Newspace parameters
Level: | \( N \) | \(=\) | \( 66 = 2 \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 66.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.527012653340\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).
\(n\) | \(13\) | \(23\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
1.00000 | −1.00000 | − | 1.41421i | 1.00000 | − | 1.41421i | −1.00000 | − | 1.41421i | 4.24264i | 1.00000 | −1.00000 | + | 2.82843i | − | 1.41421i | ||||||||||||||||
65.2 | 1.00000 | −1.00000 | + | 1.41421i | 1.00000 | 1.41421i | −1.00000 | + | 1.41421i | − | 4.24264i | 1.00000 | −1.00000 | − | 2.82843i | 1.41421i | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 66.2.b.b | yes | 2 |
3.b | odd | 2 | 1 | 66.2.b.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 528.2.b.c | 2 | ||
5.b | even | 2 | 1 | 1650.2.d.a | 2 | ||
5.c | odd | 4 | 2 | 1650.2.f.a | 4 | ||
8.b | even | 2 | 1 | 2112.2.b.i | 2 | ||
8.d | odd | 2 | 1 | 2112.2.b.b | 2 | ||
9.c | even | 3 | 2 | 1782.2.i.c | 4 | ||
9.d | odd | 6 | 2 | 1782.2.i.f | 4 | ||
11.b | odd | 2 | 1 | 66.2.b.a | ✓ | 2 | |
11.c | even | 5 | 4 | 726.2.h.e | 8 | ||
11.d | odd | 10 | 4 | 726.2.h.i | 8 | ||
12.b | even | 2 | 1 | 528.2.b.b | 2 | ||
15.d | odd | 2 | 1 | 1650.2.d.b | 2 | ||
15.e | even | 4 | 2 | 1650.2.f.b | 4 | ||
24.f | even | 2 | 1 | 2112.2.b.d | 2 | ||
24.h | odd | 2 | 1 | 2112.2.b.g | 2 | ||
33.d | even | 2 | 1 | inner | 66.2.b.b | yes | 2 |
33.f | even | 10 | 4 | 726.2.h.e | 8 | ||
33.h | odd | 10 | 4 | 726.2.h.i | 8 | ||
44.c | even | 2 | 1 | 528.2.b.b | 2 | ||
55.d | odd | 2 | 1 | 1650.2.d.b | 2 | ||
55.e | even | 4 | 2 | 1650.2.f.b | 4 | ||
88.b | odd | 2 | 1 | 2112.2.b.g | 2 | ||
88.g | even | 2 | 1 | 2112.2.b.d | 2 | ||
99.g | even | 6 | 2 | 1782.2.i.c | 4 | ||
99.h | odd | 6 | 2 | 1782.2.i.f | 4 | ||
132.d | odd | 2 | 1 | 528.2.b.c | 2 | ||
165.d | even | 2 | 1 | 1650.2.d.a | 2 | ||
165.l | odd | 4 | 2 | 1650.2.f.a | 4 | ||
264.m | even | 2 | 1 | 2112.2.b.i | 2 | ||
264.p | odd | 2 | 1 | 2112.2.b.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
66.2.b.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
66.2.b.a | ✓ | 2 | 11.b | odd | 2 | 1 | |
66.2.b.b | yes | 2 | 1.a | even | 1 | 1 | trivial |
66.2.b.b | yes | 2 | 33.d | even | 2 | 1 | inner |
528.2.b.b | 2 | 12.b | even | 2 | 1 | ||
528.2.b.b | 2 | 44.c | even | 2 | 1 | ||
528.2.b.c | 2 | 4.b | odd | 2 | 1 | ||
528.2.b.c | 2 | 132.d | odd | 2 | 1 | ||
726.2.h.e | 8 | 11.c | even | 5 | 4 | ||
726.2.h.e | 8 | 33.f | even | 10 | 4 | ||
726.2.h.i | 8 | 11.d | odd | 10 | 4 | ||
726.2.h.i | 8 | 33.h | odd | 10 | 4 | ||
1650.2.d.a | 2 | 5.b | even | 2 | 1 | ||
1650.2.d.a | 2 | 165.d | even | 2 | 1 | ||
1650.2.d.b | 2 | 15.d | odd | 2 | 1 | ||
1650.2.d.b | 2 | 55.d | odd | 2 | 1 | ||
1650.2.f.a | 4 | 5.c | odd | 4 | 2 | ||
1650.2.f.a | 4 | 165.l | odd | 4 | 2 | ||
1650.2.f.b | 4 | 15.e | even | 4 | 2 | ||
1650.2.f.b | 4 | 55.e | even | 4 | 2 | ||
1782.2.i.c | 4 | 9.c | even | 3 | 2 | ||
1782.2.i.c | 4 | 99.g | even | 6 | 2 | ||
1782.2.i.f | 4 | 9.d | odd | 6 | 2 | ||
1782.2.i.f | 4 | 99.h | odd | 6 | 2 | ||
2112.2.b.b | 2 | 8.d | odd | 2 | 1 | ||
2112.2.b.b | 2 | 264.p | odd | 2 | 1 | ||
2112.2.b.d | 2 | 24.f | even | 2 | 1 | ||
2112.2.b.d | 2 | 88.g | even | 2 | 1 | ||
2112.2.b.g | 2 | 24.h | odd | 2 | 1 | ||
2112.2.b.g | 2 | 88.b | odd | 2 | 1 | ||
2112.2.b.i | 2 | 8.b | even | 2 | 1 | ||
2112.2.b.i | 2 | 264.m | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{29} + 6 \)
acting on \(S_{2}^{\mathrm{new}}(66, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 1)^{2} \)
$3$
\( T^{2} + 2T + 3 \)
$5$
\( T^{2} + 2 \)
$7$
\( T^{2} + 18 \)
$11$
\( T^{2} + 6T + 11 \)
$13$
\( T^{2} + 18 \)
$17$
\( T^{2} \)
$19$
\( T^{2} \)
$23$
\( T^{2} + 2 \)
$29$
\( (T + 6)^{2} \)
$31$
\( (T + 4)^{2} \)
$37$
\( (T - 2)^{2} \)
$41$
\( (T - 6)^{2} \)
$43$
\( T^{2} + 72 \)
$47$
\( T^{2} + 98 \)
$53$
\( T^{2} + 50 \)
$59$
\( T^{2} + 128 \)
$61$
\( T^{2} + 18 \)
$67$
\( (T + 4)^{2} \)
$71$
\( T^{2} + 50 \)
$73$
\( T^{2} \)
$79$
\( T^{2} + 18 \)
$83$
\( (T - 12)^{2} \)
$89$
\( T^{2} + 32 \)
$97$
\( (T - 8)^{2} \)
show more
show less