Properties

Label 66.2.b
Level $66$
Weight $2$
Character orbit 66.b
Rep. character $\chi_{66}(65,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(66, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 8 4 4
Eisenstein series 8 0 8

Trace form

\( 4 q - 4 q^{3} + 4 q^{4} - 4 q^{9} + O(q^{10}) \) \( 4 q - 4 q^{3} + 4 q^{4} - 4 q^{9} - 4 q^{12} - 8 q^{15} + 4 q^{16} - 12 q^{22} + 12 q^{25} + 20 q^{27} - 16 q^{31} + 8 q^{33} - 4 q^{36} + 8 q^{37} + 24 q^{42} + 16 q^{45} - 4 q^{48} - 44 q^{49} + 8 q^{55} - 24 q^{58} - 8 q^{60} + 4 q^{64} + 12 q^{66} - 16 q^{67} - 8 q^{69} + 24 q^{70} - 12 q^{75} - 24 q^{78} - 28 q^{81} + 24 q^{82} - 12 q^{88} + 72 q^{91} + 16 q^{93} + 32 q^{97} - 16 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(66, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
66.2.b.a 66.b 33.d $2$ $0.527$ \(\Q(\sqrt{-2}) \) None \(-2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\)
66.2.b.b 66.b 33.d $2$ $0.527$ \(\Q(\sqrt{-2}) \) None \(2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(66, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(66, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)