Properties

Label 66.2.h.a.35.1
Level $66$
Weight $2$
Character 66.35
Analytic conductor $0.527$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [66,2,Mod(17,66)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(66, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("66.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.527012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.185640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 35.1
Root \(1.55470 + 0.763481i\) of defining polynomial
Character \(\chi\) \(=\) 66.35
Dual form 66.2.h.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-1.20654 - 1.24268i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(0.897526 - 0.291624i) q^{5} +(-1.55470 + 0.763481i) q^{6} +(0.897526 - 1.23534i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(-0.0885088 + 2.99869i) q^{9} +O(q^{10})\) \(q+(0.309017 - 0.951057i) q^{2} +(-1.20654 - 1.24268i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(0.897526 - 0.291624i) q^{5} +(-1.55470 + 0.763481i) q^{6} +(0.897526 - 1.23534i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(-0.0885088 + 2.99869i) q^{9} -0.943715i q^{10} +(-0.151841 + 3.31315i) q^{11} +(0.245684 + 1.71454i) q^{12} +(4.03112 + 1.30979i) q^{13} +(-0.897526 - 1.23534i) q^{14} +(-1.44530 - 0.763481i) q^{15} +(0.309017 + 0.951057i) q^{16} +(0.906157 + 2.78886i) q^{17} +(2.82458 + 1.01082i) q^{18} +(-4.16740 - 5.73594i) q^{19} +(-0.897526 - 0.291624i) q^{20} +(-2.61803 + 0.375151i) q^{21} +(3.10407 + 1.16823i) q^{22} -1.18465i q^{23} +(1.70654 + 0.296161i) q^{24} +(-3.32458 + 2.41545i) q^{25} +(2.49137 - 3.42908i) q^{26} +(3.83321 - 3.50806i) q^{27} +(-1.45223 + 0.471857i) q^{28} +(-5.17274 - 3.75821i) q^{29} +(-1.17274 + 1.13863i) q^{30} +(-2.68830 + 8.27372i) q^{31} +1.00000 q^{32} +(4.30039 - 3.80876i) q^{33} +2.93239 q^{34} +(0.445299 - 1.37049i) q^{35} +(1.83419 - 2.37397i) q^{36} +(-2.28642 - 1.66118i) q^{37} +(-6.74300 + 2.19093i) q^{38} +(-3.23607 - 6.58971i) q^{39} +(-0.554701 + 0.763481i) q^{40} +(5.92001 - 4.30114i) q^{41} +(-0.452227 + 2.60583i) q^{42} -5.34587i q^{43} +(2.07026 - 2.59114i) q^{44} +(0.795052 + 2.71722i) q^{45} +(-1.12667 - 0.366076i) q^{46} +(5.58154 + 7.68233i) q^{47} +(0.809017 - 1.53150i) q^{48} +(1.44261 + 4.43990i) q^{49} +(1.26988 + 3.90827i) q^{50} +(2.37235 - 4.49095i) q^{51} +(-2.49137 - 3.42908i) q^{52} +(-4.62924 - 1.50413i) q^{53} +(-2.15184 - 4.72965i) q^{54} +(0.829911 + 3.01792i) q^{55} +1.52696i q^{56} +(-2.09979 + 12.0994i) q^{57} +(-5.17274 + 3.75821i) q^{58} +(-2.74201 + 3.77405i) q^{59} +(0.720508 + 1.46719i) q^{60} +(-0.685649 + 0.222781i) q^{61} +(7.03805 + 5.11344i) q^{62} +(3.62496 + 2.80074i) q^{63} +(0.309017 - 0.951057i) q^{64} +4.00000 q^{65} +(-2.29346 - 5.26688i) q^{66} +3.89379 q^{67} +(0.906157 - 2.78886i) q^{68} +(-1.47214 + 1.42933i) q^{69} +(-1.16581 - 0.847008i) q^{70} +(-9.47214 + 3.07768i) q^{71} +(-1.69098 - 2.47802i) q^{72} +(1.03051 - 1.41838i) q^{73} +(-2.28642 + 1.66118i) q^{74} +(7.01287 + 1.21705i) q^{75} +7.09001i q^{76} +(3.95658 + 3.16121i) q^{77} +(-7.26719 + 1.04135i) q^{78} +(-1.56591 - 0.508796i) q^{79} +(0.554701 + 0.763481i) q^{80} +(-8.98433 - 0.530822i) q^{81} +(-2.26124 - 6.95939i) q^{82} +(-1.90347 - 5.85828i) q^{83} +(2.33854 + 1.23534i) q^{84} +(1.62660 + 2.23882i) q^{85} +(-5.08423 - 1.65197i) q^{86} +(1.57087 + 10.9625i) q^{87} +(-1.82458 - 2.76964i) q^{88} -17.3406i q^{89} +(2.82991 + 0.0835271i) q^{90} +(5.23607 - 3.80423i) q^{91} +(-0.696317 + 0.958399i) q^{92} +(13.5251 - 6.64191i) q^{93} +(9.03112 - 2.93439i) q^{94} +(-5.41309 - 3.93284i) q^{95} +(-1.20654 - 1.24268i) q^{96} +(3.54074 - 10.8973i) q^{97} +4.66839 q^{98} +(-9.92168 - 0.748569i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9} + q^{11} - 3 q^{12} - 21 q^{15} - 2 q^{16} + 10 q^{17} + 2 q^{18} - 15 q^{19} - 12 q^{21} + 6 q^{22} + 2 q^{24} - 6 q^{25} + 10 q^{26} + 20 q^{27} + 5 q^{28} - 23 q^{29} + 9 q^{30} + 13 q^{31} + 8 q^{32} + 20 q^{33} + 10 q^{34} + 13 q^{35} + 7 q^{36} + 6 q^{37} - 10 q^{38} - 8 q^{39} + 5 q^{40} - 2 q^{41} + 13 q^{42} - 9 q^{44} - 8 q^{45} - 10 q^{46} - 10 q^{47} + 2 q^{48} - 18 q^{49} - q^{50} + 15 q^{51} - 10 q^{52} - 15 q^{53} - 15 q^{54} - 14 q^{55} + 15 q^{57} - 23 q^{58} + 25 q^{59} + 4 q^{60} - 10 q^{61} - 2 q^{62} - 6 q^{63} - 2 q^{64} + 32 q^{65} - 30 q^{66} - 2 q^{67} + 10 q^{68} + 24 q^{69} - 17 q^{70} - 40 q^{71} - 18 q^{72} + 5 q^{73} + 6 q^{74} + q^{75} + 12 q^{77} - 8 q^{78} + 10 q^{79} - 5 q^{80} - 26 q^{81} + 3 q^{82} + 21 q^{83} + 8 q^{84} + 30 q^{85} - 25 q^{86} - 42 q^{87} + 6 q^{88} + 2 q^{90} + 24 q^{91} - 10 q^{92} + 27 q^{93} + 40 q^{94} - 20 q^{95} + 2 q^{96} + 9 q^{97} + 22 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −1.20654 1.24268i −0.696598 0.717462i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0.897526 0.291624i 0.401386 0.130418i −0.101366 0.994849i \(-0.532321\pi\)
0.502751 + 0.864431i \(0.332321\pi\)
\(6\) −1.55470 + 0.763481i −0.634704 + 0.311690i
\(7\) 0.897526 1.23534i 0.339233 0.466914i −0.604984 0.796237i \(-0.706821\pi\)
0.944217 + 0.329323i \(0.106821\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) −0.0885088 + 2.99869i −0.0295029 + 0.999565i
\(10\) 0.943715i 0.298429i
\(11\) −0.151841 + 3.31315i −0.0457819 + 0.998951i
\(12\) 0.245684 + 1.71454i 0.0709230 + 0.494944i
\(13\) 4.03112 + 1.30979i 1.11803 + 0.363270i 0.809016 0.587787i \(-0.200001\pi\)
0.309015 + 0.951057i \(0.400001\pi\)
\(14\) −0.897526 1.23534i −0.239874 0.330158i
\(15\) −1.44530 0.763481i −0.373174 0.197130i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 0.906157 + 2.78886i 0.219775 + 0.676399i 0.998780 + 0.0493808i \(0.0157248\pi\)
−0.779005 + 0.627018i \(0.784275\pi\)
\(18\) 2.82458 + 1.01082i 0.665759 + 0.238254i
\(19\) −4.16740 5.73594i −0.956067 1.31591i −0.948779 0.315940i \(-0.897680\pi\)
−0.00728837 0.999973i \(-0.502320\pi\)
\(20\) −0.897526 0.291624i −0.200693 0.0652091i
\(21\) −2.61803 + 0.375151i −0.571302 + 0.0818646i
\(22\) 3.10407 + 1.16823i 0.661790 + 0.249067i
\(23\) 1.18465i 0.247016i −0.992344 0.123508i \(-0.960586\pi\)
0.992344 0.123508i \(-0.0394144\pi\)
\(24\) 1.70654 + 0.296161i 0.348347 + 0.0604537i
\(25\) −3.32458 + 2.41545i −0.664915 + 0.483089i
\(26\) 2.49137 3.42908i 0.488598 0.672497i
\(27\) 3.83321 3.50806i 0.737701 0.675127i
\(28\) −1.45223 + 0.471857i −0.274445 + 0.0891726i
\(29\) −5.17274 3.75821i −0.960553 0.697883i −0.00727378 0.999974i \(-0.502315\pi\)
−0.953279 + 0.302091i \(0.902315\pi\)
\(30\) −1.17274 + 1.13863i −0.214111 + 0.207885i
\(31\) −2.68830 + 8.27372i −0.482832 + 1.48600i 0.352264 + 0.935901i \(0.385412\pi\)
−0.835096 + 0.550104i \(0.814588\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.30039 3.80876i 0.748601 0.663021i
\(34\) 2.93239 0.502900
\(35\) 0.445299 1.37049i 0.0752692 0.231655i
\(36\) 1.83419 2.37397i 0.305699 0.395662i
\(37\) −2.28642 1.66118i −0.375885 0.273097i 0.383762 0.923432i \(-0.374628\pi\)
−0.759647 + 0.650335i \(0.774628\pi\)
\(38\) −6.74300 + 2.19093i −1.09386 + 0.355416i
\(39\) −3.23607 6.58971i −0.518186 1.05520i
\(40\) −0.554701 + 0.763481i −0.0877060 + 0.120717i
\(41\) 5.92001 4.30114i 0.924551 0.671726i −0.0201017 0.999798i \(-0.506399\pi\)
0.944653 + 0.328072i \(0.106399\pi\)
\(42\) −0.452227 + 2.60583i −0.0697802 + 0.402088i
\(43\) 5.34587i 0.815238i −0.913152 0.407619i \(-0.866359\pi\)
0.913152 0.407619i \(-0.133641\pi\)
\(44\) 2.07026 2.59114i 0.312104 0.390629i
\(45\) 0.795052 + 2.71722i 0.118519 + 0.405059i
\(46\) −1.12667 0.366076i −0.166118 0.0539749i
\(47\) 5.58154 + 7.68233i 0.814151 + 1.12058i 0.990670 + 0.136286i \(0.0435165\pi\)
−0.176518 + 0.984297i \(0.556484\pi\)
\(48\) 0.809017 1.53150i 0.116772 0.221053i
\(49\) 1.44261 + 4.43990i 0.206087 + 0.634271i
\(50\) 1.26988 + 3.90827i 0.179587 + 0.552713i
\(51\) 2.37235 4.49095i 0.332195 0.628858i
\(52\) −2.49137 3.42908i −0.345491 0.475527i
\(53\) −4.62924 1.50413i −0.635876 0.206609i −0.0266996 0.999644i \(-0.508500\pi\)
−0.609176 + 0.793035i \(0.708500\pi\)
\(54\) −2.15184 4.72965i −0.292829 0.643624i
\(55\) 0.829911 + 3.01792i 0.111905 + 0.406936i
\(56\) 1.52696i 0.204049i
\(57\) −2.09979 + 12.0994i −0.278124 + 1.60260i
\(58\) −5.17274 + 3.75821i −0.679213 + 0.493477i
\(59\) −2.74201 + 3.77405i −0.356979 + 0.491340i −0.949304 0.314359i \(-0.898210\pi\)
0.592325 + 0.805699i \(0.298210\pi\)
\(60\) 0.720508 + 1.46719i 0.0930172 + 0.189414i
\(61\) −0.685649 + 0.222781i −0.0877883 + 0.0285242i −0.352582 0.935781i \(-0.614696\pi\)
0.264794 + 0.964305i \(0.414696\pi\)
\(62\) 7.03805 + 5.11344i 0.893833 + 0.649408i
\(63\) 3.62496 + 2.80074i 0.456702 + 0.352861i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 4.00000 0.496139
\(66\) −2.29346 5.26688i −0.282305 0.648308i
\(67\) 3.89379 0.475702 0.237851 0.971302i \(-0.423557\pi\)
0.237851 + 0.971302i \(0.423557\pi\)
\(68\) 0.906157 2.78886i 0.109888 0.338199i
\(69\) −1.47214 + 1.42933i −0.177224 + 0.172071i
\(70\) −1.16581 0.847008i −0.139341 0.101237i
\(71\) −9.47214 + 3.07768i −1.12414 + 0.365254i −0.811345 0.584568i \(-0.801264\pi\)
−0.312791 + 0.949822i \(0.601264\pi\)
\(72\) −1.69098 2.47802i −0.199284 0.292037i
\(73\) 1.03051 1.41838i 0.120612 0.166008i −0.744442 0.667688i \(-0.767284\pi\)
0.865054 + 0.501679i \(0.167284\pi\)
\(74\) −2.28642 + 1.66118i −0.265791 + 0.193108i
\(75\) 7.01287 + 1.21705i 0.809777 + 0.140532i
\(76\) 7.09001i 0.813280i
\(77\) 3.95658 + 3.16121i 0.450894 + 0.360253i
\(78\) −7.26719 + 1.04135i −0.822847 + 0.117910i
\(79\) −1.56591 0.508796i −0.176179 0.0572440i 0.219599 0.975590i \(-0.429525\pi\)
−0.395778 + 0.918346i \(0.629525\pi\)
\(80\) 0.554701 + 0.763481i 0.0620175 + 0.0853598i
\(81\) −8.98433 0.530822i −0.998259 0.0589802i
\(82\) −2.26124 6.95939i −0.249713 0.768537i
\(83\) −1.90347 5.85828i −0.208933 0.643029i −0.999529 0.0306912i \(-0.990229\pi\)
0.790596 0.612338i \(-0.209771\pi\)
\(84\) 2.33854 + 1.23534i 0.255156 + 0.134786i
\(85\) 1.62660 + 2.23882i 0.176429 + 0.242834i
\(86\) −5.08423 1.65197i −0.548246 0.178136i
\(87\) 1.57087 + 10.9625i 0.168415 + 1.17530i
\(88\) −1.82458 2.76964i −0.194501 0.295245i
\(89\) 17.3406i 1.83811i −0.394135 0.919053i \(-0.628956\pi\)
0.394135 0.919053i \(-0.371044\pi\)
\(90\) 2.82991 + 0.0835271i 0.298299 + 0.00880453i
\(91\) 5.23607 3.80423i 0.548889 0.398791i
\(92\) −0.696317 + 0.958399i −0.0725961 + 0.0999200i
\(93\) 13.5251 6.64191i 1.40249 0.688734i
\(94\) 9.03112 2.93439i 0.931489 0.302659i
\(95\) −5.41309 3.93284i −0.555371 0.403501i
\(96\) −1.20654 1.24268i −0.123142 0.126831i
\(97\) 3.54074 10.8973i 0.359507 1.10645i −0.593842 0.804581i \(-0.702390\pi\)
0.953350 0.301868i \(-0.0976103\pi\)
\(98\) 4.66839 0.471578
\(99\) −9.92168 0.748569i −0.997166 0.0752340i
\(100\) 4.10940 0.410940
\(101\) 1.44795 4.45632i 0.144076 0.443420i −0.852815 0.522213i \(-0.825107\pi\)
0.996891 + 0.0787929i \(0.0251066\pi\)
\(102\) −3.53805 3.64402i −0.350319 0.360811i
\(103\) 10.2430 + 7.44197i 1.00927 + 0.733279i 0.964056 0.265698i \(-0.0856024\pi\)
0.0452161 + 0.998977i \(0.485602\pi\)
\(104\) −4.03112 + 1.30979i −0.395284 + 0.128435i
\(105\) −2.24035 + 1.10019i −0.218636 + 0.107367i
\(106\) −2.86103 + 3.93787i −0.277888 + 0.382480i
\(107\) −0.581472 + 0.422464i −0.0562130 + 0.0408412i −0.615537 0.788108i \(-0.711061\pi\)
0.559324 + 0.828949i \(0.311061\pi\)
\(108\) −5.16312 + 0.584981i −0.496821 + 0.0562898i
\(109\) 9.20929i 0.882090i −0.897485 0.441045i \(-0.854608\pi\)
0.897485 0.441045i \(-0.145392\pi\)
\(110\) 3.12667 + 0.143295i 0.298116 + 0.0136626i
\(111\) 0.694346 + 4.84558i 0.0659044 + 0.459922i
\(112\) 1.45223 + 0.471857i 0.137223 + 0.0445863i
\(113\) −2.88295 3.96804i −0.271205 0.373282i 0.651591 0.758571i \(-0.274102\pi\)
−0.922796 + 0.385289i \(0.874102\pi\)
\(114\) 10.8583 + 5.73594i 1.01698 + 0.537220i
\(115\) −0.345471 1.06325i −0.0322153 0.0991486i
\(116\) 1.97581 + 6.08092i 0.183449 + 0.564599i
\(117\) −4.28445 + 11.9722i −0.396098 + 1.10683i
\(118\) 2.74201 + 3.77405i 0.252423 + 0.347430i
\(119\) 4.25849 + 1.38367i 0.390375 + 0.126841i
\(120\) 1.61803 0.231856i 0.147706 0.0211655i
\(121\) −10.9539 1.00615i −0.995808 0.0914678i
\(122\) 0.720934i 0.0652703i
\(123\) −12.4877 2.16717i −1.12598 0.195407i
\(124\) 7.03805 5.11344i 0.632035 0.459201i
\(125\) −5.05300 + 6.95486i −0.451954 + 0.622061i
\(126\) 3.78384 2.58207i 0.337091 0.230029i
\(127\) −5.02793 + 1.63367i −0.446157 + 0.144965i −0.523474 0.852041i \(-0.675364\pi\)
0.0773177 + 0.997007i \(0.475364\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) −6.64321 + 6.45002i −0.584902 + 0.567893i
\(130\) 1.23607 3.80423i 0.108410 0.333653i
\(131\) 10.6492 0.930421 0.465210 0.885200i \(-0.345979\pi\)
0.465210 + 0.885200i \(0.345979\pi\)
\(132\) −5.71782 + 0.553651i −0.497672 + 0.0481891i
\(133\) −10.8262 −0.938748
\(134\) 1.20325 3.70321i 0.103945 0.319909i
\(135\) 2.41737 4.26643i 0.208054 0.367196i
\(136\) −2.37235 1.72361i −0.203427 0.147799i
\(137\) 0.566898 0.184196i 0.0484334 0.0157370i −0.284700 0.958617i \(-0.591894\pi\)
0.333133 + 0.942880i \(0.391894\pi\)
\(138\) 0.904455 + 1.84177i 0.0769923 + 0.156782i
\(139\) −3.01923 + 4.15562i −0.256088 + 0.352475i −0.917632 0.397432i \(-0.869902\pi\)
0.661544 + 0.749907i \(0.269902\pi\)
\(140\) −1.16581 + 0.847008i −0.0985286 + 0.0715853i
\(141\) 2.81231 16.2051i 0.236840 1.36472i
\(142\) 9.95959i 0.835790i
\(143\) −4.95162 + 13.1568i −0.414075 + 1.10023i
\(144\) −2.87928 + 0.842471i −0.239940 + 0.0702059i
\(145\) −5.73865 1.86460i −0.476569 0.154847i
\(146\) −1.03051 1.41838i −0.0852857 0.117386i
\(147\) 3.77680 7.14963i 0.311506 0.589692i
\(148\) 0.873335 + 2.68785i 0.0717877 + 0.220940i
\(149\) 5.36735 + 16.5190i 0.439710 + 1.35329i 0.888182 + 0.459492i \(0.151969\pi\)
−0.448471 + 0.893797i \(0.648031\pi\)
\(150\) 3.32458 6.29355i 0.271451 0.513866i
\(151\) 8.88291 + 12.2263i 0.722881 + 0.994960i 0.999423 + 0.0339586i \(0.0108114\pi\)
−0.276542 + 0.961002i \(0.589189\pi\)
\(152\) 6.74300 + 2.19093i 0.546929 + 0.177708i
\(153\) −8.44315 + 2.47045i −0.682588 + 0.199724i
\(154\) 4.22914 2.78606i 0.340794 0.224507i
\(155\) 8.20985i 0.659431i
\(156\) −1.25530 + 7.23330i −0.100505 + 0.579128i
\(157\) 3.00000 2.17963i 0.239426 0.173953i −0.461601 0.887087i \(-0.652725\pi\)
0.701028 + 0.713134i \(0.252725\pi\)
\(158\) −0.967787 + 1.33204i −0.0769930 + 0.105972i
\(159\) 3.71623 + 7.56747i 0.294716 + 0.600140i
\(160\) 0.897526 0.291624i 0.0709556 0.0230549i
\(161\) −1.46344 1.06325i −0.115335 0.0837959i
\(162\) −3.28115 + 8.38057i −0.257792 + 0.658440i
\(163\) 3.32991 10.2484i 0.260819 0.802718i −0.731808 0.681510i \(-0.761323\pi\)
0.992627 0.121207i \(-0.0386766\pi\)
\(164\) −7.31754 −0.571404
\(165\) 2.74898 4.67256i 0.214008 0.363758i
\(166\) −6.15976 −0.478090
\(167\) 4.10940 12.6474i 0.317995 0.978688i −0.656509 0.754318i \(-0.727968\pi\)
0.974504 0.224370i \(-0.0720325\pi\)
\(168\) 1.89753 1.84235i 0.146397 0.142140i
\(169\) 4.01715 + 2.91863i 0.309012 + 0.224510i
\(170\) 2.63189 0.855153i 0.201857 0.0655873i
\(171\) 17.5692 11.9891i 1.34355 0.916828i
\(172\) −3.14222 + 4.32490i −0.239592 + 0.329771i
\(173\) 5.75163 4.17880i 0.437288 0.317708i −0.347268 0.937766i \(-0.612891\pi\)
0.784556 + 0.620057i \(0.212891\pi\)
\(174\) 10.9114 + 1.89361i 0.827190 + 0.143554i
\(175\) 6.27490i 0.474338i
\(176\) −3.19791 + 0.879409i −0.241052 + 0.0662880i
\(177\) 7.99830 1.14612i 0.601189 0.0861473i
\(178\) −16.4919 5.35856i −1.23612 0.401641i
\(179\) 2.47537 + 3.40705i 0.185018 + 0.254655i 0.891443 0.453132i \(-0.149694\pi\)
−0.706426 + 0.707787i \(0.749694\pi\)
\(180\) 0.953930 2.66559i 0.0711017 0.198682i
\(181\) 2.67906 + 8.24528i 0.199133 + 0.612867i 0.999903 + 0.0138963i \(0.00442347\pi\)
−0.800771 + 0.598971i \(0.795577\pi\)
\(182\) −2.00000 6.15537i −0.148250 0.456266i
\(183\) 1.10411 + 0.583248i 0.0816181 + 0.0431149i
\(184\) 0.696317 + 0.958399i 0.0513332 + 0.0706541i
\(185\) −2.53656 0.824179i −0.186492 0.0605948i
\(186\) −2.13733 14.9156i −0.156717 1.09367i
\(187\) −9.37751 + 2.57877i −0.685751 + 0.188578i
\(188\) 9.49588i 0.692558i
\(189\) −0.893244 7.88389i −0.0649739 0.573468i
\(190\) −5.41309 + 3.93284i −0.392707 + 0.285318i
\(191\) 7.90445 10.8795i 0.571946 0.787216i −0.420837 0.907136i \(-0.638264\pi\)
0.992784 + 0.119920i \(0.0382637\pi\)
\(192\) −1.55470 + 0.763481i −0.112201 + 0.0550995i
\(193\) 6.65520 2.16241i 0.479052 0.155653i −0.0595300 0.998227i \(-0.518960\pi\)
0.538582 + 0.842573i \(0.318960\pi\)
\(194\) −9.26977 6.73488i −0.665531 0.483536i
\(195\) −4.82617 4.97072i −0.345609 0.355961i
\(196\) 1.44261 4.43990i 0.103044 0.317136i
\(197\) −22.8937 −1.63111 −0.815554 0.578680i \(-0.803568\pi\)
−0.815554 + 0.578680i \(0.803568\pi\)
\(198\) −3.77790 + 9.20475i −0.268483 + 0.654153i
\(199\) −20.8937 −1.48112 −0.740558 0.671993i \(-0.765439\pi\)
−0.740558 + 0.671993i \(0.765439\pi\)
\(200\) 1.26988 3.90827i 0.0897937 0.276357i
\(201\) −4.69802 4.83873i −0.331373 0.341298i
\(202\) −3.79077 2.75416i −0.266718 0.193782i
\(203\) −9.28533 + 3.01699i −0.651702 + 0.211751i
\(204\) −4.55898 + 2.23882i −0.319193 + 0.156749i
\(205\) 4.05905 5.58680i 0.283496 0.390199i
\(206\) 10.2430 7.44197i 0.713663 0.518507i
\(207\) 3.55239 + 0.104852i 0.246908 + 0.00728769i
\(208\) 4.23857i 0.293892i
\(209\) 19.6368 12.9363i 1.35830 0.894820i
\(210\) 0.354035 + 2.47068i 0.0244308 + 0.170493i
\(211\) 3.77185 + 1.22555i 0.259665 + 0.0843701i 0.435956 0.899968i \(-0.356410\pi\)
−0.176292 + 0.984338i \(0.556410\pi\)
\(212\) 2.86103 + 3.93787i 0.196496 + 0.270454i
\(213\) 15.2531 + 8.05748i 1.04513 + 0.552089i
\(214\) 0.222103 + 0.683562i 0.0151826 + 0.0467273i
\(215\) −1.55898 4.79806i −0.106322 0.327225i
\(216\) −1.03914 + 5.09119i −0.0707046 + 0.346411i
\(217\) 7.80803 + 10.7468i 0.530044 + 0.729543i
\(218\) −8.75856 2.84583i −0.593204 0.192744i
\(219\) −3.00594 + 0.430736i −0.203123 + 0.0291065i
\(220\) 1.10247 2.92935i 0.0743288 0.197497i
\(221\) 12.4291i 0.836073i
\(222\) 4.82298 + 0.837003i 0.323697 + 0.0561760i
\(223\) 7.58582 5.51142i 0.507984 0.369072i −0.304074 0.952648i \(-0.598347\pi\)
0.812058 + 0.583576i \(0.198347\pi\)
\(224\) 0.897526 1.23534i 0.0599685 0.0825395i
\(225\) −6.94893 10.1832i −0.463262 0.678878i
\(226\) −4.66471 + 1.51566i −0.310292 + 0.100820i
\(227\) 1.46877 + 1.06713i 0.0974859 + 0.0708276i 0.635460 0.772133i \(-0.280810\pi\)
−0.537975 + 0.842961i \(0.680810\pi\)
\(228\) 8.81061 8.55440i 0.583497 0.566529i
\(229\) −5.74470 + 17.6804i −0.379620 + 1.16835i 0.560688 + 0.828027i \(0.310537\pi\)
−0.940308 + 0.340324i \(0.889463\pi\)
\(230\) −1.11797 −0.0737166
\(231\) −0.845404 8.73090i −0.0556235 0.574451i
\(232\) 6.39385 0.419777
\(233\) −5.58748 + 17.1965i −0.366048 + 1.12658i 0.583274 + 0.812275i \(0.301771\pi\)
−0.949322 + 0.314305i \(0.898229\pi\)
\(234\) 10.0622 + 7.77436i 0.657789 + 0.508226i
\(235\) 7.24993 + 5.26738i 0.472933 + 0.343606i
\(236\) 4.43667 1.44156i 0.288802 0.0938376i
\(237\) 1.25707 + 2.55981i 0.0816555 + 0.166278i
\(238\) 2.63189 3.62249i 0.170600 0.234811i
\(239\) −16.1716 + 11.7494i −1.04606 + 0.760005i −0.971459 0.237209i \(-0.923767\pi\)
−0.0745980 + 0.997214i \(0.523767\pi\)
\(240\) 0.279492 1.61049i 0.0180411 0.103957i
\(241\) 1.79512i 0.115634i −0.998327 0.0578169i \(-0.981586\pi\)
0.998327 0.0578169i \(-0.0184140\pi\)
\(242\) −4.34184 + 10.1069i −0.279104 + 0.649693i
\(243\) 10.1803 + 11.8051i 0.653069 + 0.757298i
\(244\) 0.685649 + 0.222781i 0.0438942 + 0.0142621i
\(245\) 2.58956 + 3.56422i 0.165441 + 0.227710i
\(246\) −5.92001 + 11.2068i −0.377446 + 0.714520i
\(247\) −9.28642 28.5807i −0.590881 1.81854i
\(248\) −2.68830 8.27372i −0.170707 0.525382i
\(249\) −4.98335 + 9.43366i −0.315807 + 0.597834i
\(250\) 5.05300 + 6.95486i 0.319580 + 0.439864i
\(251\) 12.0779 + 3.92434i 0.762348 + 0.247702i 0.664286 0.747478i \(-0.268736\pi\)
0.0980620 + 0.995180i \(0.468736\pi\)
\(252\) −1.28642 4.39655i −0.0810369 0.276957i
\(253\) 3.92491 + 0.179878i 0.246757 + 0.0113088i
\(254\) 5.28668i 0.331716i
\(255\) 0.819578 4.72257i 0.0513239 0.295739i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 3.11429 4.28646i 0.194264 0.267382i −0.700762 0.713395i \(-0.747157\pi\)
0.895026 + 0.446013i \(0.147157\pi\)
\(258\) 4.08147 + 8.31124i 0.254101 + 0.517435i
\(259\) −4.10424 + 1.33355i −0.255025 + 0.0828627i
\(260\) −3.23607 2.35114i −0.200692 0.145812i
\(261\) 11.7276 15.1788i 0.725918 0.939545i
\(262\) 3.29077 10.1279i 0.203304 0.625707i
\(263\) 9.51711 0.586850 0.293425 0.955982i \(-0.405205\pi\)
0.293425 + 0.955982i \(0.405205\pi\)
\(264\) −1.24035 + 5.60906i −0.0763383 + 0.345214i
\(265\) −4.59351 −0.282177
\(266\) −3.34547 + 10.2963i −0.205124 + 0.631307i
\(267\) −21.5489 + 20.9222i −1.31877 + 1.28042i
\(268\) −3.15014 2.28871i −0.192425 0.139805i
\(269\) −0.0695856 + 0.0226097i −0.00424271 + 0.00137854i −0.311138 0.950365i \(-0.600710\pi\)
0.306895 + 0.951743i \(0.400710\pi\)
\(270\) −3.31061 3.61745i −0.201477 0.220151i
\(271\) 0.00659354 0.00907523i 0.000400529 0.000551281i −0.808817 0.588061i \(-0.799892\pi\)
0.809217 + 0.587510i \(0.199892\pi\)
\(272\) −2.37235 + 1.72361i −0.143845 + 0.104509i
\(273\) −11.0450 1.91680i −0.668472 0.116010i
\(274\) 0.596072i 0.0360100i
\(275\) −7.49792 11.3816i −0.452142 0.686335i
\(276\) 2.03112 0.291049i 0.122259 0.0175191i
\(277\) 13.2028 + 4.28984i 0.793277 + 0.257751i 0.677499 0.735524i \(-0.263064\pi\)
0.115778 + 0.993275i \(0.463064\pi\)
\(278\) 3.01923 + 4.15562i 0.181082 + 0.249237i
\(279\) −24.5724 8.79367i −1.47111 0.526463i
\(280\) 0.445299 + 1.37049i 0.0266117 + 0.0819023i
\(281\) 5.25058 + 16.1596i 0.313223 + 0.964002i 0.976480 + 0.215609i \(0.0691738\pi\)
−0.663257 + 0.748392i \(0.730826\pi\)
\(282\) −14.5429 7.68233i −0.866019 0.457476i
\(283\) −13.6158 18.7406i −0.809378 1.11401i −0.991419 0.130722i \(-0.958270\pi\)
0.182041 0.983291i \(-0.441730\pi\)
\(284\) 9.47214 + 3.07768i 0.562068 + 0.182627i
\(285\) 1.64386 + 11.4719i 0.0973739 + 0.679535i
\(286\) 10.9827 + 8.77495i 0.649423 + 0.518874i
\(287\) 11.1736i 0.659557i
\(288\) −0.0885088 + 2.99869i −0.00521543 + 0.176700i
\(289\) 6.79665 4.93805i 0.399803 0.290474i
\(290\) −3.54668 + 4.88159i −0.208268 + 0.286657i
\(291\) −17.8139 + 8.74801i −1.04427 + 0.512818i
\(292\) −1.66740 + 0.541771i −0.0975773 + 0.0317048i
\(293\) 18.9457 + 13.7649i 1.10682 + 0.804151i 0.982160 0.188048i \(-0.0602162\pi\)
0.124659 + 0.992200i \(0.460216\pi\)
\(294\) −5.63261 5.80131i −0.328500 0.338339i
\(295\) −1.36042 + 4.18695i −0.0792068 + 0.243774i
\(296\) 2.82617 0.164268
\(297\) 11.0407 + 13.2327i 0.640646 + 0.767836i
\(298\) 17.3691 1.00617
\(299\) 1.55164 4.77545i 0.0897335 0.276171i
\(300\) −4.95817 5.10667i −0.286260 0.294834i
\(301\) −6.60396 4.79806i −0.380646 0.276555i
\(302\) 14.3729 4.67002i 0.827065 0.268730i
\(303\) −7.28478 + 3.57740i −0.418500 + 0.205516i
\(304\) 4.16740 5.73594i 0.239017 0.328978i
\(305\) −0.550419 + 0.399903i −0.0315169 + 0.0228984i
\(306\) −0.259542 + 8.79333i −0.0148370 + 0.502681i
\(307\) 4.98612i 0.284573i −0.989826 0.142286i \(-0.954555\pi\)
0.989826 0.142286i \(-0.0454454\pi\)
\(308\) −1.34282 4.88309i −0.0765145 0.278240i
\(309\) −3.11062 21.7078i −0.176957 1.23492i
\(310\) 7.80803 + 2.53698i 0.443466 + 0.144091i
\(311\) −8.22002 11.3139i −0.466115 0.641552i 0.509648 0.860383i \(-0.329776\pi\)
−0.975763 + 0.218831i \(0.929776\pi\)
\(312\) 6.49137 + 3.42908i 0.367501 + 0.194133i
\(313\) 4.84018 + 14.8965i 0.273583 + 0.842002i 0.989591 + 0.143910i \(0.0459675\pi\)
−0.716008 + 0.698092i \(0.754033\pi\)
\(314\) −1.14590 3.52671i −0.0646668 0.199024i
\(315\) 4.07026 + 1.45661i 0.229333 + 0.0820709i
\(316\) 0.967787 + 1.33204i 0.0544423 + 0.0749334i
\(317\) −30.4366 9.88946i −1.70949 0.555448i −0.719243 0.694758i \(-0.755511\pi\)
−0.990249 + 0.139310i \(0.955511\pi\)
\(318\) 8.34547 1.19586i 0.467991 0.0670607i
\(319\) 13.2369 16.5674i 0.741127 0.927595i
\(320\) 0.943715i 0.0527552i
\(321\) 1.22656 + 0.212863i 0.0684599 + 0.0118808i
\(322\) −1.46344 + 1.06325i −0.0815542 + 0.0592526i
\(323\) 12.2204 16.8200i 0.679963 0.935888i
\(324\) 6.95647 + 5.71030i 0.386470 + 0.317239i
\(325\) −16.5655 + 5.38246i −0.918888 + 0.298565i
\(326\) −8.71782 6.33387i −0.482835 0.350800i
\(327\) −11.4442 + 11.1114i −0.632866 + 0.614462i
\(328\) −2.26124 + 6.95939i −0.124856 + 0.384268i
\(329\) 14.4999 0.799403
\(330\) −3.59439 4.05834i −0.197864 0.223404i
\(331\) 5.76590 0.316923 0.158461 0.987365i \(-0.449347\pi\)
0.158461 + 0.987365i \(0.449347\pi\)
\(332\) −1.90347 + 5.85828i −0.104466 + 0.321515i
\(333\) 5.18374 6.70925i 0.284067 0.367664i
\(334\) −10.7586 7.81655i −0.588682 0.427703i
\(335\) 3.49477 1.13552i 0.190940 0.0620401i
\(336\) −1.16581 2.37397i −0.0636000 0.129511i
\(337\) 18.5288 25.5028i 1.00933 1.38922i 0.0899083 0.995950i \(-0.471343\pi\)
0.919422 0.393273i \(-0.128657\pi\)
\(338\) 4.01715 2.91863i 0.218504 0.158753i
\(339\) −1.45260 + 8.37020i −0.0788946 + 0.454607i
\(340\) 2.76733i 0.150080i
\(341\) −27.0039 10.1630i −1.46234 0.550358i
\(342\) −5.97312 20.4141i −0.322989 1.10387i
\(343\) 16.9451 + 5.50581i 0.914952 + 0.297286i
\(344\) 3.14222 + 4.32490i 0.169417 + 0.233183i
\(345\) −0.904455 + 1.71217i −0.0486942 + 0.0921800i
\(346\) −2.19693 6.76144i −0.118107 0.363497i
\(347\) −9.33453 28.7287i −0.501104 1.54224i −0.807224 0.590246i \(-0.799031\pi\)
0.306120 0.951993i \(-0.400969\pi\)
\(348\) 5.17274 9.79218i 0.277288 0.524916i
\(349\) −5.67246 7.80747i −0.303640 0.417924i 0.629745 0.776802i \(-0.283160\pi\)
−0.933385 + 0.358878i \(0.883160\pi\)
\(350\) 5.96779 + 1.93905i 0.318992 + 0.103647i
\(351\) 20.0469 9.12073i 1.07003 0.486829i
\(352\) −0.151841 + 3.31315i −0.00809317 + 0.176591i
\(353\) 13.7385i 0.731224i 0.930767 + 0.365612i \(0.119140\pi\)
−0.930767 + 0.365612i \(0.880860\pi\)
\(354\) 1.38159 7.96100i 0.0734307 0.423122i
\(355\) −7.60396 + 5.52460i −0.403576 + 0.293215i
\(356\) −10.1926 + 14.0289i −0.540206 + 0.743529i
\(357\) −3.41859 6.96140i −0.180931 0.368436i
\(358\) 4.00523 1.30138i 0.211683 0.0687799i
\(359\) 23.6610 + 17.1908i 1.24878 + 0.907293i 0.998151 0.0607894i \(-0.0193618\pi\)
0.250631 + 0.968083i \(0.419362\pi\)
\(360\) −2.24035 1.73095i −0.118077 0.0912293i
\(361\) −9.66240 + 29.7378i −0.508547 + 1.56515i
\(362\) 8.66960 0.455664
\(363\) 11.9660 + 14.8261i 0.628053 + 0.778171i
\(364\) −6.47214 −0.339232
\(365\) 0.511278 1.57355i 0.0267615 0.0823634i
\(366\) 0.895890 0.869837i 0.0468289 0.0454671i
\(367\) −9.12557 6.63012i −0.476351 0.346089i 0.323560 0.946208i \(-0.395120\pi\)
−0.799911 + 0.600118i \(0.795120\pi\)
\(368\) 1.12667 0.366076i 0.0587315 0.0190830i
\(369\) 12.3738 + 18.1330i 0.644156 + 0.943966i
\(370\) −1.56768 + 2.15773i −0.0814999 + 0.112175i
\(371\) −6.01298 + 4.36869i −0.312178 + 0.226811i
\(372\) −14.8461 2.57646i −0.769733 0.133583i
\(373\) 5.73545i 0.296971i −0.988915 0.148485i \(-0.952560\pi\)
0.988915 0.148485i \(-0.0474398\pi\)
\(374\) −0.445257 + 9.71542i −0.0230237 + 0.502373i
\(375\) 14.7393 2.11207i 0.761135 0.109067i
\(376\) −9.03112 2.93439i −0.465744 0.151330i
\(377\) −15.9294 21.9250i −0.820408 1.12920i
\(378\) −7.77405 1.58673i −0.399854 0.0816126i
\(379\) 8.34075 + 25.6702i 0.428435 + 1.31859i 0.899666 + 0.436578i \(0.143810\pi\)
−0.471231 + 0.882010i \(0.656190\pi\)
\(380\) 2.06761 + 6.36346i 0.106066 + 0.326439i
\(381\) 8.09655 + 4.27701i 0.414799 + 0.219118i
\(382\) −7.90445 10.8795i −0.404427 0.556646i
\(383\) 0.600988 + 0.195273i 0.0307090 + 0.00997797i 0.324331 0.945944i \(-0.394861\pi\)
−0.293622 + 0.955922i \(0.594861\pi\)
\(384\) 0.245684 + 1.71454i 0.0125375 + 0.0874946i
\(385\) 4.47301 + 1.68344i 0.227966 + 0.0857959i
\(386\) 6.99770i 0.356173i
\(387\) 16.0306 + 0.473157i 0.814883 + 0.0240519i
\(388\) −9.26977 + 6.73488i −0.470601 + 0.341912i
\(389\) −15.7180 + 21.6340i −0.796934 + 1.09688i 0.196276 + 0.980549i \(0.437115\pi\)
−0.993210 + 0.116336i \(0.962885\pi\)
\(390\) −6.21881 + 3.05392i −0.314901 + 0.154641i
\(391\) 3.30382 1.07347i 0.167081 0.0542880i
\(392\) −3.77680 2.74401i −0.190757 0.138593i
\(393\) −12.8487 13.2335i −0.648129 0.667541i
\(394\) −7.07454 + 21.7732i −0.356410 + 1.09692i
\(395\) −1.55382 −0.0781814
\(396\) 7.58681 + 6.43742i 0.381251 + 0.323492i
\(397\) 36.0170 1.80764 0.903820 0.427913i \(-0.140751\pi\)
0.903820 + 0.427913i \(0.140751\pi\)
\(398\) −6.45651 + 19.8711i −0.323636 + 0.996048i
\(399\) 13.0622 + 13.4535i 0.653930 + 0.673516i
\(400\) −3.32458 2.41545i −0.166229 0.120772i
\(401\) 19.7141 6.40551i 0.984478 0.319876i 0.227831 0.973701i \(-0.426837\pi\)
0.756646 + 0.653824i \(0.226837\pi\)
\(402\) −6.05367 + 2.97283i −0.301930 + 0.148271i
\(403\) −21.6737 + 29.8313i −1.07964 + 1.48600i
\(404\) −3.79077 + 2.75416i −0.188598 + 0.137024i
\(405\) −8.21847 + 2.14362i −0.408379 + 0.106517i
\(406\) 9.76317i 0.484538i
\(407\) 5.85091 7.32301i 0.290019 0.362988i
\(408\) 0.720442 + 5.02768i 0.0356672 + 0.248907i
\(409\) −15.7096 5.10437i −0.776791 0.252395i −0.106321 0.994332i \(-0.533907\pi\)
−0.670469 + 0.741937i \(0.733907\pi\)
\(410\) −4.05905 5.58680i −0.200462 0.275913i
\(411\) −0.912884 0.482232i −0.0450292 0.0237868i
\(412\) −3.91248 12.0414i −0.192754 0.593235i
\(413\) 2.20121 + 6.77462i 0.108314 + 0.333357i
\(414\) 1.19747 3.34612i 0.0588524 0.164453i
\(415\) −3.41683 4.70286i −0.167725 0.230854i
\(416\) 4.03112 + 1.30979i 0.197642 + 0.0642177i
\(417\) 8.80694 1.26199i 0.431278 0.0617999i
\(418\) −6.23502 22.6732i −0.304965 1.10898i
\(419\) 16.0213i 0.782693i 0.920243 + 0.391347i \(0.127991\pi\)
−0.920243 + 0.391347i \(0.872009\pi\)
\(420\) 2.45916 + 0.426773i 0.119995 + 0.0208244i
\(421\) −10.5988 + 7.70048i −0.516554 + 0.375298i −0.815304 0.579033i \(-0.803430\pi\)
0.298750 + 0.954331i \(0.403430\pi\)
\(422\) 2.33113 3.20852i 0.113478 0.156189i
\(423\) −23.5310 + 16.0574i −1.14411 + 0.780736i
\(424\) 4.62924 1.50413i 0.224816 0.0730471i
\(425\) −9.74894 7.08302i −0.472893 0.343577i
\(426\) 12.3766 12.0167i 0.599648 0.582210i
\(427\) −0.340178 + 1.04696i −0.0164624 + 0.0506659i
\(428\) 0.718739 0.0347416
\(429\) 22.3241 9.72098i 1.07782 0.469333i
\(430\) −5.04498 −0.243290
\(431\) −3.65126 + 11.2374i −0.175875 + 0.541287i −0.999672 0.0255970i \(-0.991851\pi\)
0.823797 + 0.566884i \(0.191851\pi\)
\(432\) 4.52089 + 2.56155i 0.217512 + 0.123242i
\(433\) −9.23019 6.70613i −0.443575 0.322276i 0.343479 0.939160i \(-0.388395\pi\)
−0.787054 + 0.616884i \(0.788395\pi\)
\(434\) 12.6337 4.10493i 0.606435 0.197043i
\(435\) 4.60682 + 9.38102i 0.220880 + 0.449786i
\(436\) −5.41309 + 7.45047i −0.259240 + 0.356813i
\(437\) −6.79505 + 4.93689i −0.325051 + 0.236164i
\(438\) −0.519233 + 2.99193i −0.0248099 + 0.142960i
\(439\) 16.0229i 0.764733i −0.924011 0.382366i \(-0.875109\pi\)
0.924011 0.382366i \(-0.124891\pi\)
\(440\) −2.44530 1.95374i −0.116575 0.0931407i
\(441\) −13.4416 + 3.93298i −0.640075 + 0.187285i
\(442\) 11.8208 + 3.84081i 0.562258 + 0.182689i
\(443\) −2.78323 3.83079i −0.132235 0.182006i 0.737765 0.675058i \(-0.235881\pi\)
−0.870000 + 0.493052i \(0.835881\pi\)
\(444\) 2.28642 4.32828i 0.108509 0.205411i
\(445\) −5.05695 15.5637i −0.239722 0.737789i
\(446\) −2.89753 8.91767i −0.137202 0.422264i
\(447\) 14.0519 26.6008i 0.664632 1.25817i
\(448\) −0.897526 1.23534i −0.0424041 0.0583642i
\(449\) 24.5951 + 7.99144i 1.16072 + 0.377139i 0.825170 0.564884i \(-0.191079\pi\)
0.335546 + 0.942024i \(0.391079\pi\)
\(450\) −11.8321 + 3.46205i −0.557771 + 0.163203i
\(451\) 13.3514 + 20.2670i 0.628694 + 0.954334i
\(452\) 4.90477i 0.230701i
\(453\) 4.47574 25.7901i 0.210289 1.21173i
\(454\) 1.46877 1.06713i 0.0689329 0.0500827i
\(455\) 3.59010 4.94135i 0.168307 0.231654i
\(456\) −5.41309 11.0228i −0.253491 0.516192i
\(457\) −21.7712 + 7.07390i −1.01841 + 0.330903i −0.770200 0.637802i \(-0.779844\pi\)
−0.248214 + 0.968705i \(0.579844\pi\)
\(458\) 15.0398 + 10.9271i 0.702765 + 0.510588i
\(459\) 13.2570 + 7.51144i 0.618784 + 0.350604i
\(460\) −0.345471 + 1.06325i −0.0161077 + 0.0495743i
\(461\) −21.2809 −0.991151 −0.495575 0.868565i \(-0.665043\pi\)
−0.495575 + 0.868565i \(0.665043\pi\)
\(462\) −8.56482 1.89397i −0.398471 0.0881154i
\(463\) −20.7617 −0.964880 −0.482440 0.875929i \(-0.660249\pi\)
−0.482440 + 0.875929i \(0.660249\pi\)
\(464\) 1.97581 6.08092i 0.0917246 0.282299i
\(465\) 10.2022 9.90554i 0.473117 0.459358i
\(466\) 14.6282 + 10.6280i 0.677639 + 0.492334i
\(467\) −3.70774 + 1.20472i −0.171574 + 0.0557477i −0.393544 0.919306i \(-0.628751\pi\)
0.221970 + 0.975053i \(0.428751\pi\)
\(468\) 10.5033 7.16735i 0.485513 0.331311i
\(469\) 3.49477 4.81014i 0.161374 0.222112i
\(470\) 7.24993 5.26738i 0.334414 0.242966i
\(471\) −6.32821 1.09823i −0.291588 0.0506036i
\(472\) 4.66499i 0.214723i
\(473\) 17.7117 + 0.811724i 0.814383 + 0.0373231i
\(474\) 2.82298 0.404519i 0.129664 0.0185802i
\(475\) 27.7097 + 9.00342i 1.27141 + 0.413105i
\(476\) −2.63189 3.62249i −0.120633 0.166036i
\(477\) 4.92016 13.7486i 0.225279 0.629503i
\(478\) 6.17702 + 19.0109i 0.282530 + 0.869539i
\(479\) −10.7639 33.1280i −0.491817 1.51366i −0.821860 0.569690i \(-0.807063\pi\)
0.330043 0.943966i \(-0.392937\pi\)
\(480\) −1.44530 0.763481i −0.0659686 0.0348480i
\(481\) −7.04104 9.69115i −0.321044 0.441879i
\(482\) −1.70726 0.554722i −0.0777635 0.0252669i
\(483\) 0.444421 + 3.10144i 0.0202219 + 0.141121i
\(484\) 8.27048 + 7.25252i 0.375931 + 0.329660i
\(485\) 10.8131i 0.490999i
\(486\) 14.3732 6.03410i 0.651983 0.273712i
\(487\) −4.07454 + 2.96033i −0.184635 + 0.134145i −0.676263 0.736660i \(-0.736402\pi\)
0.491628 + 0.870805i \(0.336402\pi\)
\(488\) 0.423754 0.583248i 0.0191825 0.0264024i
\(489\) −16.7532 + 8.22713i −0.757605 + 0.372044i
\(490\) 4.19000 1.36141i 0.189285 0.0615024i
\(491\) −11.3418 8.24030i −0.511848 0.371879i 0.301676 0.953410i \(-0.402454\pi\)
−0.813524 + 0.581531i \(0.802454\pi\)
\(492\) 8.82893 + 9.09336i 0.398039 + 0.409960i
\(493\) 5.79383 17.8316i 0.260941 0.803094i
\(494\) −30.0515 −1.35208
\(495\) −9.12326 + 2.22154i −0.410060 + 0.0998507i
\(496\) −8.69951 −0.390619
\(497\) −4.69951 + 14.4636i −0.210802 + 0.648781i
\(498\) 7.43201 + 7.65461i 0.333036 + 0.343011i
\(499\) 11.2013 + 8.13820i 0.501438 + 0.364316i 0.809566 0.587029i \(-0.199703\pi\)
−0.308128 + 0.951345i \(0.599703\pi\)
\(500\) 8.17592 2.65652i 0.365638 0.118803i
\(501\) −20.6749 + 10.1530i −0.923686 + 0.453603i
\(502\) 7.46453 10.2740i 0.333158 0.458553i
\(503\) 18.2723 13.2756i 0.814724 0.591931i −0.100473 0.994940i \(-0.532035\pi\)
0.915196 + 0.403008i \(0.132035\pi\)
\(504\) −4.57889 0.135150i −0.203960 0.00602004i
\(505\) 4.42191i 0.196773i
\(506\) 1.38394 3.67722i 0.0615235 0.163472i
\(507\) −1.21994 8.51349i −0.0541795 0.378098i
\(508\) 5.02793 + 1.63367i 0.223078 + 0.0724825i
\(509\) 15.1884 + 20.9050i 0.673212 + 0.926597i 0.999828 0.0185605i \(-0.00590832\pi\)
−0.326616 + 0.945157i \(0.605908\pi\)
\(510\) −4.23817 2.23882i −0.187669 0.0991366i
\(511\) −0.827265 2.54606i −0.0365960 0.112631i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) −36.0965 7.36752i −1.59370 0.325284i
\(514\) −3.11429 4.28646i −0.137366 0.189068i
\(515\) 11.3636 + 3.69226i 0.500741 + 0.162700i
\(516\) 9.16570 1.31340i 0.403497 0.0578191i
\(517\) −26.3002 + 17.3260i −1.15668 + 0.761995i
\(518\) 4.31546i 0.189610i
\(519\) −12.1325 2.10553i −0.532558 0.0924226i
\(520\) −3.23607 + 2.35114i −0.141911 + 0.103104i
\(521\) 16.8875 23.2436i 0.739854 1.01832i −0.258773 0.965938i \(-0.583318\pi\)
0.998627 0.0523840i \(-0.0166820\pi\)
\(522\) −10.8119 15.8441i −0.473224 0.693477i
\(523\) −3.45339 + 1.12207i −0.151006 + 0.0490648i −0.383545 0.923522i \(-0.625297\pi\)
0.232539 + 0.972587i \(0.425297\pi\)
\(524\) −8.61535 6.25942i −0.376363 0.273444i
\(525\) 7.79770 7.57094i 0.340319 0.330423i
\(526\) 2.94095 9.05131i 0.128232 0.394656i
\(527\) −25.5103 −1.11125
\(528\) 4.95124 + 2.91294i 0.215475 + 0.126769i
\(529\) 21.5966 0.938983
\(530\) −1.41947 + 4.36869i −0.0616579 + 0.189764i
\(531\) −11.0745 8.55649i −0.480594 0.371320i
\(532\) 8.75856 + 6.36346i 0.379732 + 0.275891i
\(533\) 29.4979 9.58444i 1.27770 0.415148i
\(534\) 13.2393 + 26.9595i 0.572919 + 1.16665i
\(535\) −0.398686 + 0.548744i −0.0172367 + 0.0237243i
\(536\) −3.15014 + 2.28871i −0.136065 + 0.0988572i
\(537\) 1.24724 7.18684i 0.0538223 0.310135i
\(538\) 0.0731666i 0.00315444i
\(539\) −14.9291 + 4.10542i −0.643041 + 0.176833i
\(540\) −4.46344 + 2.03072i −0.192076 + 0.0873884i
\(541\) −38.8402 12.6199i −1.66987 0.542573i −0.686965 0.726691i \(-0.741057\pi\)
−0.982904 + 0.184117i \(0.941057\pi\)
\(542\) −0.00659354 0.00907523i −0.000283217 0.000389814i
\(543\) 7.01386 13.2775i 0.300993 0.569792i
\(544\) 0.906157 + 2.78886i 0.0388512 + 0.119572i
\(545\) −2.68565 8.26558i −0.115041 0.354058i
\(546\) −5.23607 + 9.91207i −0.224083 + 0.424198i
\(547\) 4.23174 + 5.82450i 0.180936 + 0.249037i 0.889845 0.456263i \(-0.150812\pi\)
−0.708909 + 0.705300i \(0.750812\pi\)
\(548\) −0.566898 0.184196i −0.0242167 0.00786848i
\(549\) −0.607365 2.07577i −0.0259217 0.0885917i
\(550\) −13.1415 + 3.61385i −0.560356 + 0.154095i
\(551\) 45.3325i 1.93123i
\(552\) 0.350846 2.02165i 0.0149330 0.0860471i
\(553\) −2.03398 + 1.47777i −0.0864937 + 0.0628414i
\(554\) 8.15976 11.2309i 0.346675 0.477157i
\(555\) 2.03628 + 4.14654i 0.0864353 + 0.176011i
\(556\) 4.88522 1.58730i 0.207180 0.0673167i
\(557\) 27.2935 + 19.8299i 1.15646 + 0.840219i 0.989327 0.145715i \(-0.0465483\pi\)
0.167135 + 0.985934i \(0.446548\pi\)
\(558\) −15.9566 + 20.6524i −0.675496 + 0.874285i
\(559\) 7.00197 21.5499i 0.296152 0.911462i
\(560\) 1.44102 0.0608941
\(561\) 14.5189 + 8.54185i 0.612990 + 0.360637i
\(562\) 16.9912 0.716731
\(563\) −1.47279 + 4.53277i −0.0620705 + 0.191033i −0.977283 0.211938i \(-0.932023\pi\)
0.915213 + 0.402971i \(0.132023\pi\)
\(564\) −11.8003 + 11.4572i −0.496884 + 0.482435i
\(565\) −3.74470 2.72068i −0.157541 0.114460i
\(566\) −22.0309 + 7.15827i −0.926028 + 0.300885i
\(567\) −8.71941 + 10.6223i −0.366181 + 0.446093i
\(568\) 5.85410 8.05748i 0.245633 0.338084i
\(569\) −12.0407 + 8.74811i −0.504774 + 0.366740i −0.810837 0.585271i \(-0.800988\pi\)
0.306064 + 0.952011i \(0.400988\pi\)
\(570\) 11.4184 + 1.98160i 0.478263 + 0.0830000i
\(571\) 8.91378i 0.373030i 0.982452 + 0.186515i \(0.0597193\pi\)
−0.982452 + 0.186515i \(0.940281\pi\)
\(572\) 11.7393 7.73360i 0.490846 0.323358i
\(573\) −23.0569 + 3.30393i −0.963214 + 0.138024i
\(574\) −10.6267 3.45283i −0.443551 0.144119i
\(575\) 2.86145 + 3.93845i 0.119331 + 0.164245i
\(576\) 2.82458 + 1.01082i 0.117691 + 0.0421177i
\(577\) −3.30341 10.1668i −0.137523 0.423251i 0.858451 0.512895i \(-0.171427\pi\)
−0.995974 + 0.0896439i \(0.971427\pi\)
\(578\) −2.59609 7.98994i −0.107983 0.332338i
\(579\) −10.7170 5.66126i −0.445382 0.235274i
\(580\) 3.54668 + 4.88159i 0.147268 + 0.202697i
\(581\) −8.94537 2.90653i −0.371116 0.120583i
\(582\) 2.81507 + 19.6453i 0.116688 + 0.814323i
\(583\) 5.68632 15.1090i 0.235503 0.625750i
\(584\) 1.75321i 0.0725483i
\(585\) −0.354035 + 11.9948i −0.0146376 + 0.495923i
\(586\) 18.9457 13.7649i 0.782639 0.568621i
\(587\) −16.6724 + 22.9476i −0.688144 + 0.947150i −0.999996 0.00298142i \(-0.999051\pi\)
0.311851 + 0.950131i \(0.399051\pi\)
\(588\) −7.25795 + 3.56422i −0.299313 + 0.146986i
\(589\) 58.6607 19.0600i 2.41707 0.785355i
\(590\) 3.56163 + 2.58768i 0.146630 + 0.106533i
\(591\) 27.6222 + 28.4496i 1.13623 + 1.17026i
\(592\) 0.873335 2.68785i 0.0358938 0.110470i
\(593\) −26.8555 −1.10282 −0.551411 0.834234i \(-0.685910\pi\)
−0.551411 + 0.834234i \(0.685910\pi\)
\(594\) 15.9968 6.41121i 0.656355 0.263055i
\(595\) 4.22562 0.173233
\(596\) 5.36735 16.5190i 0.219855 0.676645i
\(597\) 25.2091 + 25.9642i 1.03174 + 1.06264i
\(598\) −4.06224 2.95139i −0.166117 0.120691i
\(599\) 15.8754 5.15824i 0.648653 0.210760i 0.0338328 0.999428i \(-0.489229\pi\)
0.614820 + 0.788667i \(0.289229\pi\)
\(600\) −6.38889 + 3.13745i −0.260826 + 0.128086i
\(601\) 4.76046 6.55221i 0.194183 0.267270i −0.700812 0.713346i \(-0.747179\pi\)
0.894995 + 0.446076i \(0.147179\pi\)
\(602\) −6.60396 + 4.79806i −0.269157 + 0.195554i
\(603\) −0.344634 + 11.6763i −0.0140346 + 0.475495i
\(604\) 15.1125i 0.614919i
\(605\) −10.1248 + 2.29137i −0.411632 + 0.0931576i
\(606\) 1.15119 + 8.03372i 0.0467639 + 0.326348i
\(607\) 4.80362 + 1.56079i 0.194973 + 0.0633505i 0.404876 0.914372i \(-0.367315\pi\)
−0.209903 + 0.977722i \(0.567315\pi\)
\(608\) −4.16740 5.73594i −0.169010 0.232623i
\(609\) 14.9523 + 7.89857i 0.605898 + 0.320066i
\(610\) 0.210241 + 0.647057i 0.00851243 + 0.0261986i
\(611\) 12.4376 + 38.2790i 0.503172 + 1.54860i
\(612\) 8.28275 + 2.96413i 0.334810 + 0.119818i
\(613\) 17.6683 + 24.3183i 0.713616 + 0.982208i 0.999712 + 0.0240072i \(0.00764247\pi\)
−0.286096 + 0.958201i \(0.592358\pi\)
\(614\) −4.74208 1.54079i −0.191375 0.0621814i
\(615\) −11.8400 + 1.69662i −0.477436 + 0.0684141i
\(616\) −5.05905 0.231856i −0.203835 0.00934174i
\(617\) 1.33268i 0.0536518i −0.999640 0.0268259i \(-0.991460\pi\)
0.999640 0.0268259i \(-0.00853997\pi\)
\(618\) −21.6066 3.74971i −0.869145 0.150836i
\(619\) 1.11705 0.811583i 0.0448980 0.0326203i −0.565110 0.825016i \(-0.691166\pi\)
0.610008 + 0.792395i \(0.291166\pi\)
\(620\) 4.82563 6.64191i 0.193802 0.266745i
\(621\) −4.15581 4.54099i −0.166767 0.182224i
\(622\) −13.3003 + 4.32152i −0.533293 + 0.173277i
\(623\) −21.4216 15.5637i −0.858237 0.623546i
\(624\) 5.26719 5.11402i 0.210856 0.204724i
\(625\) 3.84238 11.8256i 0.153695 0.473025i
\(626\) 15.6631 0.626025
\(627\) −39.7683 8.79409i −1.58819 0.351202i
\(628\) −3.70820 −0.147973
\(629\) 2.56095 7.88181i 0.102112 0.314268i
\(630\) 2.64310 3.42093i 0.105304 0.136293i
\(631\) 14.7715 + 10.7321i 0.588046 + 0.427240i 0.841616 0.540077i \(-0.181605\pi\)
−0.253570 + 0.967317i \(0.581605\pi\)
\(632\) 1.56591 0.508796i 0.0622887 0.0202388i
\(633\) −3.02793 6.16587i −0.120349 0.245071i
\(634\) −18.8109 + 25.8910i −0.747075 + 1.02826i
\(635\) −4.03628 + 2.93253i −0.160175 + 0.116374i
\(636\) 1.44156 8.30656i 0.0571615 0.329376i
\(637\) 19.7873i 0.784001i
\(638\) −11.6661 17.7087i −0.461864 0.701094i
\(639\) −8.39066 28.6764i −0.331930 1.13442i
\(640\) −0.897526 0.291624i −0.0354778 0.0115274i
\(641\) −12.4155 17.0884i −0.490381 0.674952i 0.490077 0.871679i \(-0.336969\pi\)
−0.980458 + 0.196727i \(0.936969\pi\)
\(642\) 0.581472 1.10075i 0.0229489 0.0434431i
\(643\) −0.228154 0.702185i −0.00899751 0.0276915i 0.946457 0.322830i \(-0.104634\pi\)
−0.955454 + 0.295139i \(0.904634\pi\)
\(644\) 0.558984 + 1.72037i 0.0220270 + 0.0677923i
\(645\) −4.08147 + 7.72638i −0.160708 + 0.304226i
\(646\) −12.2204 16.8200i −0.480806 0.661773i
\(647\) 34.1070 + 11.0820i 1.34088 + 0.435680i 0.889616 0.456709i \(-0.150972\pi\)
0.451268 + 0.892388i \(0.350972\pi\)
\(648\) 7.58049 4.85141i 0.297790 0.190582i
\(649\) −12.0876 9.65774i −0.474482 0.379100i
\(650\) 17.4180i 0.683190i
\(651\) 3.93415 22.6694i 0.154192 0.888484i
\(652\) −8.71782 + 6.33387i −0.341416 + 0.248053i
\(653\) −9.84112 + 13.5451i −0.385113 + 0.530062i −0.956930 0.290319i \(-0.906239\pi\)
0.571817 + 0.820381i \(0.306239\pi\)
\(654\) 7.03112 + 14.3177i 0.274939 + 0.559866i
\(655\) 9.55789 3.10555i 0.373458 0.121344i
\(656\) 5.92001 + 4.30114i 0.231138 + 0.167931i
\(657\) 4.16207 + 3.21572i 0.162378 + 0.125457i
\(658\) 4.48070 13.7902i 0.174676 0.537597i
\(659\) 36.3989 1.41790 0.708951 0.705258i \(-0.249169\pi\)
0.708951 + 0.705258i \(0.249169\pi\)
\(660\) −4.97043 + 2.16437i −0.193474 + 0.0842479i
\(661\) −16.8578 −0.655694 −0.327847 0.944731i \(-0.606323\pi\)
−0.327847 + 0.944731i \(0.606323\pi\)
\(662\) 1.78176 5.48370i 0.0692501 0.213130i
\(663\) 15.4454 14.9963i 0.599851 0.582407i
\(664\) 4.98335 + 3.62061i 0.193391 + 0.140507i
\(665\) −9.71677 + 3.15717i −0.376800 + 0.122430i
\(666\) −4.77901 7.00331i −0.185183 0.271373i
\(667\) −4.45215 + 6.12786i −0.172388 + 0.237272i
\(668\) −10.7586 + 7.81655i −0.416261 + 0.302431i
\(669\) −16.0016 2.77698i −0.618656 0.107364i
\(670\) 3.67462i 0.141963i
\(671\) −0.633996 2.30548i −0.0244751 0.0890022i
\(672\) −2.61803 + 0.375151i −0.100993 + 0.0144718i
\(673\) −9.70460 3.15322i −0.374085 0.121548i 0.115940 0.993256i \(-0.463012\pi\)
−0.490024 + 0.871709i \(0.663012\pi\)
\(674\) −18.5288 25.5028i −0.713704 0.982329i
\(675\) −4.27025 + 20.9217i −0.164362 + 0.805278i
\(676\) −1.53442 4.72245i −0.0590160 0.181633i
\(677\) −9.68951 29.8213i −0.372398 1.14612i −0.945217 0.326442i \(-0.894150\pi\)
0.572819 0.819682i \(-0.305850\pi\)
\(678\) 7.51165 + 3.96804i 0.288483 + 0.152392i
\(679\) −10.2839 14.1546i −0.394660 0.543203i
\(680\) −2.63189 0.855153i −0.100928 0.0327936i
\(681\) −0.446041 3.11275i −0.0170923 0.119281i
\(682\) −18.0103 + 22.5417i −0.689648 + 0.863165i
\(683\) 46.5132i 1.77978i −0.456178 0.889889i \(-0.650782\pi\)
0.456178 0.889889i \(-0.349218\pi\)
\(684\) −21.2608 0.627528i −0.812925 0.0239941i
\(685\) 0.455089 0.330642i 0.0173881 0.0126332i
\(686\) 10.4727 14.4144i 0.399849 0.550345i
\(687\) 28.9023 14.1933i 1.10269 0.541508i
\(688\) 5.08423 1.65197i 0.193834 0.0629806i
\(689\) −16.6909 12.1267i −0.635874 0.461990i
\(690\) 1.34888 + 1.38928i 0.0513508 + 0.0528888i
\(691\) 9.08650 27.9654i 0.345667 1.06385i −0.615559 0.788091i \(-0.711070\pi\)
0.961226 0.275762i \(-0.0889301\pi\)
\(692\) −7.10940 −0.270259
\(693\) −9.82970 + 11.5848i −0.373399 + 0.440069i
\(694\) −30.2072 −1.14665
\(695\) −1.49796 + 4.61025i −0.0568210 + 0.174877i
\(696\) −7.71446 7.94551i −0.292416 0.301174i
\(697\) 17.3598 + 12.6126i 0.657548 + 0.477737i
\(698\) −9.17824 + 2.98219i −0.347401 + 0.112878i
\(699\) 28.1113 13.8049i 1.06327 0.522148i
\(700\) 3.68830 5.07650i 0.139404 0.191874i
\(701\) 22.1405 16.0860i 0.836236 0.607561i −0.0850807 0.996374i \(-0.527115\pi\)
0.921317 + 0.388813i \(0.127115\pi\)
\(702\) −2.47948 21.8842i −0.0935820 0.825967i
\(703\) 20.0376i 0.755731i
\(704\) 3.10407 + 1.16823i 0.116989 + 0.0440293i
\(705\) −2.20168 15.3647i −0.0829200 0.578667i
\(706\) 13.0660 + 4.24542i 0.491747 + 0.159778i
\(707\) −4.20549 5.78836i −0.158164 0.217694i
\(708\) −7.14443 3.77405i −0.268504 0.141838i
\(709\) 13.1638 + 40.5141i 0.494378 + 1.52154i 0.817924 + 0.575327i \(0.195125\pi\)
−0.323546 + 0.946213i \(0.604875\pi\)
\(710\) 2.90445 + 8.93899i 0.109002 + 0.335474i
\(711\) 1.66432 4.65066i 0.0624169 0.174413i
\(712\) 10.1926 + 14.0289i 0.381983 + 0.525754i
\(713\) 9.80143 + 3.18468i 0.367066 + 0.119267i
\(714\) −7.67708 + 1.10009i −0.287308 + 0.0411697i
\(715\) −0.607365 + 13.2526i −0.0227142 + 0.495619i
\(716\) 4.21134i 0.157385i
\(717\) 34.1125 + 5.92004i 1.27396 + 0.221088i
\(718\) 23.6610 17.1908i 0.883022 0.641553i
\(719\) −9.60723 + 13.2232i −0.358289 + 0.493143i −0.949671 0.313249i \(-0.898583\pi\)
0.591382 + 0.806392i \(0.298583\pi\)
\(720\) −2.33854 + 1.59581i −0.0871523 + 0.0594721i
\(721\) 18.3867 5.97420i 0.684757 0.222491i
\(722\) 25.2965 + 18.3790i 0.941438 + 0.683995i
\(723\) −2.23076 + 2.16589i −0.0829628 + 0.0805502i
\(724\) 2.67906 8.24528i 0.0995663 0.306434i
\(725\) 26.2749 0.975826
\(726\) 17.7982 6.79883i 0.660553 0.252328i
\(727\) −21.6566 −0.803197 −0.401599 0.915816i \(-0.631545\pi\)
−0.401599 + 0.915816i \(0.631545\pi\)
\(728\) −2.00000 + 6.15537i −0.0741249 + 0.228133i
\(729\) 2.38697 26.8943i 0.0884061 0.996085i
\(730\) −1.33854 0.972508i −0.0495417 0.0359941i
\(731\) 14.9089 4.84420i 0.551426 0.179169i
\(732\) −0.550419 1.12084i −0.0203441 0.0414273i
\(733\) −16.0834 + 22.1368i −0.594052 + 0.817643i −0.995148 0.0983933i \(-0.968630\pi\)
0.401095 + 0.916036i \(0.368630\pi\)
\(734\) −9.12557 + 6.63012i −0.336831 + 0.244722i
\(735\) 1.30478 7.51839i 0.0481274 0.277320i
\(736\) 1.18465i 0.0436666i
\(737\) −0.591238 + 12.9007i −0.0217785 + 0.475203i
\(738\) 21.0692 6.16481i 0.775569 0.226930i
\(739\) −47.3897 15.3979i −1.74326 0.566420i −0.748003 0.663696i \(-0.768987\pi\)
−0.995257 + 0.0972762i \(0.968987\pi\)
\(740\) 1.56768 + 2.15773i 0.0576291 + 0.0793197i
\(741\) −24.3122 + 46.0238i −0.893130 + 1.69073i
\(742\) 2.29675 + 7.06868i 0.0843165 + 0.259499i
\(743\) 6.29906 + 19.3865i 0.231090 + 0.711222i 0.997616 + 0.0690089i \(0.0219837\pi\)
−0.766526 + 0.642213i \(0.778016\pi\)
\(744\) −7.03805 + 13.3233i −0.258027 + 0.488456i
\(745\) 9.63467 + 13.2610i 0.352987 + 0.485845i
\(746\) −5.45474 1.77235i −0.199712 0.0648904i
\(747\) 17.7357 5.18941i 0.648914 0.189871i
\(748\) 9.10233 + 3.42570i 0.332814 + 0.125256i
\(749\) 1.09749i 0.0401013i
\(750\) 2.54600 14.6706i 0.0929669 0.535694i
\(751\) 15.4668 11.2373i 0.564390 0.410053i −0.268673 0.963231i \(-0.586585\pi\)
0.833063 + 0.553178i \(0.186585\pi\)
\(752\) −5.58154 + 7.68233i −0.203538 + 0.280146i
\(753\) −9.69577 19.7438i −0.353333 0.719504i
\(754\) −25.7744 + 8.37461i −0.938648 + 0.304985i
\(755\) 11.5381 + 8.38293i 0.419915 + 0.305086i
\(756\) −3.91138 + 6.90323i −0.142256 + 0.251068i
\(757\) 5.81223 17.8882i 0.211249 0.650158i −0.788150 0.615484i \(-0.788961\pi\)
0.999399 0.0346742i \(-0.0110394\pi\)
\(758\) 26.9912 0.980365
\(759\) −4.51204 5.09443i −0.163777 0.184916i
\(760\) 6.69094 0.242706
\(761\) −7.25897 + 22.3408i −0.263138 + 0.809854i 0.728979 + 0.684536i \(0.239995\pi\)
−0.992117 + 0.125318i \(0.960005\pi\)
\(762\) 6.56965 6.37860i 0.237993 0.231072i
\(763\) −11.3766 8.26558i −0.411860 0.299234i
\(764\) −12.7897 + 4.15562i −0.462714 + 0.150345i
\(765\) −6.85751 + 4.67952i −0.247934 + 0.169188i