Properties

Label 66.2.a
Level $66$
Weight $2$
Character orbit 66.a
Rep. character $\chi_{66}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $24$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(24\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(66))\).

Total New Old
Modular forms 16 3 13
Cusp forms 9 3 6
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim
\(+\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q + q^{2} + q^{3} + 3 q^{4} - 2 q^{5} - q^{6} - 4 q^{7} + q^{8} + 3 q^{9} - 2 q^{10} - q^{11} + q^{12} - 6 q^{13} - 8 q^{14} - 6 q^{15} + 3 q^{16} - 6 q^{17} + q^{18} - 2 q^{20} + 4 q^{21} + q^{22}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(66))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
66.2.a.a 66.a 1.a $1$ $0.527$ \(\Q\) None 66.2.a.a \(-1\) \(1\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\)
66.2.a.b 66.a 1.a $1$ $0.527$ \(\Q\) None 66.2.a.b \(1\) \(-1\) \(2\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}-4q^{7}+\cdots\)
66.2.a.c 66.a 1.a $1$ $0.527$ \(\Q\) None 66.2.a.c \(1\) \(1\) \(-4\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-4q^{5}+q^{6}-2q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(66))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(66)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)