0.274496i \(0.911489\pi\)
\(174\) 0.580840 0.555504i 0.0440333 0.0421127i
\(175\) 3.36538i 0.254399i
\(176\) 1.18094 + 3.09925i 0.0890168 + 0.233615i
\(177\) −1.42264 10.4907i −0.106932 0.788526i
\(178\) 7.52906 + 10.3629i 0.564327 + 0.776729i
\(179\) 17.6570 5.73709i 1.31974 0.428810i 0.437336 0.899298i \(-0.355922\pi\)
0.882407 + 0.470488i \(0.155922\pi\)
\(180\) 7.95804 + 0.355032i 0.593157 + 0.0264625i
\(181\) −10.4196 7.57025i −0.774480 0.562692i 0.128837 0.991666i \(-0.458875\pi\)
−0.903317 + 0.428973i \(0.858875\pi\)
\(182\) −2.00000 1.45309i −0.148250 0.107710i
\(183\) 23.6951 + 4.29640i 1.75159 + 0.317599i
\(184\) −4.55420 + 1.47975i −0.335740 + 0.109088i
\(185\) −1.57162 2.16315i −0.115548 0.159038i
\(186\) 8.91178 1.20853i 0.653443 0.0886135i
\(187\) −8.01891 21.0448i −0.586400 1.53894i
\(188\) 10.0129i 0.730267i
\(189\) 7.32218 + 4.37038i 0.532610 + 0.317899i
\(190\) −4.50348 13.8603i −0.326717 1.00553i
\(191\) 3.07080 + 0.997763i 0.222195 + 0.0721956i 0.417999 0.908448i \(-0.362732\pi\)
−0.195804 + 0.980643i \(0.562732\pi\)
\(192\) 1.52536 + 0.820539i 0.110083 + 0.0592173i
\(193\) 5.73979 7.90015i 0.413159 0.568665i −0.550826 0.834620i \(-0.685687\pi\)
0.963985 + 0.265955i \(0.0856872\pi\)
\(194\) −1.10968 + 3.41524i −0.0796702 + 0.245200i
\(195\) −3.00696 6.24165i −0.215333 0.446974i
\(196\) −3.48433 + 2.53151i −0.248881 + 0.180822i
\(197\) 13.9679 0.995175 0.497587 0.867414i \(-0.334219\pi\)
0.497587 + 0.867414i \(0.334219\pi\)
\(198\) −5.80554 + 8.08058i −0.412582 + 0.574262i
\(199\) 15.9679 1.13194 0.565969 0.824427i \(-0.308502\pi\)
0.565969 + 0.824427i \(0.308502\pi\)
\(200\) 1.65906 1.20538i 0.117314 0.0852333i
\(201\) −8.86844 18.4085i −0.625532 1.29844i
\(202\) 3.76143 11.5765i 0.264653 0.814518i
\(203\) 0.447600 0.616068i 0.0314153 0.0432395i
\(204\) −10.3576 5.57167i −0.725176 0.390095i
\(205\) −3.97562 1.29176i −0.277669 0.0902201i
\(206\) 0.273973 + 0.843203i 0.0190886 + 0.0587487i
\(207\) −11.2342 8.95353i −0.780831 0.622314i
\(208\) 1.50641i 0.104451i
\(209\) 17.5712 + 4.75461i 1.21543 + 0.328883i
\(210\) 7.47910 1.01424i 0.516107 0.0699893i
\(211\) 1.33315 + 1.83493i 0.0917782 + 0.126322i 0.852437 0.522830i \(-0.175124\pi\)
−0.760659 + 0.649152i \(0.775124\pi\)
\(212\) −9.34406 + 3.03607i −0.641753 + 0.208518i
\(213\) 1.53052 + 0.277515i 0.104870 + 0.0190150i
\(214\) −1.80554 1.31180i −0.123424 0.0896728i
\(215\) −7.35758 5.34560i −0.501783 0.364567i
\(216\) 0.468081 + 5.17503i 0.0318489 + 0.352116i
\(217\) 8.10394 2.63313i 0.550131 0.178748i
\(218\) 2.78330 + 3.83089i 0.188509 + 0.259461i
\(219\) 1.07700 + 7.94191i 0.0727772 + 0.536665i
\(220\) 0.439243 + 8.79573i 0.0296138 + 0.593008i
\(221\) 10.2289i 0.688072i
\(222\) 1.26045 1.20547i 0.0845960 0.0809061i
\(223\) 1.36009 + 4.18592i 0.0910782 + 0.280310i 0.986212 0.165488i \(-0.0529199\pi\)
−0.895134 + 0.445798i \(0.852920\pi\)
\(224\) 1.56076 + 0.507121i 0.104282 + 0.0338834i
\(225\) 5.76050 + 2.16000i 0.384033 + 0.144000i
\(226\) 2.28987 3.15173i 0.152320 0.209650i
\(227\) −3.93483 + 12.1102i −0.261164 + 0.803780i 0.731388 + 0.681961i \(0.238873\pi\)
−0.992552 + 0.121819i \(0.961127\pi\)
\(228\) 8.56424 4.12588i 0.567180 0.273243i
\(229\) −5.19661 + 3.77556i −0.343402 + 0.249496i −0.746096 0.665839i \(-0.768074\pi\)
0.402694 + 0.915335i \(0.368074\pi\)
\(230\) −12.7152 −0.838413
\(231\) −4.04641 + 8.51469i −0.266235 + 0.560225i
\(232\) 0.464026 0.0304648
\(233\) 13.5999 9.88087i 0.890956 0.647318i −0.0451710 0.998979i \(-0.514383\pi\)
0.936127 + 0.351662i \(0.114383\pi\)
\(234\) 3.77089 2.49075i 0.246511 0.162825i
\(235\) −8.21599 + 25.2862i −0.535952 + 1.64949i
\(236\) 3.59268 4.94489i 0.233863 0.321885i
\(237\) −2.60717 + 4.84666i −0.169354 + 0.314824i
\(238\) −10.5980 3.44348i −0.686963 0.223208i
\(239\) −3.72018 11.4495i −0.240638 0.740608i −0.996323 0.0856731i \(-0.972696\pi\)
0.755685 0.654935i \(-0.227304\pi\)
\(240\) 3.17879 + 3.32377i 0.205190 + 0.214548i
\(241\) 20.5642i 1.32466i 0.749214 + 0.662328i \(0.230432\pi\)
−0.749214 + 0.662328i \(0.769568\pi\)
\(242\) −9.49907 5.54686i −0.610623 0.356566i
\(243\) −12.1803 + 9.72827i −0.781369 + 0.624069i
\(244\) 8.17223 + 11.2481i 0.523173 + 0.720086i
\(245\) −10.8764 + 3.53395i −0.694866 + 0.225776i
\(246\) 0.486479 2.68298i 0.0310168 0.171061i
\(247\) −6.68883 4.85972i −0.425600 0.309217i
\(248\) 4.20067 + 3.05196i 0.266743 + 0.193800i
\(249\) 0.579155 3.19410i 0.0367024 0.202418i
\(250\) −7.44800 + 2.42000i −0.471053 + 0.153054i
\(251\) −9.61958 13.2402i −0.607183 0.835715i 0.389159 0.921170i \(-0.372766\pi\)
−0.996342 + 0.0854552i \(0.972766\pi\)
\(252\) 1.31117 + 4.74542i 0.0825958 + 0.298934i
\(253\) 8.68267 13.2983i 0.545875 0.836058i
\(254\) 0.236376i 0.0148315i
\(255\) −21.5848 22.5693i −1.35169 1.41334i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 8.11843 + 2.63784i 0.506414 + 0.164544i 0.551071 0.834459i \(-0.314219\pi\)
−0.0446568 + 0.999002i \(0.514219\pi\)
\(258\) 2.81035 5.22435i 0.174965 0.325254i
\(259\) 0.971314 1.33690i 0.0603545 0.0830709i
\(260\) 1.23607 3.80423i 0.0766577 0.235928i
\(261\) 0.767236 + 1.16156i 0.0474907 + 0.0718989i
\(262\) −4.26143 + 3.09611i −0.263272 + 0.191278i
\(263\) −13.5666 −0.836553 −0.418276 0.908320i \(-0.637366\pi\)
−0.418276 + 0.908320i \(0.637366\pi\)
\(264\) −5.64687 + 1.05491i −0.347541 + 0.0649253i
\(265\) −26.0883 −1.60259
\(266\) 7.28678 5.29416i 0.446781 0.324606i
\(267\) −19.9876 + 9.62919i −1.22322 + 0.589297i
\(268\) 3.64554 11.2198i 0.222687 0.685360i
\(269\) −6.96435 + 9.58561i −0.424624 + 0.584445i −0.966709 0.255879i \(-0.917635\pi\)
0.542085 + 0.840324i \(0.317635\pi\)
\(270\) −3.06424 + 13.4529i −0.186484 + 0.818716i
\(271\) 20.5918 + 6.69068i 1.25086 + 0.406430i 0.858230 0.513266i \(-0.171564\pi\)
0.392632 + 0.919696i \(0.371564\pi\)
\(272\) −2.09831 6.45792i −0.127229 0.391569i
\(273\) 3.09447 2.95950i 0.187286 0.179117i
\(274\) 0.927773i 0.0560488i
\(275\) −1.77652 + 6.56534i −0.107128 + 0.395905i
\(276\) −1.11455 8.21881i −0.0670883 0.494714i
\(277\) −2.39438 3.29558i −0.143864 0.198012i 0.731004 0.682373i \(-0.239052\pi\)
−0.874868 + 0.484361i \(0.839052\pi\)
\(278\) 8.03945 2.61218i 0.482174 0.156668i
\(279\) −0.694243 + 15.5615i −0.0415633 + 0.931640i
\(280\) 3.52536 + 2.56132i 0.210680 + 0.153068i
\(281\) 14.4528 + 10.5006i 0.862182 + 0.626412i 0.928478 0.371388i \(-0.121118\pi\)
−0.0662956 + 0.997800i \(0.521118\pi\)
\(282\) −17.0646 3.09416i −1.01618 0.184255i
\(283\) 2.89090 0.939310i 0.171846 0.0558362i −0.221830 0.975085i \(-0.571203\pi\)
0.393676 + 0.919249i \(0.371203\pi\)
\(284\) 0.527864 + 0.726543i 0.0313230 + 0.0431124i
\(285\) 25.0132 3.39205i 1.48165 0.200927i
\(286\) 3.13464 + 3.89051i 0.185355 + 0.230051i
\(287\) 2.58351i 0.152500i
\(288\) −1.86977 + 2.34605i −0.110177 + 0.138242i
\(289\) 8.99477 + 27.6830i 0.529104 + 1.62841i
\(290\) 1.17183 + 0.380751i 0.0688123 + 0.0223585i
\(291\) −5.47755 2.94655i −0.321099 0.172730i
\(292\) −2.71982 + 3.74351i −0.159165 + 0.219072i
\(293\) 7.21279 22.1987i 0.421376 1.29686i −0.485046 0.874489i \(-0.661197\pi\)
0.906422 0.422373i \(-0.138803\pi\)
\(294\) −3.23764 6.72049i −0.188823 0.391947i
\(295\) 13.1303 9.53970i 0.764474 0.555423i
\(296\) 1.00696 0.0585284
\(297\) −11.9774 12.3912i −0.695000 0.719010i
\(298\) 18.0716 1.04686
\(299\) −5.83588 + 4.24002i −0.337498 + 0.245206i
\(300\) 1.54160 + 3.19996i 0.0890046 + 0.184750i
\(301\) 1.73689 5.34560i 0.100113 0.308115i
\(302\) 7.83513 10.7841i 0.450861 0.620557i
\(303\) 18.5670 + 9.98778i 1.06665 + 0.573783i
\(304\) 5.21982 + 1.69602i 0.299377 + 0.0972736i
\(305\) 11.4083 + 35.1111i 0.653237 + 2.01046i
\(306\) 12.6963 15.9303i 0.725797 0.910674i
\(307\) 30.0216i 1.71342i −0.515794 0.856712i \(-0.672503\pi\)
0.515794 0.856712i \(-0.327497\pi\)
\(308\) −5.08611 + 1.93802i −0.289808 + 0.110429i
\(309\) −1.52170 + 0.206358i −0.0865666 + 0.0117393i
\(310\) 8.10394 + 11.1541i 0.460273 + 0.633511i
\(311\) −0.470986 + 0.153033i −0.0267071 + 0.00867768i −0.322340 0.946624i \(-0.604469\pi\)
0.295633 + 0.955302i \(0.404469\pi\)
\(312\) 2.56732 + 0.465507i 0.145346 + 0.0263541i
\(313\) 22.9590 + 16.6807i 1.29772 + 0.942849i 0.999931 0.0117826i \(-0.00375062\pi\)
0.297790 + 0.954632i \(0.403751\pi\)
\(314\) −7.85410 5.70634i −0.443233 0.322027i
\(315\) −0.582635 + 13.0598i −0.0328278 + 0.735834i
\(316\) −3.02188 + 0.981868i −0.169994 + 0.0552344i
\(317\) 3.90331 + 5.37244i 0.219232 + 0.301747i 0.904440 0.426600i \(-0.140289\pi\)
−0.685209 + 0.728347i \(0.740289\pi\)
\(318\) −2.28678 16.8629i −0.128236 0.945626i
\(319\) −1.19841 + 0.965575i −0.0670980 + 0.0540618i
\(320\) 2.65532i 0.148437i
\(321\) 2.79359 2.67174i 0.155923 0.149122i
\(322\) −2.42838 7.47379i −0.135328 0.416498i
\(323\) −35.4440 11.5164i −1.97215 0.640792i
\(324\) −8.96425 0.801439i −0.498014 0.0445244i
\(325\) 1.81580 2.49923i 0.100722 0.138632i
\(326\) 2.18848 6.73544i 0.121209 0.373041i
\(327\) −7.38893 + 3.55967i −0.408609 + 0.196850i
\(328\) 1.27362 0.925338i 0.0703238 0.0510932i
\(329\) −16.4320 −0.905924
\(330\) −15.1260 1.96945i −0.832657 0.108414i
\(331\) 7.41016 0.407299 0.203650 0.979044i \(-0.434720\pi\)
0.203650 + 0.979044i \(0.434720\pi\)
\(332\) 1.51625 1.10162i 0.0832149 0.0604591i
\(333\) 1.66494 + 2.52065i 0.0912382 + 0.138131i
\(334\) 0.783304 2.41076i 0.0428605 0.131911i
\(335\) 18.4126 25.3428i 1.00599 1.38462i
\(336\) −1.34657 + 2.50323i −0.0734612 + 0.136562i
\(337\) −32.5392 10.5726i −1.77252 0.575927i −0.774152 0.632999i \(-0.781824\pi\)
−0.998370 + 0.0570720i \(0.981824\pi\)
\(338\) 3.31598 + 10.2055i 0.180365 + 0.555108i
\(339\) 4.66376 + 4.87647i 0.253301 + 0.264853i
\(340\) 18.0303i 0.977831i
\(341\) −17.1995 + 0.858913i −0.931406 + 0.0465127i
\(342\) 4.38509 + 15.8707i 0.237119 + 0.858188i
\(343\) −10.9066 15.0117i −0.588902 0.810554i
\(344\) 3.25737 1.05838i 0.175626 0.0570642i
\(345\) 3.92920 21.6700i 0.211541 1.16667i
\(346\) 0.767987 + 0.557975i 0.0412872 + 0.0299969i
\(347\) 16.9283 + 12.2991i 0.908760 + 0.660252i 0.940701 0.339237i \(-0.110169\pi\)
−0.0319413 + 0.999490i \(0.510169\pi\)
\(348\) −0.143392 + 0.790821i −0.00768661 + 0.0423925i
\(349\) 28.0113 9.10144i 1.49941 0.487189i 0.559566 0.828786i \(-0.310968\pi\)
0.939847 + 0.341597i \(0.110968\pi\)
\(350\) 1.97812 + 2.72265i 0.105735 + 0.145532i
\(351\) 3.07962 + 7.19627i 0.164378 + 0.384109i
\(352\) −2.77710 1.81321i −0.148020 0.0966444i
\(353\) 24.3265i 1.29477i 0.762163 + 0.647385i \(0.224137\pi\)
−0.762163 + 0.647385i \(0.775863\pi\)
\(354\) 7.31720 + 7.65092i 0.388905 + 0.406642i
\(355\) 0.736889 + 2.26791i 0.0391100 + 0.120368i
\(356\) −12.1823 3.95826i −0.645659 0.209787i
\(357\) 9.14354 16.9976i 0.483928 0.899608i
\(358\) −10.9126 + 15.0199i −0.576749 + 0.793827i
\(359\) 10.1134 31.1259i 0.533765 1.64276i −0.212537 0.977153i \(-0.568173\pi\)
0.746302 0.665607i \(-0.231827\pi\)
\(360\) −6.64687 + 4.39039i −0.350321 + 0.231394i
\(361\) 8.99871 6.53795i 0.473617 0.344103i
\(362\) 12.8793 0.676920
\(363\) 12.3887 14.4748i 0.650237 0.759731i
\(364\) 2.47214 0.129575
\(365\) −9.94022 + 7.22199i −0.520295 + 0.378016i
\(366\) −21.6951 + 10.4518i −1.13402 + 0.546322i
\(367\) −3.67822 + 11.3204i −0.192001 + 0.590919i 0.807997 + 0.589186i \(0.200552\pi\)
−0.999998 + 0.00173292i \(0.999448\pi\)
\(368\) 2.81465 3.87403i 0.146724 0.201948i
\(369\) 4.42217 + 1.65817i 0.230209 + 0.0863211i
\(370\) 2.54293 + 0.826249i 0.132201 + 0.0429547i
\(371\) −4.98242 15.3343i −0.258675 0.796118i
\(372\) −6.49942 + 6.21593i −0.336979 + 0.322281i
\(373\) 27.7804i 1.43841i 0.694796 + 0.719207i \(0.255495\pi\)
−0.694796 + 0.719207i \(0.744505\pi\)
\(374\) 18.8572 + 12.3122i 0.975084 + 0.636647i
\(375\) −1.82276 13.4412i −0.0941268 0.694099i
\(376\) −5.88545 8.10062i −0.303519 0.417758i
\(377\) 0.664801 0.216007i 0.0342390 0.0111249i
\(378\) −8.49262 + 0.768157i −0.436813 + 0.0395097i
\(379\) 6.36264 + 4.62273i 0.326827 + 0.237454i 0.739083 0.673614i \(-0.235259\pi\)
−0.412256 + 0.911068i \(0.635259\pi\)
\(380\) 11.7903 + 8.56613i 0.604828 + 0.439433i
\(381\) 0.402846 + 0.0730441i 0.0206384 + 0.00374216i
\(382\) −3.07080 + 0.997763i −0.157116 + 0.0510500i
\(383\) 7.61538 + 10.4817i 0.389128 + 0.535588i 0.957974 0.286856i \(-0.0926101\pi\)
−0.568846 + 0.822444i \(0.692610\pi\)
\(384\) −1.71634 + 0.232753i −0.0875867 + 0.0118776i
\(385\) −14.4345 + 0.720832i −0.735649 + 0.0367370i
\(386\) 9.76512i 0.497032i
\(387\) 8.03522 + 6.40398i 0.408453 + 0.325533i
\(388\) −1.10968 3.41524i −0.0563353 0.173382i
\(389\) −24.6301 8.00280i −1.24880 0.405758i −0.391306 0.920261i \(-0.627977\pi\)
−0.857489 + 0.514502i \(0.827977\pi\)
\(390\) 6.10143 + 3.28215i 0.308958 + 0.166198i
\(391\) −19.1122 + 26.3057i −0.966546 + 1.33034i
\(392\) 1.33089 4.09607i 0.0672203 0.206883i
\(393\) −3.95972 8.21934i −0.199742 0.414611i
\(394\) −11.3003 + 8.21015i −0.569301 + 0.413621i
\(395\) −8.43698 −0.424511
\(396\) −0.0528664 9.94973i −0.00265664 0.499993i
\(397\) −17.9986 −0.903323 −0.451661 0.892189i \(-0.649168\pi\)
−0.451661 + 0.892189i \(0.649168\pi\)
\(398\) −12.9183 + 9.38572i −0.647538 + 0.470464i
\(399\) 6.77089 + 14.0546i 0.338969 + 0.703609i
\(400\) −0.633706 + 1.95035i −0.0316853 + 0.0975173i
\(401\) 2.21479 3.04840i 0.110601 0.152230i −0.750128 0.661293i \(-0.770008\pi\)
0.860729 + 0.509063i \(0.170008\pi\)
\(402\) 17.9950 + 9.68008i 0.897508 + 0.482798i
\(403\) 7.43893 + 2.41706i 0.370560 + 0.120402i
\(404\) 3.76143 + 11.5765i 0.187138 + 0.575951i
\(405\) −21.9803 9.37943i −1.09221 0.466068i
\(406\) 0.761502i 0.0377927i
\(407\) −2.60061 + 2.09535i −0.128907 + 0.103863i
\(408\) 11.6544 1.58046i 0.576979 0.0782442i
\(409\) −8.44886 11.6289i −0.417769 0.575010i 0.547323 0.836922i \(-0.315647\pi\)
−0.965092 + 0.261912i \(0.915647\pi\)
\(410\) 3.97562 1.29176i 0.196342 0.0637953i
\(411\) 1.58117 + 0.286698i 0.0779933 + 0.0141418i
\(412\) −0.717271 0.521128i −0.0353374 0.0256741i
\(413\) 8.11495 + 5.89586i 0.399311 + 0.290116i
\(414\) 14.3514 + 0.640260i 0.705334 + 0.0314671i
\(415\) 4.73299 1.53784i 0.232333 0.0754896i
\(416\) 0.885446 + 1.21871i 0.0434126 + 0.0597523i
\(417\) 1.96751 + 14.5085i 0.0963492 + 0.710486i
\(418\) −17.0101 + 6.48153i −0.831990 + 0.317022i
\(419\) 31.1601i 1.52227i 0.648595 + 0.761134i \(0.275357\pi\)
−0.648595 + 0.761134i \(0.724643\pi\)
\(420\) −5.45456 + 5.21664i −0.266155 + 0.254546i
\(421\) −3.34251 10.2872i −0.162904 0.501367i 0.835972 0.548773i \(-0.184905\pi\)
−0.998876 + 0.0474055i \(0.984905\pi\)
\(422\) −2.15709 0.700881i −0.105005 0.0341183i
\(423\) 10.5465 28.1265i 0.512790 1.36756i
\(424\) 5.77495 7.94853i 0.280456 0.386015i
\(425\) 4.30303 13.2434i 0.208728 0.642398i
\(426\) −1.40134 + 0.675105i −0.0678950 + 0.0327089i
\(427\) −18.4590 + 13.4113i −0.893294 + 0.649016i
\(428\) 2.23177 0.107877
\(429\) −7.59910 + 4.14001i −0.366888 + 0.199881i
\(430\) 9.09447 0.438574
\(431\) 32.2249 23.4128i 1.55222 1.12775i 0.610173 0.792268i \(-0.291100\pi\)
0.942046 0.335484i \(-0.108900\pi\)
\(432\) −3.42049 3.91155i −0.164568 0.188195i
\(433\) 4.99226 15.3646i 0.239913 0.738376i −0.756519 0.653972i \(-0.773101\pi\)
0.996432 0.0844037i \(-0.0268985\pi\)
\(434\) −5.00851 + 6.89362i −0.240416 + 0.330904i
\(435\) −1.01102 + 1.87945i −0.0484745 + 0.0901127i
\(436\) −4.50348 1.46327i −0.215678 0.0700779i
\(437\) −8.12151 24.9954i −0.388505 1.19569i
\(438\) −5.53945 5.79210i −0.264685 0.276757i
\(439\) 6.13994i 0.293043i −0.989207 0.146522i \(-0.953192\pi\)
0.989207 0.146522i \(-0.0468078\pi\)
\(440\) −5.52536 6.85772i −0.263411 0.326929i
\(441\) 12.4540 3.44105i 0.593046 0.163859i
\(442\) −6.01241 8.27537i −0.285981 0.393619i
\(443\) 1.55768 0.506119i 0.0740074 0.0240465i −0.271779 0.962360i \(-0.587612\pi\)
0.345787 + 0.938313i \(0.387612\pi\)
\(444\) −0.311168 + 1.71612i −0.0147674 + 0.0814436i
\(445\) −27.5167 19.9920i −1.30442 0.947714i
\(446\) −3.56076 2.58704i −0.168607 0.122500i
\(447\) −5.58443 + 30.7987i −0.264134 + 1.45673i
\(448\) −1.56076 + 0.507121i −0.0737388 + 0.0239592i
\(449\) 10.7458 + 14.7903i 0.507125 + 0.697997i 0.983431 0.181282i \(-0.0580247\pi\)
−0.476306 + 0.879279i \(0.658025\pi\)
\(450\) −5.92996 + 1.63846i −0.279541 + 0.0772376i
\(451\) −1.36379 + 5.04004i −0.0642183 + 0.237326i
\(452\) 3.89575i 0.183241i
\(453\) 15.9578 + 16.6856i 0.749763 + 0.783957i
\(454\) −3.93483 12.1102i −0.184671 0.568358i
\(455\) 6.24303 + 2.02848i 0.292678 + 0.0950967i
\(456\) −4.50348 + 8.37184i −0.210895 + 0.392047i
\(457\) 16.4490 22.6402i 0.769454 1.05906i −0.226915 0.973915i \(-0.572864\pi\)
0.996368 0.0851474i \(-0.0271361\pi\)
\(458\) 1.98493 6.10899i 0.0927497 0.285454i
\(459\) 23.2260 + 26.5605i 1.08410 + 1.23974i
\(460\) 10.2868 7.47379i 0.479624 0.348467i
\(461\) −30.3359 −1.41288 −0.706441 0.707772i \(-0.749700\pi\)
−0.706441 + 0.707772i \(0.749700\pi\)
\(462\) −1.73119 9.26695i −0.0805423 0.431138i
\(463\) −10.9632 −0.509503 −0.254752 0.967007i \(-0.581994\pi\)
−0.254752 + 0.967007i \(0.581994\pi\)
\(464\) −0.375405 + 0.272747i −0.0174277 + 0.0126620i
\(465\) −21.5138 + 10.3644i −0.997678 + 0.480639i
\(466\) −5.19468 + 15.9876i −0.240639 + 0.740611i
\(467\) −18.9376 + 26.0653i −0.876326 + 1.20616i 0.101099 + 0.994876i \(0.467764\pi\)
−0.977425 + 0.211283i \(0.932236\pi\)
\(468\) −1.58669 + 4.23153i −0.0733448 + 0.195603i
\(469\) 18.4126 + 5.98262i 0.850215 + 0.276252i
\(470\) −8.21599 25.2862i −0.378975 1.16637i
\(471\) 12.1521 11.6221i 0.559941 0.535518i
\(472\) 6.11223i 0.281338i
\(473\) −6.21025 + 9.51157i −0.285547 + 0.437342i
\(474\) −0.739548 5.45348i −0.0339686 0.250487i
\(475\) 6.61566 + 9.10568i 0.303547 + 0.417797i
\(476\) 10.5980 3.44348i 0.485756 0.157832i
\(477\) 29.4455 + 1.31365i 1.34822 + 0.0601480i
\(478\) 9.73955 + 7.07620i 0.445477 + 0.323658i
\(479\) −15.2361 11.0697i −0.696154 0.505785i 0.182524 0.983201i \(-0.441573\pi\)
−0.878677 + 0.477416i \(0.841573\pi\)
\(480\) −4.52536 0.820539i −0.206553 0.0374523i
\(481\) 1.44265 0.468746i 0.0657793 0.0213730i
\(482\) −12.0873 16.6368i −0.550563 0.757785i
\(483\) 13.4877 1.82907i 0.613712 0.0832255i
\(484\) 10.9453 1.09591i 0.497512 0.0498140i
\(485\) 9.53523i 0.432972i
\(486\) 4.13597 15.0298i 0.187611 0.681764i
\(487\) −8.30030 25.5457i −0.376123 1.15759i −0.942718 0.333591i \(-0.891740\pi\)
0.566595 0.823996i \(-0.308260\pi\)
\(488\) −13.2229 4.29640i −0.598575 0.194489i
\(489\) 10.8027 + 5.81110i 0.488514 + 0.262787i
\(490\) 6.72197 9.25200i 0.303668 0.417963i
\(491\) 5.88351 18.1076i 0.265519 0.817184i −0.726054 0.687638i \(-0.758648\pi\)
0.991573 0.129547i \(-0.0413522\pi\)
\(492\) 1.18345 + 2.45652i 0.0533540 + 0.110749i
\(493\) 2.54910 1.85203i 0.114806 0.0834111i
\(494\) 8.26785 0.371988
\(495\) 8.03063 25.1700i 0.360950 1.13131i
\(496\) −5.19231 −0.233142
\(497\) −1.19231 + 0.866266i −0.0534825 + 0.0388573i
\(498\) 1.40890 + 2.92450i 0.0631343 + 0.131050i
\(499\) 3.28175 10.1002i 0.146912 0.452147i −0.850340 0.526233i \(-0.823604\pi\)
0.997252 + 0.0740860i \(0.0236039\pi\)
\(500\) 4.60312 6.33565i 0.205858 0.283339i
\(501\) 3.86651 + 2.07992i 0.172743 + 0.0929240i
\(502\) 15.5648 + 5.05731i 0.694692 + 0.225719i
\(503\) 9.56998 + 29.4534i 0.426704 + 1.31326i 0.901353 + 0.433085i \(0.142575\pi\)
−0.474649 + 0.880175i \(0.657425\pi\)
\(504\) −3.85005 3.06844i −0.171495 0.136679i
\(505\) 32.3211i 1.43827i
\(506\) 0.792125 + 15.8621i 0.0352142 + 0.705157i
\(507\) −18.4176 + 2.49761i −0.817954 + 0.110923i
\(508\) 0.138938 + 0.191232i 0.00616438 + 0.00848454i
\(509\) 19.5685 6.35820i 0.867359 0.281822i 0.158660 0.987333i \(-0.449283\pi\)
0.708699 + 0.705511i \(0.249283\pi\)
\(510\) 30.7284 + 5.57167i 1.36068 + 0.246718i
\(511\) −6.14339 4.46344i −0.271768 0.197451i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −28.4028 + 2.56904i −1.25402 + 0.113426i
\(514\) −8.11843 + 2.63784i −0.358089 + 0.116350i
\(515\) −1.38376 1.90458i −0.0609758 0.0839260i
\(516\) 0.797180 + 5.87847i 0.0350939 + 0.258785i
\(517\) 32.0563 + 8.67413i 1.40983 + 0.381488i
\(518\) 1.65250i 0.0726066i
\(519\) −1.18826 + 1.13643i −0.0521587 + 0.0498836i
\(520\) 1.23607 + 3.80423i 0.0542052 + 0.166826i
\(521\) −3.64239 1.18348i −0.159576 0.0518494i 0.228140 0.973628i \(-0.426736\pi\)
−0.387716 + 0.921779i \(0.626736\pi\)
\(522\) −1.30346 0.488754i −0.0570507 0.0213922i
\(523\) 5.66137 7.79220i 0.247554 0.340729i −0.667099 0.744969i \(-0.732464\pi\)
0.914653 + 0.404240i \(0.132464\pi\)
\(524\) 1.62772 5.00961i 0.0711073 0.218846i
\(525\) −5.25138 + 2.52989i −0.229189 + 0.110414i
\(526\) 10.9756 7.97425i 0.478560 0.347694i
\(527\) 35.2572 1.53583
\(528\) 3.94835 4.17259i 0.171830 0.181589i
\(529\) 0.0696480 0.00302817
\(530\) 21.1059 15.3343i 0.916781 0.666080i
\(531\) −15.3003 + 10.1062i −0.663977 + 0.438570i
\(532\) −2.78330 + 8.56613i −0.120672 + 0.371389i
\(533\) 1.39394 1.91859i 0.0603782 0.0831034i
\(534\) 10.5104 19.5386i 0.454831 0.845518i
\(535\) 5.63601 + 1.83125i 0.243666 + 0.0791719i
\(536\) 3.64554 + 11.2198i 0.157463 + 0.484623i
\(537\) −22.2257 23.2393i −0.959109 1.00285i
\(538\) 11.8485i 0.510824i
\(539\) 5.08616 + 13.3481i 0.219076 + 0.574942i
\(540\) −5.42838 12.6847i −0.233600 0.545863i
\(541\) 1.63935 + 2.25638i 0.0704813 + 0.0970092i 0.842802 0.538223i \(-0.180904\pi\)
−0.772321 + 0.635232i \(0.780904\pi\)
\(542\) −20.5918 + 6.69068i −0.884493 + 0.287389i
\(543\) −3.97992 + 21.9497i −0.170795 + 0.941951i
\(544\) 5.49344 + 3.99122i 0.235529 + 0.171122i
\(545\) −10.1722 7.39056i −0.435730 0.316577i
\(546\) −0.763932 + 4.21317i −0.0326933 + 0.180307i
\(547\) −31.5016 + 10.2355i −1.34691 + 0.437638i −0.891652 0.452721i \(-0.850453\pi\)
−0.455259 + 0.890359i \(0.650453\pi\)
\(548\) 0.545331 + 0.750584i 0.0232954 + 0.0320634i
\(549\) −11.1084 40.2039i −0.474095 1.71586i
\(550\) −2.42178 6.35569i −0.103265 0.271008i
\(551\) 2.54678i 0.108496i
\(552\) 5.73259 + 5.99404i 0.243995 + 0.255123i
\(553\) −1.61132 4.95913i −0.0685203 0.210884i
\(554\) 3.87418 + 1.25880i 0.164598 + 0.0534812i
\(555\) −2.19396 + 4.07850i −0.0931282 + 0.173123i
\(556\) −4.96866 + 6.83877i −0.210718 + 0.290028i
\(557\) −8.46752 + 26.0604i −0.358780 + 1.10421i 0.595004 + 0.803722i \(0.297150\pi\)
−0.953785 + 0.300490i \(0.902850\pi\)
\(558\) −8.58514 12.9976i −0.363438 0.550230i
\(559\) 4.17409 3.03265i 0.176545 0.128268i
\(560\) −4.35758 −0.184141
\(561\) −26.8104 + 28.3330i −1.13193 + 1.19622i
\(562\) −17.8647 −0.753575
\(563\) −17.1967 + 12.4941i −0.724753 + 0.526564i −0.887899 0.460038i \(-0.847836\pi\)
0.163146 + 0.986602i \(0.447836\pi\)
\(564\) 15.6243 7.52711i 0.657901 0.316949i
\(565\) −3.19661 + 9.83817i −0.134483 + 0.413895i
\(566\) −1.78667 + 2.45914i −0.0750995 + 0.103366i
\(567\) 1.31522 14.7110i 0.0552342 0.617805i
\(568\) −0.854102 0.277515i −0.0358373 0.0116443i
\(569\) −11.4052 35.1015i −0.478130 1.47153i −0.841690 0.539961i \(-0.818439\pi\)
0.363560 0.931571i \(-0.381561\pi\)
\(570\) −18.2423 + 17.4466i −0.764087 + 0.730758i
\(571\) 26.4505i 1.10692i −0.832876 0.553460i \(-0.813307\pi\)
0.832876 0.553460i \(-0.186693\pi\)
\(572\) −4.82276 1.30499i −0.201650 0.0545646i
\(573\) −0.751520 5.54177i −0.0313952 0.231511i
\(574\) 1.51855 + 2.09010i 0.0633831 + 0.0872393i
\(575\) 9.33936 3.03454i 0.389478 0.126549i
\(576\) 0.133706 2.99702i 0.00557108 0.124876i
\(577\) 19.8138 + 14.3955i 0.824858 + 0.599294i 0.918100 0.396349i \(-0.129723\pi\)
−0.0932422 + 0.995643i \(0.529723\pi\)
\(578\) −23.5486 17.1091i −0.979493 0.711643i
\(579\) −16.6423 3.01759i −0.691631 0.125407i
\(580\) −1.17183 + 0.380751i −0.0486576 + 0.0158098i
\(581\) 1.80784 + 2.48828i 0.0750018 + 0.103231i
\(582\) 6.16337 0.835815i 0.255480 0.0346456i
\(583\) 1.62524 + 32.5450i 0.0673106 + 1.34788i
\(584\) 4.62724i 0.191476i
\(585\) −7.47910 + 9.38420i −0.309223 + 0.387989i
\(586\) 7.21279 + 22.1987i 0.297958 + 0.917020i
\(587\) 39.3939 + 12.7999i 1.62596 + 0.528307i 0.973338 0.229375i \(-0.0736683\pi\)
0.652624 + 0.757682i \(0.273668\pi\)
\(588\) 6.56951 + 3.53395i 0.270922 + 0.145738i
\(589\) −16.7505 + 23.0551i −0.690194 + 0.949970i
\(590\) −5.01532 + 15.4356i −0.206477 + 0.635472i
\(591\) −10.5003 21.7958i −0.431923 0.896558i
\(592\) −0.814648 + 0.591876i −0.0334818 + 0.0243260i
\(593\) 2.94808 0.121063 0.0605316 0.998166i \(-0.480720\pi\)
0.0605316 + 0.998166i \(0.480720\pi\)
\(594\) 16.9733 + 2.98454i 0.696422 + 0.122457i
\(595\) 29.5891 1.21304
\(596\) −14.6202 + 10.6222i −0.598868 + 0.435103i
\(597\) −12.0037 24.9166i −0.491280 1.01977i
\(598\) 2.22911 6.86049i 0.0911550 0.280546i
\(599\) −16.3070 + 22.4446i −0.666284 + 0.917061i −0.999669 0.0257295i \(-0.991809\pi\)
0.333385 + 0.942791i \(0.391809\pi\)
\(600\) −3.12808 1.68269i −0.127703 0.0686956i
\(601\) 4.22399 + 1.37246i 0.172300 + 0.0559836i 0.393897 0.919155i \(-0.371127\pi\)
−0.221597 + 0.975138i \(0.571127\pi\)
\(602\) 1.73689 + 5.34560i 0.0707903 + 0.217870i
\(603\) −22.0581 + 27.6769i −0.898277 + 1.12709i
\(604\) 13.3299i 0.542387i
\(605\) 28.5400 + 6.21346i 1.16031 + 0.252613i
\(606\) −20.8917 + 2.83313i −0.848667 + 0.115088i
\(607\) 23.8874 + 32.8782i 0.969559 + 1.33448i 0.942269 + 0.334856i \(0.108688\pi\)
0.0272902 + 0.999628i \(0.491312\pi\)
\(608\) −5.21982 + 1.69602i −0.211692 + 0.0687828i
\(609\) −1.29780 0.235317i −0.0525895 0.00953553i
\(610\) −29.8673 21.6999i −1.20929 0.878602i
\(611\) −12.2029 8.86590i −0.493675 0.358676i
\(612\) −0.907899 + 20.3505i −0.0366996 + 0.822622i
\(613\) −27.4583 + 8.92174i −1.10903 + 0.360346i −0.805571 0.592499i \(-0.798142\pi\)
−0.303459 + 0.952845i \(0.598142\pi\)
\(614\) 17.6463 + 24.2880i 0.712145 + 0.980184i
\(615\) 0.972957 + 7.17467i 0.0392334 + 0.289310i
\(616\) 2.97562 4.55743i 0.119891 0.183624i
\(617\) 31.6428i 1.27389i −0.770909 0.636946i \(-0.780198\pi\)
0.770909 0.636946i \(-0.219802\pi\)
\(618\) 1.10979 1.06138i 0.0446422 0.0426950i
\(619\) 0.294921 + 0.907672i 0.0118539 + 0.0364824i 0.956808 0.290719i \(-0.0938945\pi\)
−0.944955 + 0.327201i \(0.893894\pi\)
\(620\) −13.1124 4.26049i −0.526609 0.171105i
\(621\) −5.52600 + 24.2607i −0.221751 + 0.973549i
\(622\) 0.291085 0.400644i 0.0116715 0.0160644i
\(623\) 6.49581 19.9920i 0.260249 0.800964i
\(624\) −2.35062 + 1.13243i −0.0941002 + 0.0453334i
\(625\) 25.1185 18.2496i 1.00474 0.729986i
\(626\) −28.3789 −1.13425
\(627\) −5.78982 30.9925i −0.231223 1.23772i
\(628\) 9.70820 0.387400
\(629\) 5.53167 4.01900i 0.220562 0.160248i
\(630\) −7.20497 10.9080i −0.287053 0.434586i
\(631\) 2.19912 6.76820i 0.0875456 0.269438i −0.897694 0.440620i \(-0.854759\pi\)
0.985239 + 0.171182i \(0.0547587\pi\)
\(632\) 1.86762 2.57056i 0.0742901 0.102252i
\(633\) 1.86106 3.45966i 0.0739706 0.137509i
\(634\) −6.31569 2.05209i −0.250828 0.0814990i
\(635\) 0.193955 + 0.596933i 0.00769688 + 0.0236886i
\(636\) 11.7618 + 12.2983i 0.466387 + 0.487657i
\(637\) 6.48791i 0.257060i
\(638\) 0.401983 1.48557i 0.0159146 0.0588144i
\(639\) −0.717518 2.59687i −0.0283846 0.102730i
\(640\) −1.56076 2.14820i −0.0616943 0.0849150i
\(641\) 31.2374 10.1496i 1.23380 0.400887i 0.381712 0.924281i \(-0.375335\pi\)
0.852090 + 0.523395i \(0.175335\pi\)
\(642\) −0.689654 + 3.80351i −0.0272185 + 0.150113i
\(643\) −2.66685 1.93758i −0.105170 0.0764106i 0.533957 0.845511i \(-0.320704\pi\)
−0.639127 + 0.769101i \(0.720704\pi\)
\(644\) 6.35758 + 4.61905i 0.250524 + 0.182016i
\(645\) −2.81035 + 15.4994i −0.110657 + 0.610287i
\(646\) 35.4440 11.5164i 1.39452 0.453108i
\(647\) −3.42235 4.71046i −0.134547 0.185187i 0.736427 0.676516i \(-0.236511\pi\)
−0.870974 + 0.491329i \(0.836511\pi\)
\(648\) 7.72330 4.62067i 0.303400 0.181517i
\(649\) −12.7187 15.7856i −0.499253 0.619641i
\(650\) 3.08922i 0.121169i
\(651\) −10.2008 10.6661i −0.399802 0.418036i
\(652\) 2.18848 + 6.73544i 0.0857074 + 0.263780i
\(653\) −4.16347 1.35279i −0.162929 0.0529390i 0.226417 0.974031i \(-0.427299\pi\)
−0.389346 + 0.921092i \(0.627299\pi\)
\(654\) 3.88545 7.22293i 0.151933 0.282439i
\(655\) 8.22115 11.3154i 0.321227 0.442131i
\(656\) −0.486479 + 1.49723i −0.0189938 + 0.0584569i
\(657\) 11.5830 7.65082i 0.451897 0.298487i
\(658\) 13.2937 9.65847i 0.518244 0.376526i
\(659\) −15.3805 −0.599141 −0.299570 0.954074i \(-0.596843\pi\)
−0.299570 + 0.954074i \(0.596843\pi\)
\(660\) 13.3948 7.29751i 0.521391 0.284055i
\(661\) 12.6047 0.490266 0.245133 0.969489i \(-0.421168\pi\)
0.245133 + 0.969489i \(0.421168\pi\)
\(662\) −5.99494 + 4.35558i −0.233000 + 0.169285i
\(663\) 15.9613 7.68949i 0.619887 0.298635i
\(664\) −0.579155 + 1.78246i −0.0224756 + 0.0691727i
\(665\) −14.0577 + 19.3487i −0.545133 + 0.750312i
\(666\) −2.82857 1.06062i −0.109605 0.0410983i
\(667\) 2.11326 + 0.686641i 0.0818259 + 0.0265868i
\(668\) 0.783304 + 2.41076i 0.0303069 + 0.0932751i
\(669\) 5.50933 5.26902i 0.213003 0.203712i
\(670\) 31.3254i 1.21021i
\(671\) 43.0903 16.4191i 1.66348 0.633854i
\(672\) −0.381966 2.81665i −0.0147347 0.108655i
\(673\) −18.9461 26.0771i −0.730319 1.00520i −0.999118 0.0420013i \(-0.986627\pi\)
0.268799 0.963196i \(-0.413373\pi\)
\(674\) 32.5392 10.5726i 1.25336 0.407242i
\(675\) −0.959901 10.6125i −0.0369466 0.408476i
\(676\) −8.68134 6.30736i −0.333898 0.242591i
\(677\) −7.37175 5.35589i −0.283319 0.205844i 0.437045 0.899440i \(-0.356025\pi\)
−0.720364 + 0.693596i \(0.756025\pi\)
\(678\) −6.63938 1.20385i −0.254984 0.0462337i
\(679\) 5.60466 1.82107i 0.215087 0.0698861i
\(680\) 10.5980 + 14.5868i 0.406413 + 0.559379i
\(681\) 21.8548 2.96374i 0.837479 0.113571i
\(682\) 13.4098 10.8045i 0.513490 0.413726i
\(683\) 28.1535i 1.07726i −0.842541 0.538632i \(-0.818941\pi\)
0.842541 0.538632i \(-0.181059\pi\)
\(684\) −12.8762 10.2622i −0.492332 0.392383i
\(685\) 0.761274 + 2.34296i 0.0290868 + 0.0895199i
\(686\) 17.6473 + 5.73395i 0.673776 + 0.218923i
\(687\) 9.79793 + 5.27062i 0.373815 + 0.201087i
\(688\) −2.01317 + 2.77089i −0.0767512 + 0.105639i
\(689\) 4.57357 14.0760i 0.174239 0.536253i
\(690\) 9.55850 + 19.8409i 0.363886 + 0.755330i
\(691\) −8.68690 + 6.31140i −0.330465 + 0.240097i −0.740628 0.671915i \(-0.765472\pi\)
0.410163 + 0.912012i \(0.365472\pi\)
\(692\) −0.949284 −0.0360864
\(693\) 16.3283 0.0867579i 0.620260 0.00329566i
\(694\) −20.9245 −0.794285
\(695\) −18.1591 + 13.1934i −0.688814 + 0.500453i
\(696\) −0.348827 0.724072i −0.0132222 0.0274459i
\(697\) 3.30332 10.1666i 0.125122 0.385086i
\(698\) −17.3120 + 23.8279i −0.655268 + 0.901898i
\(699\) −25.6418 13.7935i −0.969862 0.521719i
\(700\) −3.20067 1.03996i −0.120974 0.0393068i
\(701\) 12.8347 + 39.5012i 0.484761 + 1.49194i 0.832327 + 0.554285i \(0.187008\pi\)
−0.347566 + 0.937656i \(0.612992\pi\)
\(702\) −6.72133 4.01175i −0.253680 0.151414i
\(703\) 5.52664i 0.208441i
\(704\) 3.31250 0.165420i 0.124844 0.00623450i
\(705\) 45.6332 6.18832i 1.71865 0.233066i
\(706\) −14.2988 19.6806i −0.538141 0.740688i
\(707\) −18.9979 + 6.17279i −0.714489 + 0.232152i
\(708\) −10.4168 1.88878i −0.391489 0.0709848i
\(709\) −24.4440 17.7596i −0.918015 0.666977i 0.0250143 0.999687i \(-0.492037\pi\)
−0.943029 + 0.332710i \(0.892037\pi\)
\(710\) −1.92920 1.40165i −0.0724017 0.0526029i
\(711\) 9.52270 + 0.424836i 0.357129 + 0.0159326i
\(712\) 12.1823 3.95826i 0.456550 0.148342i
\(713\) 14.6145 + 20.1152i 0.547318 + 0.753319i
\(714\) 2.59365 + 19.1258i 0.0970649 + 0.715764i
\(715\) −11.1084 7.25284i −0.415430 0.271241i
\(716\) 18.5656i 0.693830i
\(717\) −15.0694 + 14.4121i −0.562776 + 0.538229i
\(718\) 10.1134 + 31.1259i 0.377429 + 1.16161i
\(719\) −47.7748 15.5230i −1.78170 0.578909i −0.782648 0.622465i \(-0.786131\pi\)
−0.999051 + 0.0435556i \(0.986131\pi\)
\(720\) 2.79682 7.45883i 0.104232 0.277974i
\(721\) 0.855212 1.17710i 0.0318497 0.0438374i
\(722\) −3.43720 + 10.5786i −0.127919 + 0.393696i
\(723\) 32.0886 15.4589i 1.19339 0.574924i
\(724\) −10.4196 + 7.57025i −0.387240 + 0.281346i
\(725\) −0.951585 −0.0353410
\(726\) −1.51456 + 18.9923i −0.0562107 + 0.704869i
\(727\) 42.9707 1.59369 0.796847 0.604181i \(-0.206499\pi\)
0.796847 + 0.604181i \(0.206499\pi\)
\(728\) −2.00000 + 1.45309i −0.0741249 + 0.0538549i
\(729\) 24.3366 + 11.6932i 0.901354 + 0.433082i
\(730\) 3.79682 11.6854i 0.140527 0.432497i
\(731\) 13.6699 18.8150i 0.505601 0.695899i
\(732\) 11.4083 21.2077i 0.421663 0.783859i
\(733\) 32.7807 + 10.6511i 1.21078 + 0.393408i 0.843718 0.536787i \(-0.180362\pi\)
0.367066 + 0.930195i \(0.380362\pi\)
\(734\) −3.67822 11.3204i −0.135765 0.417843i
\(735\) 13.6906 + 14.3150i 0.504986 + 0.528018i
\(736\) 4.78856i 0.176509i
\(737\) −32.7620 21.3908i −1.20681 0.787942i
\(738\) −4.55226 + 1.25780i −0.167571 + 0.0463002i
\(739\) −0.669749 0.921830i −0.0246371 0.0339101i 0.796521 0.604611i \(-0.206671\pi\)
−0.821158 + 0.570701i \(0.806671\pi\)
\(740\) −2.54293 + 0.826249i −0.0934801 + 0.0303735i
\(741\) −2.55491 + 14.0906i −0.0938568 + 0.517631i
\(742\) 13.0442 + 9.47713i 0.478866 + 0.347916i
\(743\) −11.8635 8.61934i −0.435230 0.316213i 0.348507 0.937306i \(-0.386689\pi\)
−0.783737 + 0.621093i \(0.786689\pi\)
\(744\) 1.60451 8.84906i 0.0588243 0.324422i
\(745\) −45.6372 + 14.8284i −1.67202 + 0.543272i
\(746\) −16.3289 22.4748i −0.597843 0.822861i
\(747\) −5.41949 + 1.49741i −0.198289 + 0.0547875i
\(748\) −22.4927 + 1.12325i −0.822416 + 0.0410699i
\(749\) 3.66250i 0.133825i
\(750\) 9.37516 + 9.80274i 0.342332 + 0.357945i
\(751\) −9.49151 29.2119i −0.346350 1.06596i −0.960857 0.277044i \(-0.910645\pi\)
0.614507 0.788911i \(-0.289355\pi\)
\(752\) 9.52285 + 3.09416i 0.347263 + 0.112832i
\(753\) −13.4288 + 24.9637i −0.489372 + 0.909729i
\(754\) −0.410870 + 0.565514i −0.0149630 + 0.0205948i
\(755\) −10.9377 + 33.6628i −0.398064 + 1.22512i
\(756\) 6.41916 5.61329i 0.233463 0.204153i
\(757\) −29.7783 + 21.6352i −1.08231 + 0.786345i −0.978084 0.208209i \(-0.933237\pi\)
−0.104226 + 0.994554i \(0.533237\pi\)
\(758\) −7.86465 −0.285657
\(759\) −27.2780 3.55167i −0.990127 0.128918i
\(760\) −14.5736 −0.528639
\(761\) −14.4001 + 10.4623i −0.522004 + 0.379258i −0.817358 0.576130i \(-0.804562\pi\)
0.295354 + 0.955388i \(0.404562\pi\)
\(762\) −0.368843 + 0.177693i −0.0133618 + 0.00643714i
\(763\) 2.40134 7.39056i 0.0869343 0.267556i
\(764\) 1.89786 2.61218i 0.0686621 0.0945052i
\(765\) −18.9912 + 50.6475i −0.686628 + 1.83116i