Defining parameters
Level: | \( N \) | \(=\) | \( 66 = 2 \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 66.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(66, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 4 | 12 |
Cusp forms | 8 | 4 | 4 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(66, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
66.2.b.a | $2$ | $0.527$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(-2\) | \(0\) | \(0\) | \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\) |
66.2.b.b | $2$ | $0.527$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(-2\) | \(0\) | \(0\) | \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(-1+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(66, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(66, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)