Properties

Label 66.2.h.a.17.1
Level $66$
Weight $2$
Character 66.17
Analytic conductor $0.527$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [66,2,Mod(17,66)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(66, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("66.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.h (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.527012653340\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.185640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.1
Root \(1.55470 - 0.763481i\) of defining polynomial
Character \(\chi\) \(=\) 66.17
Dual form 66.2.h.a.35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{2} +(-1.20654 + 1.24268i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.897526 + 0.291624i) q^{5} +(-1.55470 - 0.763481i) q^{6} +(0.897526 + 1.23534i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(-0.0885088 - 2.99869i) q^{9} +O(q^{10})\) \(q+(0.309017 + 0.951057i) q^{2} +(-1.20654 + 1.24268i) q^{3} +(-0.809017 + 0.587785i) q^{4} +(0.897526 + 0.291624i) q^{5} +(-1.55470 - 0.763481i) q^{6} +(0.897526 + 1.23534i) q^{7} +(-0.809017 - 0.587785i) q^{8} +(-0.0885088 - 2.99869i) q^{9} +0.943715i q^{10} +(-0.151841 - 3.31315i) q^{11} +(0.245684 - 1.71454i) q^{12} +(4.03112 - 1.30979i) q^{13} +(-0.897526 + 1.23534i) q^{14} +(-1.44530 + 0.763481i) q^{15} +(0.309017 - 0.951057i) q^{16} +(0.906157 - 2.78886i) q^{17} +(2.82458 - 1.01082i) q^{18} +(-4.16740 + 5.73594i) q^{19} +(-0.897526 + 0.291624i) q^{20} +(-2.61803 - 0.375151i) q^{21} +(3.10407 - 1.16823i) q^{22} +1.18465i q^{23} +(1.70654 - 0.296161i) q^{24} +(-3.32458 - 2.41545i) q^{25} +(2.49137 + 3.42908i) q^{26} +(3.83321 + 3.50806i) q^{27} +(-1.45223 - 0.471857i) q^{28} +(-5.17274 + 3.75821i) q^{29} +(-1.17274 - 1.13863i) q^{30} +(-2.68830 - 8.27372i) q^{31} +1.00000 q^{32} +(4.30039 + 3.80876i) q^{33} +2.93239 q^{34} +(0.445299 + 1.37049i) q^{35} +(1.83419 + 2.37397i) q^{36} +(-2.28642 + 1.66118i) q^{37} +(-6.74300 - 2.19093i) q^{38} +(-3.23607 + 6.58971i) q^{39} +(-0.554701 - 0.763481i) q^{40} +(5.92001 + 4.30114i) q^{41} +(-0.452227 - 2.60583i) q^{42} +5.34587i q^{43} +(2.07026 + 2.59114i) q^{44} +(0.795052 - 2.71722i) q^{45} +(-1.12667 + 0.366076i) q^{46} +(5.58154 - 7.68233i) q^{47} +(0.809017 + 1.53150i) q^{48} +(1.44261 - 4.43990i) q^{49} +(1.26988 - 3.90827i) q^{50} +(2.37235 + 4.49095i) q^{51} +(-2.49137 + 3.42908i) q^{52} +(-4.62924 + 1.50413i) q^{53} +(-2.15184 + 4.72965i) q^{54} +(0.829911 - 3.01792i) q^{55} -1.52696i q^{56} +(-2.09979 - 12.0994i) q^{57} +(-5.17274 - 3.75821i) q^{58} +(-2.74201 - 3.77405i) q^{59} +(0.720508 - 1.46719i) q^{60} +(-0.685649 - 0.222781i) q^{61} +(7.03805 - 5.11344i) q^{62} +(3.62496 - 2.80074i) q^{63} +(0.309017 + 0.951057i) q^{64} +4.00000 q^{65} +(-2.29346 + 5.26688i) q^{66} +3.89379 q^{67} +(0.906157 + 2.78886i) q^{68} +(-1.47214 - 1.42933i) q^{69} +(-1.16581 + 0.847008i) q^{70} +(-9.47214 - 3.07768i) q^{71} +(-1.69098 + 2.47802i) q^{72} +(1.03051 + 1.41838i) q^{73} +(-2.28642 - 1.66118i) q^{74} +(7.01287 - 1.21705i) q^{75} -7.09001i q^{76} +(3.95658 - 3.16121i) q^{77} +(-7.26719 - 1.04135i) q^{78} +(-1.56591 + 0.508796i) q^{79} +(0.554701 - 0.763481i) q^{80} +(-8.98433 + 0.530822i) q^{81} +(-2.26124 + 6.95939i) q^{82} +(-1.90347 + 5.85828i) q^{83} +(2.33854 - 1.23534i) q^{84} +(1.62660 - 2.23882i) q^{85} +(-5.08423 + 1.65197i) q^{86} +(1.57087 - 10.9625i) q^{87} +(-1.82458 + 2.76964i) q^{88} +17.3406i q^{89} +(2.82991 - 0.0835271i) q^{90} +(5.23607 + 3.80423i) q^{91} +(-0.696317 - 0.958399i) q^{92} +(13.5251 + 6.64191i) q^{93} +(9.03112 + 2.93439i) q^{94} +(-5.41309 + 3.93284i) q^{95} +(-1.20654 + 1.24268i) q^{96} +(3.54074 + 10.8973i) q^{97} +4.66839 q^{98} +(-9.92168 + 0.748569i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 3 q^{6} - 2 q^{8} + 2 q^{9} + q^{11} - 3 q^{12} - 21 q^{15} - 2 q^{16} + 10 q^{17} + 2 q^{18} - 15 q^{19} - 12 q^{21} + 6 q^{22} + 2 q^{24} - 6 q^{25} + 10 q^{26} + 20 q^{27} + 5 q^{28} - 23 q^{29} + 9 q^{30} + 13 q^{31} + 8 q^{32} + 20 q^{33} + 10 q^{34} + 13 q^{35} + 7 q^{36} + 6 q^{37} - 10 q^{38} - 8 q^{39} + 5 q^{40} - 2 q^{41} + 13 q^{42} - 9 q^{44} - 8 q^{45} - 10 q^{46} - 10 q^{47} + 2 q^{48} - 18 q^{49} - q^{50} + 15 q^{51} - 10 q^{52} - 15 q^{53} - 15 q^{54} - 14 q^{55} + 15 q^{57} - 23 q^{58} + 25 q^{59} + 4 q^{60} - 10 q^{61} - 2 q^{62} - 6 q^{63} - 2 q^{64} + 32 q^{65} - 30 q^{66} - 2 q^{67} + 10 q^{68} + 24 q^{69} - 17 q^{70} - 40 q^{71} - 18 q^{72} + 5 q^{73} + 6 q^{74} + q^{75} + 12 q^{77} - 8 q^{78} + 10 q^{79} - 5 q^{80} - 26 q^{81} + 3 q^{82} + 21 q^{83} + 8 q^{84} + 30 q^{85} - 25 q^{86} - 42 q^{87} + 6 q^{88} + 2 q^{90} + 24 q^{91} - 10 q^{92} + 27 q^{93} + 40 q^{94} - 20 q^{95} + 2 q^{96} + 9 q^{97} + 22 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 + 0.951057i 0.218508 + 0.672499i
\(3\) −1.20654 + 1.24268i −0.696598 + 0.717462i
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.897526 + 0.291624i 0.401386 + 0.130418i 0.502751 0.864431i \(-0.332321\pi\)
−0.101366 + 0.994849i \(0.532321\pi\)
\(6\) −1.55470 0.763481i −0.634704 0.311690i
\(7\) 0.897526 + 1.23534i 0.339233 + 0.466914i 0.944217 0.329323i \(-0.106821\pi\)
−0.604984 + 0.796237i \(0.706821\pi\)
\(8\) −0.809017 0.587785i −0.286031 0.207813i
\(9\) −0.0885088 2.99869i −0.0295029 0.999565i
\(10\) 0.943715i 0.298429i
\(11\) −0.151841 3.31315i −0.0457819 0.998951i
\(12\) 0.245684 1.71454i 0.0709230 0.494944i
\(13\) 4.03112 1.30979i 1.11803 0.363270i 0.309015 0.951057i \(-0.400001\pi\)
0.809016 + 0.587787i \(0.200001\pi\)
\(14\) −0.897526 + 1.23534i −0.239874 + 0.330158i
\(15\) −1.44530 + 0.763481i −0.373174 + 0.197130i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 0.906157 2.78886i 0.219775 0.676399i −0.779005 0.627018i \(-0.784275\pi\)
0.998780 0.0493808i \(-0.0157248\pi\)
\(18\) 2.82458 1.01082i 0.665759 0.238254i
\(19\) −4.16740 + 5.73594i −0.956067 + 1.31591i −0.00728837 + 0.999973i \(0.502320\pi\)
−0.948779 + 0.315940i \(0.897680\pi\)
\(20\) −0.897526 + 0.291624i −0.200693 + 0.0652091i
\(21\) −2.61803 0.375151i −0.571302 0.0818646i
\(22\) 3.10407 1.16823i 0.661790 0.249067i
\(23\) 1.18465i 0.247016i 0.992344 + 0.123508i \(0.0394144\pi\)
−0.992344 + 0.123508i \(0.960586\pi\)
\(24\) 1.70654 0.296161i 0.348347 0.0604537i
\(25\) −3.32458 2.41545i −0.664915 0.483089i
\(26\) 2.49137 + 3.42908i 0.488598 + 0.672497i
\(27\) 3.83321 + 3.50806i 0.737701 + 0.675127i
\(28\) −1.45223 0.471857i −0.274445 0.0891726i
\(29\) −5.17274 + 3.75821i −0.960553 + 0.697883i −0.953279 0.302091i \(-0.902315\pi\)
−0.00727378 + 0.999974i \(0.502315\pi\)
\(30\) −1.17274 1.13863i −0.214111 0.207885i
\(31\) −2.68830 8.27372i −0.482832 1.48600i −0.835096 0.550104i \(-0.814588\pi\)
0.352264 0.935901i \(-0.385412\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.30039 + 3.80876i 0.748601 + 0.663021i
\(34\) 2.93239 0.502900
\(35\) 0.445299 + 1.37049i 0.0752692 + 0.231655i
\(36\) 1.83419 + 2.37397i 0.305699 + 0.395662i
\(37\) −2.28642 + 1.66118i −0.375885 + 0.273097i −0.759647 0.650335i \(-0.774628\pi\)
0.383762 + 0.923432i \(0.374628\pi\)
\(38\) −6.74300 2.19093i −1.09386 0.355416i
\(39\) −3.23607 + 6.58971i −0.518186 + 1.05520i
\(40\) −0.554701 0.763481i −0.0877060 0.120717i
\(41\) 5.92001 + 4.30114i 0.924551 + 0.671726i 0.944653 0.328072i \(-0.106399\pi\)
−0.0201017 + 0.999798i \(0.506399\pi\)
\(42\) −0.452227 2.60583i −0.0697802 0.402088i
\(43\) 5.34587i 0.815238i 0.913152 + 0.407619i \(0.133641\pi\)
−0.913152 + 0.407619i \(0.866359\pi\)
\(44\) 2.07026 + 2.59114i 0.312104 + 0.390629i
\(45\) 0.795052 2.71722i 0.118519 0.405059i
\(46\) −1.12667 + 0.366076i −0.166118 + 0.0539749i
\(47\) 5.58154 7.68233i 0.814151 1.12058i −0.176518 0.984297i \(-0.556484\pi\)
0.990670 0.136286i \(-0.0435165\pi\)
\(48\) 0.809017 + 1.53150i 0.116772 + 0.221053i
\(49\) 1.44261 4.43990i 0.206087 0.634271i
\(50\) 1.26988 3.90827i 0.179587 0.552713i
\(51\) 2.37235 + 4.49095i 0.332195 + 0.628858i
\(52\) −2.49137 + 3.42908i −0.345491 + 0.475527i
\(53\) −4.62924 + 1.50413i −0.635876 + 0.206609i −0.609176 0.793035i \(-0.708500\pi\)
−0.0266996 + 0.999644i \(0.508500\pi\)
\(54\) −2.15184 + 4.72965i −0.292829 + 0.643624i
\(55\) 0.829911 3.01792i 0.111905 0.406936i
\(56\) 1.52696i 0.204049i
\(57\) −2.09979 12.0994i −0.278124 1.60260i
\(58\) −5.17274 3.75821i −0.679213 0.493477i
\(59\) −2.74201 3.77405i −0.356979 0.491340i 0.592325 0.805699i \(-0.298210\pi\)
−0.949304 + 0.314359i \(0.898210\pi\)
\(60\) 0.720508 1.46719i 0.0930172 0.189414i
\(61\) −0.685649 0.222781i −0.0877883 0.0285242i 0.264794 0.964305i \(-0.414696\pi\)
−0.352582 + 0.935781i \(0.614696\pi\)
\(62\) 7.03805 5.11344i 0.893833 0.649408i
\(63\) 3.62496 2.80074i 0.456702 0.352861i
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) 4.00000 0.496139
\(66\) −2.29346 + 5.26688i −0.282305 + 0.648308i
\(67\) 3.89379 0.475702 0.237851 0.971302i \(-0.423557\pi\)
0.237851 + 0.971302i \(0.423557\pi\)
\(68\) 0.906157 + 2.78886i 0.109888 + 0.338199i
\(69\) −1.47214 1.42933i −0.177224 0.172071i
\(70\) −1.16581 + 0.847008i −0.139341 + 0.101237i
\(71\) −9.47214 3.07768i −1.12414 0.365254i −0.312791 0.949822i \(-0.601264\pi\)
−0.811345 + 0.584568i \(0.801264\pi\)
\(72\) −1.69098 + 2.47802i −0.199284 + 0.292037i
\(73\) 1.03051 + 1.41838i 0.120612 + 0.166008i 0.865054 0.501679i \(-0.167284\pi\)
−0.744442 + 0.667688i \(0.767284\pi\)
\(74\) −2.28642 1.66118i −0.265791 0.193108i
\(75\) 7.01287 1.21705i 0.809777 0.140532i
\(76\) 7.09001i 0.813280i
\(77\) 3.95658 3.16121i 0.450894 0.360253i
\(78\) −7.26719 1.04135i −0.822847 0.117910i
\(79\) −1.56591 + 0.508796i −0.176179 + 0.0572440i −0.395778 0.918346i \(-0.629525\pi\)
0.219599 + 0.975590i \(0.429525\pi\)
\(80\) 0.554701 0.763481i 0.0620175 0.0853598i
\(81\) −8.98433 + 0.530822i −0.998259 + 0.0589802i
\(82\) −2.26124 + 6.95939i −0.249713 + 0.768537i
\(83\) −1.90347 + 5.85828i −0.208933 + 0.643029i 0.790596 + 0.612338i \(0.209771\pi\)
−0.999529 + 0.0306912i \(0.990229\pi\)
\(84\) 2.33854 1.23534i 0.255156 0.134786i
\(85\) 1.62660 2.23882i 0.176429 0.242834i
\(86\) −5.08423 + 1.65197i −0.548246 + 0.178136i
\(87\) 1.57087 10.9625i 0.168415 1.17530i
\(88\) −1.82458 + 2.76964i −0.194501 + 0.295245i
\(89\) 17.3406i 1.83811i 0.394135 + 0.919053i \(0.371044\pi\)
−0.394135 + 0.919053i \(0.628956\pi\)
\(90\) 2.82991 0.0835271i 0.298299 0.00880453i
\(91\) 5.23607 + 3.80423i 0.548889 + 0.398791i
\(92\) −0.696317 0.958399i −0.0725961 0.0999200i
\(93\) 13.5251 + 6.64191i 1.40249 + 0.688734i
\(94\) 9.03112 + 2.93439i 0.931489 + 0.302659i
\(95\) −5.41309 + 3.93284i −0.555371 + 0.403501i
\(96\) −1.20654 + 1.24268i −0.123142 + 0.126831i
\(97\) 3.54074 + 10.8973i 0.359507 + 1.10645i 0.953350 + 0.301868i \(0.0976103\pi\)
−0.593842 + 0.804581i \(0.702390\pi\)
\(98\) 4.66839 0.471578
\(99\) −9.92168 + 0.748569i −0.997166 + 0.0752340i
\(100\) 4.10940 0.410940
\(101\) 1.44795 + 4.45632i 0.144076 + 0.443420i 0.996891 0.0787929i \(-0.0251066\pi\)
−0.852815 + 0.522213i \(0.825107\pi\)
\(102\) −3.53805 + 3.64402i −0.350319 + 0.360811i
\(103\) 10.2430 7.44197i 1.00927 0.733279i 0.0452161 0.998977i \(-0.485602\pi\)
0.964056 + 0.265698i \(0.0856024\pi\)
\(104\) −4.03112 1.30979i −0.395284 0.128435i
\(105\) −2.24035 1.10019i −0.218636 0.107367i
\(106\) −2.86103 3.93787i −0.277888 0.382480i
\(107\) −0.581472 0.422464i −0.0562130 0.0408412i 0.559324 0.828949i \(-0.311061\pi\)
−0.615537 + 0.788108i \(0.711061\pi\)
\(108\) −5.16312 0.584981i −0.496821 0.0562898i
\(109\) 9.20929i 0.882090i 0.897485 + 0.441045i \(0.145392\pi\)
−0.897485 + 0.441045i \(0.854608\pi\)
\(110\) 3.12667 0.143295i 0.298116 0.0136626i
\(111\) 0.694346 4.84558i 0.0659044 0.459922i
\(112\) 1.45223 0.471857i 0.137223 0.0445863i
\(113\) −2.88295 + 3.96804i −0.271205 + 0.373282i −0.922796 0.385289i \(-0.874102\pi\)
0.651591 + 0.758571i \(0.274102\pi\)
\(114\) 10.8583 5.73594i 1.01698 0.537220i
\(115\) −0.345471 + 1.06325i −0.0322153 + 0.0991486i
\(116\) 1.97581 6.08092i 0.183449 0.564599i
\(117\) −4.28445 11.9722i −0.396098 1.10683i
\(118\) 2.74201 3.77405i 0.252423 0.347430i
\(119\) 4.25849 1.38367i 0.390375 0.126841i
\(120\) 1.61803 + 0.231856i 0.147706 + 0.0211655i
\(121\) −10.9539 + 1.00615i −0.995808 + 0.0914678i
\(122\) 0.720934i 0.0652703i
\(123\) −12.4877 + 2.16717i −1.12598 + 0.195407i
\(124\) 7.03805 + 5.11344i 0.632035 + 0.459201i
\(125\) −5.05300 6.95486i −0.451954 0.622061i
\(126\) 3.78384 + 2.58207i 0.337091 + 0.230029i
\(127\) −5.02793 1.63367i −0.446157 0.144965i 0.0773177 0.997007i \(-0.475364\pi\)
−0.523474 + 0.852041i \(0.675364\pi\)
\(128\) −0.809017 + 0.587785i −0.0715077 + 0.0519534i
\(129\) −6.64321 6.45002i −0.584902 0.567893i
\(130\) 1.23607 + 3.80423i 0.108410 + 0.333653i
\(131\) 10.6492 0.930421 0.465210 0.885200i \(-0.345979\pi\)
0.465210 + 0.885200i \(0.345979\pi\)
\(132\) −5.71782 0.553651i −0.497672 0.0481891i
\(133\) −10.8262 −0.938748
\(134\) 1.20325 + 3.70321i 0.103945 + 0.319909i
\(135\) 2.41737 + 4.26643i 0.208054 + 0.367196i
\(136\) −2.37235 + 1.72361i −0.203427 + 0.147799i
\(137\) 0.566898 + 0.184196i 0.0484334 + 0.0157370i 0.333133 0.942880i \(-0.391894\pi\)
−0.284700 + 0.958617i \(0.591894\pi\)
\(138\) 0.904455 1.84177i 0.0769923 0.156782i
\(139\) −3.01923 4.15562i −0.256088 0.352475i 0.661544 0.749907i \(-0.269902\pi\)
−0.917632 + 0.397432i \(0.869902\pi\)
\(140\) −1.16581 0.847008i −0.0985286 0.0715853i
\(141\) 2.81231 + 16.2051i 0.236840 + 1.36472i
\(142\) 9.95959i 0.835790i
\(143\) −4.95162 13.1568i −0.414075 1.10023i
\(144\) −2.87928 0.842471i −0.239940 0.0702059i
\(145\) −5.73865 + 1.86460i −0.476569 + 0.154847i
\(146\) −1.03051 + 1.41838i −0.0852857 + 0.117386i
\(147\) 3.77680 + 7.14963i 0.311506 + 0.589692i
\(148\) 0.873335 2.68785i 0.0717877 0.220940i
\(149\) 5.36735 16.5190i 0.439710 1.35329i −0.448471 0.893797i \(-0.648031\pi\)
0.888182 0.459492i \(-0.151969\pi\)
\(150\) 3.32458 + 6.29355i 0.271451 + 0.513866i
\(151\) 8.88291 12.2263i 0.722881 0.994960i −0.276542 0.961002i \(-0.589189\pi\)
0.999423 0.0339586i \(-0.0108114\pi\)
\(152\) 6.74300 2.19093i 0.546929 0.177708i
\(153\) −8.44315 2.47045i −0.682588 0.199724i
\(154\) 4.22914 + 2.78606i 0.340794 + 0.224507i
\(155\) 8.20985i 0.659431i
\(156\) −1.25530 7.23330i −0.100505 0.579128i
\(157\) 3.00000 + 2.17963i 0.239426 + 0.173953i 0.701028 0.713134i \(-0.252725\pi\)
−0.461601 + 0.887087i \(0.652725\pi\)
\(158\) −0.967787 1.33204i −0.0769930 0.105972i
\(159\) 3.71623 7.56747i 0.294716 0.600140i
\(160\) 0.897526 + 0.291624i 0.0709556 + 0.0230549i
\(161\) −1.46344 + 1.06325i −0.115335 + 0.0837959i
\(162\) −3.28115 8.38057i −0.257792 0.658440i
\(163\) 3.32991 + 10.2484i 0.260819 + 0.802718i 0.992627 + 0.121207i \(0.0386766\pi\)
−0.731808 + 0.681510i \(0.761323\pi\)
\(164\) −7.31754 −0.571404
\(165\) 2.74898 + 4.67256i 0.214008 + 0.363758i
\(166\) −6.15976 −0.478090
\(167\) 4.10940 + 12.6474i 0.317995 + 0.978688i 0.974504 + 0.224370i \(0.0720325\pi\)
−0.656509 + 0.754318i \(0.727968\pi\)
\(168\) 1.89753 + 1.84235i 0.146397 + 0.142140i
\(169\) 4.01715 2.91863i 0.309012 0.224510i
\(170\) 2.63189 + 0.855153i 0.201857 + 0.0655873i
\(171\) 17.5692 + 11.9891i 1.34355 + 0.916828i
\(172\) −3.14222 4.32490i −0.239592 0.329771i
\(173\) 5.75163 + 4.17880i 0.437288 + 0.317708i 0.784556 0.620057i \(-0.212891\pi\)
−0.347268 + 0.937766i \(0.612891\pi\)
\(174\) 10.9114 1.89361i 0.827190 0.143554i
\(175\) 6.27490i 0.474338i
\(176\) −3.19791 0.879409i −0.241052 0.0662880i
\(177\) 7.99830 + 1.14612i 0.601189 + 0.0861473i
\(178\) −16.4919 + 5.35856i −1.23612 + 0.401641i
\(179\) 2.47537 3.40705i 0.185018 0.254655i −0.706426 0.707787i \(-0.749694\pi\)
0.891443 + 0.453132i \(0.149694\pi\)
\(180\) 0.953930 + 2.66559i 0.0711017 + 0.198682i
\(181\) 2.67906 8.24528i 0.199133 0.612867i −0.800771 0.598971i \(-0.795577\pi\)
0.999903 0.0138963i \(-0.00442347\pi\)
\(182\) −2.00000 + 6.15537i −0.148250 + 0.456266i
\(183\) 1.10411 0.583248i 0.0816181 0.0431149i
\(184\) 0.696317 0.958399i 0.0513332 0.0706541i
\(185\) −2.53656 + 0.824179i −0.186492 + 0.0605948i
\(186\) −2.13733 + 14.9156i −0.156717 + 1.09367i
\(187\) −9.37751 2.57877i −0.685751 0.188578i
\(188\) 9.49588i 0.692558i
\(189\) −0.893244 + 7.88389i −0.0649739 + 0.573468i
\(190\) −5.41309 3.93284i −0.392707 0.285318i
\(191\) 7.90445 + 10.8795i 0.571946 + 0.787216i 0.992784 0.119920i \(-0.0382637\pi\)
−0.420837 + 0.907136i \(0.638264\pi\)
\(192\) −1.55470 0.763481i −0.112201 0.0550995i
\(193\) 6.65520 + 2.16241i 0.479052 + 0.155653i 0.538582 0.842573i \(-0.318960\pi\)
−0.0595300 + 0.998227i \(0.518960\pi\)
\(194\) −9.26977 + 6.73488i −0.665531 + 0.483536i
\(195\) −4.82617 + 4.97072i −0.345609 + 0.355961i
\(196\) 1.44261 + 4.43990i 0.103044 + 0.317136i
\(197\) −22.8937 −1.63111 −0.815554 0.578680i \(-0.803568\pi\)
−0.815554 + 0.578680i \(0.803568\pi\)
\(198\) −3.77790 9.20475i −0.268483 0.654153i
\(199\) −20.8937 −1.48112 −0.740558 0.671993i \(-0.765439\pi\)
−0.740558 + 0.671993i \(0.765439\pi\)
\(200\) 1.26988 + 3.90827i 0.0897937 + 0.276357i
\(201\) −4.69802 + 4.83873i −0.331373 + 0.341298i
\(202\) −3.79077 + 2.75416i −0.266718 + 0.193782i
\(203\) −9.28533 3.01699i −0.651702 0.211751i
\(204\) −4.55898 2.23882i −0.319193 0.156749i
\(205\) 4.05905 + 5.58680i 0.283496 + 0.390199i
\(206\) 10.2430 + 7.44197i 0.713663 + 0.518507i
\(207\) 3.55239 0.104852i 0.246908 0.00728769i
\(208\) 4.23857i 0.293892i
\(209\) 19.6368 + 12.9363i 1.35830 + 0.894820i
\(210\) 0.354035 2.47068i 0.0244308 0.170493i
\(211\) 3.77185 1.22555i 0.259665 0.0843701i −0.176292 0.984338i \(-0.556410\pi\)
0.435956 + 0.899968i \(0.356410\pi\)
\(212\) 2.86103 3.93787i 0.196496 0.270454i
\(213\) 15.2531 8.05748i 1.04513 0.552089i
\(214\) 0.222103 0.683562i 0.0151826 0.0467273i
\(215\) −1.55898 + 4.79806i −0.106322 + 0.327225i
\(216\) −1.03914 5.09119i −0.0707046 0.346411i
\(217\) 7.80803 10.7468i 0.530044 0.729543i
\(218\) −8.75856 + 2.84583i −0.593204 + 0.192744i
\(219\) −3.00594 0.430736i −0.203123 0.0291065i
\(220\) 1.10247 + 2.92935i 0.0743288 + 0.197497i
\(221\) 12.4291i 0.836073i
\(222\) 4.82298 0.837003i 0.323697 0.0561760i
\(223\) 7.58582 + 5.51142i 0.507984 + 0.369072i 0.812058 0.583576i \(-0.198347\pi\)
−0.304074 + 0.952648i \(0.598347\pi\)
\(224\) 0.897526 + 1.23534i 0.0599685 + 0.0825395i
\(225\) −6.94893 + 10.1832i −0.463262 + 0.678878i
\(226\) −4.66471 1.51566i −0.310292 0.100820i
\(227\) 1.46877 1.06713i 0.0974859 0.0708276i −0.537975 0.842961i \(-0.680810\pi\)
0.635460 + 0.772133i \(0.280810\pi\)
\(228\) 8.81061 + 8.55440i 0.583497 + 0.566529i
\(229\) −5.74470 17.6804i −0.379620 1.16835i −0.940308 0.340324i \(-0.889463\pi\)
0.560688 0.828027i \(-0.310537\pi\)
\(230\) −1.11797 −0.0737166
\(231\) −0.845404 + 8.73090i −0.0556235 + 0.574451i
\(232\) 6.39385 0.419777
\(233\) −5.58748 17.1965i −0.366048 1.12658i −0.949322 0.314305i \(-0.898229\pi\)
0.583274 0.812275i \(-0.301771\pi\)
\(234\) 10.0622 7.77436i 0.657789 0.508226i
\(235\) 7.24993 5.26738i 0.472933 0.343606i
\(236\) 4.43667 + 1.44156i 0.288802 + 0.0938376i
\(237\) 1.25707 2.55981i 0.0816555 0.166278i
\(238\) 2.63189 + 3.62249i 0.170600 + 0.234811i
\(239\) −16.1716 11.7494i −1.04606 0.760005i −0.0745980 0.997214i \(-0.523767\pi\)
−0.971459 + 0.237209i \(0.923767\pi\)
\(240\) 0.279492 + 1.61049i 0.0180411 + 0.103957i
\(241\) 1.79512i 0.115634i 0.998327 + 0.0578169i \(0.0184140\pi\)
−0.998327 + 0.0578169i \(0.981586\pi\)
\(242\) −4.34184 10.1069i −0.279104 0.649693i
\(243\) 10.1803 11.8051i 0.653069 0.757298i
\(244\) 0.685649 0.222781i 0.0438942 0.0142621i
\(245\) 2.58956 3.56422i 0.165441 0.227710i
\(246\) −5.92001 11.2068i −0.377446 0.714520i
\(247\) −9.28642 + 28.5807i −0.590881 + 1.81854i
\(248\) −2.68830 + 8.27372i −0.170707 + 0.525382i
\(249\) −4.98335 9.43366i −0.315807 0.597834i
\(250\) 5.05300 6.95486i 0.319580 0.439864i
\(251\) 12.0779 3.92434i 0.762348 0.247702i 0.0980620 0.995180i \(-0.468736\pi\)
0.664286 + 0.747478i \(0.268736\pi\)
\(252\) −1.28642 + 4.39655i −0.0810369 + 0.276957i
\(253\) 3.92491 0.179878i 0.246757 0.0113088i
\(254\) 5.28668i 0.331716i
\(255\) 0.819578 + 4.72257i 0.0513239 + 0.295739i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 3.11429 + 4.28646i 0.194264 + 0.267382i 0.895026 0.446013i \(-0.147157\pi\)
−0.700762 + 0.713395i \(0.747157\pi\)
\(258\) 4.08147 8.31124i 0.254101 0.517435i
\(259\) −4.10424 1.33355i −0.255025 0.0828627i
\(260\) −3.23607 + 2.35114i −0.200692 + 0.145812i
\(261\) 11.7276 + 15.1788i 0.725918 + 0.939545i
\(262\) 3.29077 + 10.1279i 0.203304 + 0.625707i
\(263\) 9.51711 0.586850 0.293425 0.955982i \(-0.405205\pi\)
0.293425 + 0.955982i \(0.405205\pi\)
\(264\) −1.24035 5.60906i −0.0763383 0.345214i
\(265\) −4.59351 −0.282177
\(266\) −3.34547 10.2963i −0.205124 0.631307i
\(267\) −21.5489 20.9222i −1.31877 1.28042i
\(268\) −3.15014 + 2.28871i −0.192425 + 0.139805i
\(269\) −0.0695856 0.0226097i −0.00424271 0.00137854i 0.306895 0.951743i \(-0.400710\pi\)
−0.311138 + 0.950365i \(0.600710\pi\)
\(270\) −3.31061 + 3.61745i −0.201477 + 0.220151i
\(271\) 0.00659354 + 0.00907523i 0.000400529 + 0.000551281i 0.809217 0.587510i \(-0.199892\pi\)
−0.808817 + 0.588061i \(0.799892\pi\)
\(272\) −2.37235 1.72361i −0.143845 0.104509i
\(273\) −11.0450 + 1.91680i −0.668472 + 0.116010i
\(274\) 0.596072i 0.0360100i
\(275\) −7.49792 + 11.3816i −0.452142 + 0.686335i
\(276\) 2.03112 + 0.291049i 0.122259 + 0.0175191i
\(277\) 13.2028 4.28984i 0.793277 0.257751i 0.115778 0.993275i \(-0.463064\pi\)
0.677499 + 0.735524i \(0.263064\pi\)
\(278\) 3.01923 4.15562i 0.181082 0.249237i
\(279\) −24.5724 + 8.79367i −1.47111 + 0.526463i
\(280\) 0.445299 1.37049i 0.0266117 0.0819023i
\(281\) 5.25058 16.1596i 0.313223 0.964002i −0.663257 0.748392i \(-0.730826\pi\)
0.976480 0.215609i \(-0.0691738\pi\)
\(282\) −14.5429 + 7.68233i −0.866019 + 0.457476i
\(283\) −13.6158 + 18.7406i −0.809378 + 1.11401i 0.182041 + 0.983291i \(0.441730\pi\)
−0.991419 + 0.130722i \(0.958270\pi\)
\(284\) 9.47214 3.07768i 0.562068 0.182627i
\(285\) 1.64386 11.4719i 0.0973739 0.679535i
\(286\) 10.9827 8.77495i 0.649423 0.518874i
\(287\) 11.1736i 0.659557i
\(288\) −0.0885088 2.99869i −0.00521543 0.176700i
\(289\) 6.79665 + 4.93805i 0.399803 + 0.290474i
\(290\) −3.54668 4.88159i −0.208268 0.286657i
\(291\) −17.8139 8.74801i −1.04427 0.512818i
\(292\) −1.66740 0.541771i −0.0975773 0.0317048i
\(293\) 18.9457 13.7649i 1.10682 0.804151i 0.124659 0.992200i \(-0.460216\pi\)
0.982160 + 0.188048i \(0.0602162\pi\)
\(294\) −5.63261 + 5.80131i −0.328500 + 0.338339i
\(295\) −1.36042 4.18695i −0.0792068 0.243774i
\(296\) 2.82617 0.164268
\(297\) 11.0407 13.2327i 0.640646 0.767836i
\(298\) 17.3691 1.00617
\(299\) 1.55164 + 4.77545i 0.0897335 + 0.276171i
\(300\) −4.95817 + 5.10667i −0.286260 + 0.294834i
\(301\) −6.60396 + 4.79806i −0.380646 + 0.276555i
\(302\) 14.3729 + 4.67002i 0.827065 + 0.268730i
\(303\) −7.28478 3.57740i −0.418500 0.205516i
\(304\) 4.16740 + 5.73594i 0.239017 + 0.328978i
\(305\) −0.550419 0.399903i −0.0315169 0.0228984i
\(306\) −0.259542 8.79333i −0.0148370 0.502681i
\(307\) 4.98612i 0.284573i 0.989826 + 0.142286i \(0.0454454\pi\)
−0.989826 + 0.142286i \(0.954555\pi\)
\(308\) −1.34282 + 4.88309i −0.0765145 + 0.278240i
\(309\) −3.11062 + 21.7078i −0.176957 + 1.23492i
\(310\) 7.80803 2.53698i 0.443466 0.144091i
\(311\) −8.22002 + 11.3139i −0.466115 + 0.641552i −0.975763 0.218831i \(-0.929776\pi\)
0.509648 + 0.860383i \(0.329776\pi\)
\(312\) 6.49137 3.42908i 0.367501 0.194133i
\(313\) 4.84018 14.8965i 0.273583 0.842002i −0.716008 0.698092i \(-0.754033\pi\)
0.989591 0.143910i \(-0.0459675\pi\)
\(314\) −1.14590 + 3.52671i −0.0646668 + 0.199024i
\(315\) 4.07026 1.45661i 0.229333 0.0820709i
\(316\) 0.967787 1.33204i 0.0544423 0.0749334i
\(317\) −30.4366 + 9.88946i −1.70949 + 0.555448i −0.990249 0.139310i \(-0.955511\pi\)
−0.719243 + 0.694758i \(0.755511\pi\)
\(318\) 8.34547 + 1.19586i 0.467991 + 0.0670607i
\(319\) 13.2369 + 16.5674i 0.741127 + 0.927595i
\(320\) 0.943715i 0.0527552i
\(321\) 1.22656 0.212863i 0.0684599 0.0118808i
\(322\) −1.46344 1.06325i −0.0815542 0.0592526i
\(323\) 12.2204 + 16.8200i 0.679963 + 0.935888i
\(324\) 6.95647 5.71030i 0.386470 0.317239i
\(325\) −16.5655 5.38246i −0.918888 0.298565i
\(326\) −8.71782 + 6.33387i −0.482835 + 0.350800i
\(327\) −11.4442 11.1114i −0.632866 0.614462i
\(328\) −2.26124 6.95939i −0.124856 0.384268i
\(329\) 14.4999 0.799403
\(330\) −3.59439 + 4.05834i −0.197864 + 0.223404i
\(331\) 5.76590 0.316923 0.158461 0.987365i \(-0.449347\pi\)
0.158461 + 0.987365i \(0.449347\pi\)
\(332\) −1.90347 5.85828i −0.104466 0.321515i
\(333\) 5.18374 + 6.70925i 0.284067 + 0.367664i
\(334\) −10.7586 + 7.81655i −0.588682 + 0.427703i
\(335\) 3.49477 + 1.13552i 0.190940 + 0.0620401i
\(336\) −1.16581 + 2.37397i −0.0636000 + 0.129511i
\(337\) 18.5288 + 25.5028i 1.00933 + 1.38922i 0.919422 + 0.393273i \(0.128657\pi\)
0.0899083 + 0.995950i \(0.471343\pi\)
\(338\) 4.01715 + 2.91863i 0.218504 + 0.158753i
\(339\) −1.45260 8.37020i −0.0788946 0.454607i
\(340\) 2.76733i 0.150080i
\(341\) −27.0039 + 10.1630i −1.46234 + 0.550358i
\(342\) −5.97312 + 20.4141i −0.322989 + 1.10387i
\(343\) 16.9451 5.50581i 0.914952 0.297286i
\(344\) 3.14222 4.32490i 0.169417 0.233183i
\(345\) −0.904455 1.71217i −0.0486942 0.0921800i
\(346\) −2.19693 + 6.76144i −0.118107 + 0.363497i
\(347\) −9.33453 + 28.7287i −0.501104 + 1.54224i 0.306120 + 0.951993i \(0.400969\pi\)
−0.807224 + 0.590246i \(0.799031\pi\)
\(348\) 5.17274 + 9.79218i 0.277288 + 0.524916i
\(349\) −5.67246 + 7.80747i −0.303640 + 0.417924i −0.933385 0.358878i \(-0.883160\pi\)
0.629745 + 0.776802i \(0.283160\pi\)
\(350\) 5.96779 1.93905i 0.318992 0.103647i
\(351\) 20.0469 + 9.12073i 1.07003 + 0.486829i
\(352\) −0.151841 3.31315i −0.00809317 0.176591i
\(353\) 13.7385i 0.731224i −0.930767 0.365612i \(-0.880860\pi\)
0.930767 0.365612i \(-0.119140\pi\)
\(354\) 1.38159 + 7.96100i 0.0734307 + 0.423122i
\(355\) −7.60396 5.52460i −0.403576 0.293215i
\(356\) −10.1926 14.0289i −0.540206 0.743529i
\(357\) −3.41859 + 6.96140i −0.180931 + 0.368436i
\(358\) 4.00523 + 1.30138i 0.211683 + 0.0687799i
\(359\) 23.6610 17.1908i 1.24878 0.907293i 0.250631 0.968083i \(-0.419362\pi\)
0.998151 + 0.0607894i \(0.0193618\pi\)
\(360\) −2.24035 + 1.73095i −0.118077 + 0.0912293i
\(361\) −9.66240 29.7378i −0.508547 1.56515i
\(362\) 8.66960 0.455664
\(363\) 11.9660 14.8261i 0.628053 0.778171i
\(364\) −6.47214 −0.339232
\(365\) 0.511278 + 1.57355i 0.0267615 + 0.0823634i
\(366\) 0.895890 + 0.869837i 0.0468289 + 0.0454671i
\(367\) −9.12557 + 6.63012i −0.476351 + 0.346089i −0.799911 0.600118i \(-0.795120\pi\)
0.323560 + 0.946208i \(0.395120\pi\)
\(368\) 1.12667 + 0.366076i 0.0587315 + 0.0190830i
\(369\) 12.3738 18.1330i 0.644156 0.943966i
\(370\) −1.56768 2.15773i −0.0814999 0.112175i
\(371\) −6.01298 4.36869i −0.312178 0.226811i
\(372\) −14.8461 + 2.57646i −0.769733 + 0.133583i
\(373\) 5.73545i 0.296971i 0.988915 + 0.148485i \(0.0474398\pi\)
−0.988915 + 0.148485i \(0.952560\pi\)
\(374\) −0.445257 9.71542i −0.0230237 0.502373i
\(375\) 14.7393 + 2.11207i 0.761135 + 0.109067i
\(376\) −9.03112 + 2.93439i −0.465744 + 0.151330i
\(377\) −15.9294 + 21.9250i −0.820408 + 1.12920i
\(378\) −7.77405 + 1.58673i −0.399854 + 0.0816126i
\(379\) 8.34075 25.6702i 0.428435 1.31859i −0.471231 0.882010i \(-0.656190\pi\)
0.899666 0.436578i \(-0.143810\pi\)
\(380\) 2.06761 6.36346i 0.106066 0.326439i
\(381\) 8.09655 4.27701i 0.414799 0.219118i
\(382\) −7.90445 + 10.8795i −0.404427 + 0.556646i
\(383\) 0.600988 0.195273i 0.0307090 0.00997797i −0.293622 0.955922i \(-0.594861\pi\)
0.324331 + 0.945944i \(0.394861\pi\)
\(384\) 0.245684 1.71454i 0.0125375 0.0874946i
\(385\) 4.47301 1.68344i 0.227966 0.0857959i
\(386\) 6.99770i 0.356173i
\(387\) 16.0306 0.473157i 0.814883 0.0240519i
\(388\) −9.26977 6.73488i −0.470601 0.341912i
\(389\) −15.7180 21.6340i −0.796934 1.09688i −0.993210 0.116336i \(-0.962885\pi\)
0.196276 0.980549i \(-0.437115\pi\)
\(390\) −6.21881 3.05392i −0.314901 0.154641i
\(391\) 3.30382 + 1.07347i 0.167081 + 0.0542880i
\(392\) −3.77680 + 2.74401i −0.190757 + 0.138593i
\(393\) −12.8487 + 13.2335i −0.648129 + 0.667541i
\(394\) −7.07454 21.7732i −0.356410 1.09692i
\(395\) −1.55382 −0.0781814
\(396\) 7.58681 6.43742i 0.381251 0.323492i
\(397\) 36.0170 1.80764 0.903820 0.427913i \(-0.140751\pi\)
0.903820 + 0.427913i \(0.140751\pi\)
\(398\) −6.45651 19.8711i −0.323636 0.996048i
\(399\) 13.0622 13.4535i 0.653930 0.673516i
\(400\) −3.32458 + 2.41545i −0.166229 + 0.120772i
\(401\) 19.7141 + 6.40551i 0.984478 + 0.319876i 0.756646 0.653824i \(-0.226837\pi\)
0.227831 + 0.973701i \(0.426837\pi\)
\(402\) −6.05367 2.97283i −0.301930 0.148271i
\(403\) −21.6737 29.8313i −1.07964 1.48600i
\(404\) −3.79077 2.75416i −0.188598 0.137024i
\(405\) −8.21847 2.14362i −0.408379 0.106517i
\(406\) 9.76317i 0.484538i
\(407\) 5.85091 + 7.32301i 0.290019 + 0.362988i
\(408\) 0.720442 5.02768i 0.0356672 0.248907i
\(409\) −15.7096 + 5.10437i −0.776791 + 0.252395i −0.670469 0.741937i \(-0.733907\pi\)
−0.106321 + 0.994332i \(0.533907\pi\)
\(410\) −4.05905 + 5.58680i −0.200462 + 0.275913i
\(411\) −0.912884 + 0.482232i −0.0450292 + 0.0237868i
\(412\) −3.91248 + 12.0414i −0.192754 + 0.593235i
\(413\) 2.20121 6.77462i 0.108314 0.333357i
\(414\) 1.19747 + 3.34612i 0.0588524 + 0.164453i
\(415\) −3.41683 + 4.70286i −0.167725 + 0.230854i
\(416\) 4.03112 1.30979i 0.197642 0.0642177i
\(417\) 8.80694 + 1.26199i 0.431278 + 0.0617999i
\(418\) −6.23502 + 22.6732i −0.304965 + 1.10898i
\(419\) 16.0213i 0.782693i −0.920243 0.391347i \(-0.872009\pi\)
0.920243 0.391347i \(-0.127991\pi\)
\(420\) 2.45916 0.426773i 0.119995 0.0208244i
\(421\) −10.5988 7.70048i −0.516554 0.375298i 0.298750 0.954331i \(-0.403430\pi\)
−0.815304 + 0.579033i \(0.803430\pi\)
\(422\) 2.33113 + 3.20852i 0.113478 + 0.156189i
\(423\) −23.5310 16.0574i −1.14411 0.780736i
\(424\) 4.62924 + 1.50413i 0.224816 + 0.0730471i
\(425\) −9.74894 + 7.08302i −0.472893 + 0.343577i
\(426\) 12.3766 + 12.0167i 0.599648 + 0.582210i
\(427\) −0.340178 1.04696i −0.0164624 0.0506659i
\(428\) 0.718739 0.0347416
\(429\) 22.3241 + 9.72098i 1.07782 + 0.469333i
\(430\) −5.04498 −0.243290
\(431\) −3.65126 11.2374i −0.175875 0.541287i 0.823797 0.566884i \(-0.191851\pi\)
−0.999672 + 0.0255970i \(0.991851\pi\)
\(432\) 4.52089 2.56155i 0.217512 0.123242i
\(433\) −9.23019 + 6.70613i −0.443575 + 0.322276i −0.787054 0.616884i \(-0.788395\pi\)
0.343479 + 0.939160i \(0.388395\pi\)
\(434\) 12.6337 + 4.10493i 0.606435 + 0.197043i
\(435\) 4.60682 9.38102i 0.220880 0.449786i
\(436\) −5.41309 7.45047i −0.259240 0.356813i
\(437\) −6.79505 4.93689i −0.325051 0.236164i
\(438\) −0.519233 2.99193i −0.0248099 0.142960i
\(439\) 16.0229i 0.764733i 0.924011 + 0.382366i \(0.124891\pi\)
−0.924011 + 0.382366i \(0.875109\pi\)
\(440\) −2.44530 + 1.95374i −0.116575 + 0.0931407i
\(441\) −13.4416 3.93298i −0.640075 0.187285i
\(442\) 11.8208 3.84081i 0.562258 0.182689i
\(443\) −2.78323 + 3.83079i −0.132235 + 0.182006i −0.870000 0.493052i \(-0.835881\pi\)
0.737765 + 0.675058i \(0.235881\pi\)
\(444\) 2.28642 + 4.32828i 0.108509 + 0.205411i
\(445\) −5.05695 + 15.5637i −0.239722 + 0.737789i
\(446\) −2.89753 + 8.91767i −0.137202 + 0.422264i
\(447\) 14.0519 + 26.6008i 0.664632 + 1.25817i
\(448\) −0.897526 + 1.23534i −0.0424041 + 0.0583642i
\(449\) 24.5951 7.99144i 1.16072 0.377139i 0.335546 0.942024i \(-0.391079\pi\)
0.825170 + 0.564884i \(0.191079\pi\)
\(450\) −11.8321 3.46205i −0.557771 0.163203i
\(451\) 13.3514 20.2670i 0.628694 0.954334i
\(452\) 4.90477i 0.230701i
\(453\) 4.47574 + 25.7901i 0.210289 + 1.21173i
\(454\) 1.46877 + 1.06713i 0.0689329 + 0.0500827i
\(455\) 3.59010 + 4.94135i 0.168307 + 0.231654i
\(456\) −5.41309 + 11.0228i −0.253491 + 0.516192i
\(457\) −21.7712 7.07390i −1.01841 0.330903i −0.248214 0.968705i \(-0.579844\pi\)
−0.770200 + 0.637802i \(0.779844\pi\)
\(458\) 15.0398 10.9271i 0.702765 0.510588i
\(459\) 13.2570 7.51144i 0.618784 0.350604i
\(460\) −0.345471 1.06325i −0.0161077 0.0495743i
\(461\) −21.2809 −0.991151 −0.495575 0.868565i \(-0.665043\pi\)
−0.495575 + 0.868565i \(0.665043\pi\)
\(462\) −8.56482 + 1.89397i −0.398471 + 0.0881154i
\(463\) −20.7617 −0.964880 −0.482440 0.875929i \(-0.660249\pi\)
−0.482440 + 0.875929i \(0.660249\pi\)
\(464\) 1.97581 + 6.08092i 0.0917246 + 0.282299i
\(465\) 10.2022 + 9.90554i 0.473117 + 0.459358i
\(466\) 14.6282 10.6280i 0.677639 0.492334i
\(467\) −3.70774 1.20472i −0.171574 0.0557477i 0.221970 0.975053i \(-0.428751\pi\)
−0.393544 + 0.919306i \(0.628751\pi\)
\(468\) 10.5033 + 7.16735i 0.485513 + 0.331311i
\(469\) 3.49477 + 4.81014i 0.161374 + 0.222112i
\(470\) 7.24993 + 5.26738i 0.334414 + 0.242966i
\(471\) −6.32821 + 1.09823i −0.291588 + 0.0506036i
\(472\) 4.66499i 0.214723i
\(473\) 17.7117 0.811724i 0.814383 0.0373231i
\(474\) 2.82298 + 0.404519i 0.129664 + 0.0185802i
\(475\) 27.7097 9.00342i 1.27141 0.413105i
\(476\) −2.63189 + 3.62249i −0.120633 + 0.166036i
\(477\) 4.92016 + 13.7486i 0.225279 + 0.629503i
\(478\) 6.17702 19.0109i 0.282530 0.869539i
\(479\) −10.7639 + 33.1280i −0.491817 + 1.51366i 0.330043 + 0.943966i \(0.392937\pi\)
−0.821860 + 0.569690i \(0.807063\pi\)
\(480\) −1.44530 + 0.763481i −0.0659686 + 0.0348480i
\(481\) −7.04104 + 9.69115i −0.321044 + 0.441879i
\(482\) −1.70726 + 0.554722i −0.0777635 + 0.0252669i
\(483\) 0.444421 3.10144i 0.0202219 0.141121i
\(484\) 8.27048 7.25252i 0.375931 0.329660i
\(485\) 10.8131i 0.490999i
\(486\) 14.3732 + 6.03410i 0.651983 + 0.273712i
\(487\) −4.07454 2.96033i −0.184635 0.134145i 0.491628 0.870805i \(-0.336402\pi\)
−0.676263 + 0.736660i \(0.736402\pi\)
\(488\) 0.423754 + 0.583248i 0.0191825 + 0.0264024i
\(489\) −16.7532 8.22713i −0.757605 0.372044i
\(490\) 4.19000 + 1.36141i 0.189285 + 0.0615024i
\(491\) −11.3418 + 8.24030i −0.511848 + 0.371879i −0.813524 0.581531i \(-0.802454\pi\)
0.301676 + 0.953410i \(0.402454\pi\)
\(492\) 8.82893 9.09336i 0.398039 0.409960i
\(493\) 5.79383 + 17.8316i 0.260941 + 0.803094i
\(494\) −30.0515 −1.35208
\(495\) −9.12326 2.22154i −0.410060 0.0998507i
\(496\) −8.69951 −0.390619
\(497\) −4.69951 14.4636i −0.210802 0.648781i
\(498\) 7.43201 7.65461i 0.333036 0.343011i
\(499\) 11.2013 8.13820i 0.501438 0.364316i −0.308128 0.951345i \(-0.599703\pi\)
0.809566 + 0.587029i \(0.199703\pi\)
\(500\) 8.17592 + 2.65652i 0.365638 + 0.118803i
\(501\) −20.6749 10.1530i −0.923686 0.453603i
\(502\) 7.46453 + 10.2740i 0.333158 + 0.458553i
\(503\) 18.2723 + 13.2756i 0.814724 + 0.591931i 0.915196 0.403008i \(-0.132035\pi\)
−0.100473 + 0.994940i \(0.532035\pi\)
\(504\) −4.57889 + 0.135150i −0.203960 + 0.00602004i
\(505\) 4.42191i 0.196773i
\(506\) 1.38394 + 3.67722i 0.0615235 + 0.163472i
\(507\) −1.21994 + 8.51349i −0.0541795 + 0.378098i
\(508\) 5.02793 1.63367i 0.223078 0.0724825i
\(509\) 15.1884 20.9050i 0.673212 0.926597i −0.326616 0.945157i \(-0.605908\pi\)
0.999828 + 0.0185605i \(0.00590832\pi\)
\(510\) −4.23817 + 2.23882i −0.187669 + 0.0991366i
\(511\) −0.827265 + 2.54606i −0.0365960 + 0.112631i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) −36.0965 + 7.36752i −1.59370 + 0.325284i
\(514\) −3.11429 + 4.28646i −0.137366 + 0.189068i
\(515\) 11.3636 3.69226i 0.500741 0.162700i
\(516\) 9.16570 + 1.31340i 0.403497 + 0.0578191i
\(517\) −26.3002 17.3260i −1.15668 0.761995i
\(518\) 4.31546i 0.189610i
\(519\) −12.1325 + 2.10553i −0.532558 + 0.0924226i
\(520\) −3.23607 2.35114i −0.141911 0.103104i
\(521\) 16.8875 + 23.2436i 0.739854 + 1.01832i 0.998627 + 0.0523840i \(0.0166820\pi\)
−0.258773 + 0.965938i \(0.583318\pi\)
\(522\) −10.8119 + 15.8441i −0.473224 + 0.693477i
\(523\) −3.45339 1.12207i −0.151006 0.0490648i 0.232539 0.972587i \(-0.425297\pi\)
−0.383545 + 0.923522i \(0.625297\pi\)
\(524\) −8.61535 + 6.25942i −0.376363 + 0.273444i
\(525\) 7.79770 + 7.57094i 0.340319 + 0.330423i
\(526\) 2.94095 + 9.05131i 0.128232 + 0.394656i
\(527\) −25.5103 −1.11125
\(528\) 4.95124 2.91294i 0.215475 0.126769i
\(529\) 21.5966 0.938983
\(530\) −1.41947 4.36869i −0.0616579 0.189764i
\(531\) −11.0745 + 8.55649i −0.480594 + 0.371320i
\(532\) 8.75856 6.36346i 0.379732 0.275891i
\(533\) 29.4979 + 9.58444i 1.27770 + 0.415148i
\(534\) 13.2393 26.9595i 0.572919 1.16665i
\(535\) −0.398686 0.548744i −0.0172367 0.0237243i
\(536\) −3.15014 2.28871i −0.136065 0.0988572i
\(537\) 1.24724 + 7.18684i 0.0538223 + 0.310135i
\(538\) 0.0731666i 0.00315444i
\(539\) −14.9291 4.10542i −0.643041 0.176833i
\(540\) −4.46344 2.03072i −0.192076 0.0873884i
\(541\) −38.8402 + 12.6199i −1.66987 + 0.542573i −0.982904 0.184117i \(-0.941057\pi\)
−0.686965 + 0.726691i \(0.741057\pi\)
\(542\) −0.00659354 + 0.00907523i −0.000283217 + 0.000389814i
\(543\) 7.01386 + 13.2775i 0.300993 + 0.569792i
\(544\) 0.906157 2.78886i 0.0388512 0.119572i
\(545\) −2.68565 + 8.26558i −0.115041 + 0.354058i
\(546\) −5.23607 9.91207i −0.224083 0.424198i
\(547\) 4.23174 5.82450i 0.180936 0.249037i −0.708909 0.705300i \(-0.750812\pi\)
0.889845 + 0.456263i \(0.150812\pi\)
\(548\) −0.566898 + 0.184196i −0.0242167 + 0.00786848i
\(549\) −0.607365 + 2.07577i −0.0259217 + 0.0885917i
\(550\) −13.1415 3.61385i −0.560356 0.154095i
\(551\) 45.3325i 1.93123i
\(552\) 0.350846 + 2.02165i 0.0149330 + 0.0860471i
\(553\) −2.03398 1.47777i −0.0864937 0.0628414i
\(554\) 8.15976 + 11.2309i 0.346675 + 0.477157i
\(555\) 2.03628 4.14654i 0.0864353 0.176011i
\(556\) 4.88522 + 1.58730i 0.207180 + 0.0673167i
\(557\) 27.2935 19.8299i 1.15646 0.840219i 0.167135 0.985934i \(-0.446548\pi\)
0.989327 + 0.145715i \(0.0465483\pi\)
\(558\) −15.9566 20.6524i −0.675496 0.874285i
\(559\) 7.00197 + 21.5499i 0.296152 + 0.911462i
\(560\) 1.44102 0.0608941
\(561\) 14.5189 8.54185i 0.612990 0.360637i
\(562\) 16.9912 0.716731
\(563\) −1.47279 4.53277i −0.0620705 0.191033i 0.915213 0.402971i \(-0.132023\pi\)
−0.977283 + 0.211938i \(0.932023\pi\)
\(564\) −11.8003 11.4572i −0.496884 0.482435i
\(565\) −3.74470 + 2.72068i −0.157541 + 0.114460i
\(566\) −22.0309 7.15827i −0.926028 0.300885i
\(567\) −8.71941 10.6223i −0.366181 0.446093i
\(568\) 5.85410 + 8.05748i 0.245633 + 0.338084i
\(569\) −12.0407 8.74811i −0.504774 0.366740i 0.306064 0.952011i \(-0.400988\pi\)
−0.810837 + 0.585271i \(0.800988\pi\)
\(570\) 11.4184 1.98160i 0.478263 0.0830000i
\(571\) 8.91378i 0.373030i −0.982452 0.186515i \(-0.940281\pi\)
0.982452 0.186515i \(-0.0597193\pi\)
\(572\) 11.7393 + 7.73360i 0.490846 + 0.323358i
\(573\) −23.0569 3.30393i −0.963214 0.138024i
\(574\) −10.6267 + 3.45283i −0.443551 + 0.144119i
\(575\) 2.86145 3.93845i 0.119331 0.164245i
\(576\) 2.82458 1.01082i 0.117691 0.0421177i
\(577\) −3.30341 + 10.1668i −0.137523 + 0.423251i −0.995974 0.0896439i \(-0.971427\pi\)
0.858451 + 0.512895i \(0.171427\pi\)
\(578\) −2.59609 + 7.98994i −0.107983 + 0.332338i
\(579\) −10.7170 + 5.66126i −0.445382 + 0.235274i
\(580\) 3.54668 4.88159i 0.147268 0.202697i
\(581\) −8.94537 + 2.90653i −0.371116 + 0.120583i
\(582\) 2.81507 19.6453i 0.116688 0.814323i
\(583\) 5.68632 + 15.1090i 0.235503 + 0.625750i
\(584\) 1.75321i 0.0725483i
\(585\) −0.354035 11.9948i −0.0146376 0.495923i
\(586\) 18.9457 + 13.7649i 0.782639 + 0.568621i
\(587\) −16.6724 22.9476i −0.688144 0.947150i 0.311851 0.950131i \(-0.399051\pi\)
−0.999996 + 0.00298142i \(0.999051\pi\)
\(588\) −7.25795 3.56422i −0.299313 0.146986i
\(589\) 58.6607 + 19.0600i 2.41707 + 0.785355i
\(590\) 3.56163 2.58768i 0.146630 0.106533i
\(591\) 27.6222 28.4496i 1.13623 1.17026i
\(592\) 0.873335 + 2.68785i 0.0358938 + 0.110470i
\(593\) −26.8555 −1.10282 −0.551411 0.834234i \(-0.685910\pi\)
−0.551411 + 0.834234i \(0.685910\pi\)
\(594\) 15.9968 + 6.41121i 0.656355 + 0.263055i
\(595\) 4.22562 0.173233
\(596\) 5.36735 + 16.5190i 0.219855 + 0.676645i
\(597\) 25.2091 25.9642i 1.03174 1.06264i
\(598\) −4.06224 + 2.95139i −0.166117 + 0.120691i
\(599\) 15.8754 + 5.15824i 0.648653 + 0.210760i 0.614820 0.788667i \(-0.289229\pi\)
0.0338328 + 0.999428i \(0.489229\pi\)
\(600\) −6.38889 3.13745i −0.260826 0.128086i
\(601\) 4.76046 + 6.55221i 0.194183 + 0.267270i 0.894995 0.446076i \(-0.147179\pi\)
−0.700812 + 0.713346i \(0.747179\pi\)
\(602\) −6.60396 4.79806i −0.269157 0.195554i
\(603\) −0.344634 11.6763i −0.0140346 0.475495i
\(604\) 15.1125i 0.614919i
\(605\) −10.1248 2.29137i −0.411632 0.0931576i
\(606\) 1.15119 8.03372i 0.0467639 0.326348i
\(607\) 4.80362 1.56079i 0.194973 0.0633505i −0.209903 0.977722i \(-0.567315\pi\)
0.404876 + 0.914372i \(0.367315\pi\)
\(608\) −4.16740 + 5.73594i −0.169010 + 0.232623i
\(609\) 14.9523 7.89857i 0.605898 0.320066i
\(610\) 0.210241 0.647057i 0.00851243 0.0261986i
\(611\) 12.4376 38.2790i 0.503172 1.54860i
\(612\) 8.28275 2.96413i 0.334810 0.119818i
\(613\) 17.6683 24.3183i 0.713616 0.982208i −0.286096 0.958201i \(-0.592358\pi\)
0.999712 0.0240072i \(-0.00764247\pi\)
\(614\) −4.74208 + 1.54079i −0.191375 + 0.0621814i
\(615\) −11.8400 1.69662i −0.477436 0.0684141i
\(616\) −5.05905 + 0.231856i −0.203835 + 0.00934174i
\(617\) 1.33268i 0.0536518i 0.999640 + 0.0268259i \(0.00853997\pi\)
−0.999640 + 0.0268259i \(0.991460\pi\)
\(618\) −21.6066 + 3.74971i −0.869145 + 0.150836i
\(619\) 1.11705 + 0.811583i 0.0448980 + 0.0326203i 0.610008 0.792395i \(-0.291166\pi\)
−0.565110 + 0.825016i \(0.691166\pi\)
\(620\) 4.82563 + 6.64191i 0.193802 + 0.266745i
\(621\) −4.15581 + 4.54099i −0.166767 + 0.182224i
\(622\) −13.3003 4.32152i −0.533293 0.173277i
\(623\) −21.4216 + 15.5637i −0.858237 + 0.623546i
\(624\) 5.26719 + 5.11402i 0.210856 + 0.204724i
\(625\) 3.84238 + 11.8256i 0.153695 + 0.473025i
\(626\) 15.6631 0.626025
\(627\) −39.7683 + 8.79409i −1.58819 + 0.351202i
\(628\) −3.70820 −0.147973
\(629\) 2.56095 + 7.88181i 0.102112 + 0.314268i
\(630\) 2.64310 + 3.42093i 0.105304 + 0.136293i
\(631\) 14.7715 10.7321i 0.588046 0.427240i −0.253570 0.967317i \(-0.581605\pi\)
0.841616 + 0.540077i \(0.181605\pi\)
\(632\) 1.56591 + 0.508796i 0.0622887 + 0.0202388i
\(633\) −3.02793 + 6.16587i −0.120349 + 0.245071i
\(634\) −18.8109 25.8910i −0.747075 1.02826i
\(635\) −4.03628 2.93253i −0.160175 0.116374i
\(636\) 1.44156 + 8.30656i 0.0571615 + 0.329376i
\(637\) 19.7873i 0.784001i
\(638\) −11.6661 + 17.7087i −0.461864 + 0.701094i
\(639\) −8.39066 + 28.6764i −0.331930 + 1.13442i
\(640\) −0.897526 + 0.291624i −0.0354778 + 0.0115274i
\(641\) −12.4155 + 17.0884i −0.490381 + 0.674952i −0.980458 0.196727i \(-0.936969\pi\)
0.490077 + 0.871679i \(0.336969\pi\)
\(642\) 0.581472 + 1.10075i 0.0229489 + 0.0434431i
\(643\) −0.228154 + 0.702185i −0.00899751 + 0.0276915i −0.955454 0.295139i \(-0.904634\pi\)
0.946457 + 0.322830i \(0.104634\pi\)
\(644\) 0.558984 1.72037i 0.0220270 0.0677923i
\(645\) −4.08147 7.72638i −0.160708 0.304226i
\(646\) −12.2204 + 16.8200i −0.480806 + 0.661773i
\(647\) 34.1070 11.0820i 1.34088 0.435680i 0.451268 0.892388i \(-0.350972\pi\)
0.889616 + 0.456709i \(0.150972\pi\)
\(648\) 7.58049 + 4.85141i 0.297790 + 0.190582i
\(649\) −12.0876 + 9.65774i −0.474482 + 0.379100i
\(650\) 17.4180i 0.683190i
\(651\) 3.93415 + 22.6694i 0.154192 + 0.888484i
\(652\) −8.71782 6.33387i −0.341416 0.248053i
\(653\) −9.84112 13.5451i −0.385113 0.530062i 0.571817 0.820381i \(-0.306239\pi\)
−0.956930 + 0.290319i \(0.906239\pi\)
\(654\) 7.03112 14.3177i 0.274939 0.559866i
\(655\) 9.55789 + 3.10555i 0.373458 + 0.121344i
\(656\) 5.92001 4.30114i 0.231138 0.167931i
\(657\) 4.16207 3.21572i 0.162378 0.125457i
\(658\) 4.48070 + 13.7902i 0.174676 + 0.537597i
\(659\) 36.3989 1.41790 0.708951 0.705258i \(-0.249169\pi\)
0.708951 + 0.705258i \(0.249169\pi\)
\(660\) −4.97043 2.16437i −0.193474 0.0842479i
\(661\) −16.8578 −0.655694 −0.327847 0.944731i \(-0.606323\pi\)
−0.327847 + 0.944731i \(0.606323\pi\)
\(662\) 1.78176 + 5.48370i 0.0692501 + 0.213130i
\(663\) 15.4454 + 14.9963i 0.599851 + 0.582407i
\(664\) 4.98335 3.62061i 0.193391 0.140507i
\(665\) −9.71677 3.15717i −0.376800 0.122430i
\(666\) −4.77901 + 7.00331i −0.185183 + 0.271373i
\(667\) −4.45215 6.12786i −0.172388 0.237272i
\(668\) −10.7586 7.81655i −0.416261 0.302431i
\(669\) −16.0016 + 2.77698i −0.618656 + 0.107364i
\(670\) 3.67462i 0.141963i
\(671\) −0.633996 + 2.30548i −0.0244751 + 0.0890022i
\(672\) −2.61803 0.375151i −0.100993 0.0144718i
\(673\) −9.70460 + 3.15322i −0.374085 + 0.121548i −0.490024 0.871709i \(-0.663012\pi\)
0.115940 + 0.993256i \(0.463012\pi\)
\(674\) −18.5288 + 25.5028i −0.713704 + 0.982329i
\(675\) −4.27025 20.9217i −0.164362 0.805278i
\(676\) −1.53442 + 4.72245i −0.0590160 + 0.181633i
\(677\) −9.68951 + 29.8213i −0.372398 + 1.14612i 0.572819 + 0.819682i \(0.305850\pi\)
−0.945217 + 0.326442i \(0.894150\pi\)
\(678\) 7.51165 3.96804i 0.288483 0.152392i
\(679\) −10.2839 + 14.1546i −0.394660 + 0.543203i
\(680\) −2.63189 + 0.855153i −0.100928 + 0.0327936i
\(681\) −0.446041 + 3.11275i −0.0170923 + 0.119281i
\(682\) −18.0103 22.5417i −0.689648 0.863165i
\(683\) 46.5132i 1.77978i 0.456178 + 0.889889i \(0.349218\pi\)
−0.456178 + 0.889889i \(0.650782\pi\)
\(684\) −21.2608 + 0.627528i −0.812925 + 0.0239941i
\(685\) 0.455089 + 0.330642i 0.0173881 + 0.0126332i
\(686\) 10.4727 + 14.4144i 0.399849 + 0.550345i
\(687\) 28.9023 + 14.1933i 1.10269 + 0.541508i
\(688\) 5.08423 + 1.65197i 0.193834 + 0.0629806i
\(689\) −16.6909 + 12.1267i −0.635874 + 0.461990i
\(690\) 1.34888 1.38928i 0.0513508 0.0528888i
\(691\) 9.08650 + 27.9654i 0.345667 + 1.06385i 0.961226 + 0.275762i \(0.0889301\pi\)
−0.615559 + 0.788091i \(0.711070\pi\)
\(692\) −7.10940 −0.270259
\(693\) −9.82970 11.5848i −0.373399 0.440069i
\(694\) −30.2072 −1.14665
\(695\) −1.49796 4.61025i −0.0568210 0.174877i
\(696\) −7.71446 + 7.94551i −0.292416 + 0.301174i
\(697\) 17.3598 12.6126i 0.657548 0.477737i
\(698\) −9.17824 2.98219i −0.347401 0.112878i
\(699\) 28.1113 + 13.8049i 1.06327 + 0.522148i
\(700\) 3.68830 + 5.07650i 0.139404 + 0.191874i
\(701\) 22.1405 + 16.0860i 0.836236 + 0.607561i 0.921317 0.388813i \(-0.127115\pi\)
−0.0850807 + 0.996374i \(0.527115\pi\)
\(702\) −2.47948 + 21.8842i −0.0935820 + 0.825967i
\(703\) 20.0376i 0.755731i
\(704\) 3.10407 1.16823i 0.116989 0.0440293i
\(705\) −2.20168 + 15.3647i −0.0829200 + 0.578667i
\(706\) 13.0660 4.24542i 0.491747 0.159778i
\(707\) −4.20549 + 5.78836i −0.158164 + 0.217694i
\(708\) −7.14443 + 3.77405i −0.268504 + 0.141838i
\(709\) 13.1638 40.5141i 0.494378 1.52154i −0.323546 0.946213i \(-0.604875\pi\)
0.817924 0.575327i \(-0.195125\pi\)
\(710\) 2.90445 8.93899i 0.109002 0.335474i
\(711\) 1.66432 + 4.65066i 0.0624169 + 0.174413i
\(712\) 10.1926 14.0289i 0.381983 0.525754i
\(713\) 9.80143 3.18468i 0.367066 0.119267i
\(714\) −7.67708 1.10009i −0.287308 0.0411697i
\(715\) −0.607365 13.2526i −0.0227142 0.495619i
\(716\) 4.21134i 0.157385i
\(717\) 34.1125 5.92004i 1.27396 0.221088i
\(718\) 23.6610 + 17.1908i 0.883022 + 0.641553i
\(719\) −9.60723 13.2232i −0.358289 0.493143i 0.591382 0.806392i \(-0.298583\pi\)
−0.949671 + 0.313249i \(0.898583\pi\)
\(720\) −2.33854 1.59581i −0.0871523 0.0594721i
\(721\) 18.3867 + 5.97420i 0.684757 + 0.222491i
\(722\) 25.2965 18.3790i 0.941438 0.683995i
\(723\) −2.23076 2.16589i −0.0829628 0.0805502i
\(724\) 2.67906 + 8.24528i 0.0995663 + 0.306434i
\(725\) 26.2749 0.975826
\(726\) 17.7982 + 6.79883i 0.660553 + 0.252328i
\(727\) −21.6566 −0.803197 −0.401599 0.915816i \(-0.631545\pi\)
−0.401599 + 0.915816i \(0.631545\pi\)
\(728\) −2.00000 6.15537i −0.0741249 0.228133i
\(729\) 2.38697 + 26.8943i 0.0884061 + 0.996085i
\(730\) −1.33854 + 0.972508i −0.0495417 + 0.0359941i
\(731\) 14.9089 + 4.84420i 0.551426 + 0.179169i
\(732\) −0.550419 + 1.12084i −0.0203441 + 0.0414273i
\(733\) −16.0834 22.1368i −0.594052 0.817643i 0.401095 0.916036i \(-0.368630\pi\)
−0.995148 + 0.0983933i \(0.968630\pi\)
\(734\) −9.12557 6.63012i −0.336831 0.244722i
\(735\) 1.30478 + 7.51839i 0.0481274 + 0.277320i
\(736\) 1.18465i 0.0436666i
\(737\) −0.591238 12.9007i −0.0217785 0.475203i
\(738\) 21.0692 + 6.16481i 0.775569 + 0.226930i
\(739\) −47.3897 + 15.3979i −1.74326 + 0.566420i −0.995257 0.0972762i \(-0.968987\pi\)
−0.748003 + 0.663696i \(0.768987\pi\)
\(740\) 1.56768 2.15773i 0.0576291 0.0793197i
\(741\) −24.3122 46.0238i −0.893130 1.69073i
\(742\) 2.29675 7.06868i 0.0843165 0.259499i
\(743\) 6.29906 19.3865i 0.231090 0.711222i −0.766526 0.642213i \(-0.778016\pi\)
0.997616 0.0690089i \(-0.0219837\pi\)
\(744\) −7.03805 13.3233i −0.258027 0.488456i
\(745\) 9.63467 13.2610i 0.352987 0.485845i
\(746\) −5.45474 + 1.77235i −0.199712 + 0.0648904i
\(747\) 17.7357 + 5.18941i 0.648914 + 0.189871i
\(748\) 9.10233 3.42570i 0.332814 0.125256i
\(749\) 1.09749i 0.0401013i
\(750\) 2.54600 + 14.6706i 0.0929669 + 0.535694i
\(751\) 15.4668 + 11.2373i 0.564390 + 0.410053i 0.833063 0.553178i \(-0.186585\pi\)
−0.268673 + 0.963231i \(0.586585\pi\)
\(752\) −5.58154 7.68233i −0.203538 0.280146i
\(753\) −9.69577 + 19.7438i −0.353333 + 0.719504i
\(754\) −25.7744 8.37461i −0.938648 0.304985i
\(755\) 11.5381 8.38293i 0.419915 0.305086i
\(756\) −3.91138 6.90323i −0.142256 0.251068i
\(757\) 5.81223 + 17.8882i 0.211249 + 0.650158i 0.999399 + 0.0346742i \(0.0110394\pi\)
−0.788150 + 0.615484i \(0.788961\pi\)
\(758\) 26.9912 0.980365
\(759\) −4.51204 + 5.09443i −0.163777 + 0.184916i
\(760\) 6.69094 0.242706
\(761\) −7.25897 22.3408i −0.263138 0.809854i −0.992117 0.125318i \(-0.960005\pi\)
0.728979 0.684536i \(-0.239995\pi\)
\(762\) 6.56965 + 6.37860i 0.237993 + 0.231072i
\(763\) −11.3766 + 8.26558i −0.411860 + 0.299234i
\(764\) −12.7897 4.15562i −0.462714 0.150345i
\(765\) −6.85751 4.67952i −0.247934 0.169188i