Properties

Label 6561.2.a.d.1.56
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.56
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73145 q^{2} +0.997916 q^{4} +1.37705 q^{5} +3.28825 q^{7} -1.73506 q^{8} +2.38429 q^{10} +0.205344 q^{11} +5.25480 q^{13} +5.69344 q^{14} -5.00000 q^{16} -5.07493 q^{17} -2.93751 q^{19} +1.37418 q^{20} +0.355543 q^{22} +3.76215 q^{23} -3.10373 q^{25} +9.09842 q^{26} +3.28140 q^{28} +6.30823 q^{29} +5.08133 q^{31} -5.18713 q^{32} -8.78699 q^{34} +4.52809 q^{35} +8.31960 q^{37} -5.08614 q^{38} -2.38926 q^{40} +2.76252 q^{41} -1.58659 q^{43} +0.204916 q^{44} +6.51398 q^{46} +2.08130 q^{47} +3.81261 q^{49} -5.37396 q^{50} +5.24385 q^{52} +9.03326 q^{53} +0.282769 q^{55} -5.70531 q^{56} +10.9224 q^{58} +14.8459 q^{59} -1.50670 q^{61} +8.79806 q^{62} +1.01875 q^{64} +7.23612 q^{65} -13.4089 q^{67} -5.06436 q^{68} +7.84015 q^{70} +4.67402 q^{71} -16.2828 q^{73} +14.4050 q^{74} -2.93138 q^{76} +0.675224 q^{77} -1.48696 q^{79} -6.88524 q^{80} +4.78316 q^{82} +14.2514 q^{83} -6.98844 q^{85} -2.74710 q^{86} -0.356284 q^{88} -5.14015 q^{89} +17.2791 q^{91} +3.75432 q^{92} +3.60367 q^{94} -4.04509 q^{95} -1.79542 q^{97} +6.60133 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73145 1.22432 0.612160 0.790734i \(-0.290301\pi\)
0.612160 + 0.790734i \(0.290301\pi\)
\(3\) 0 0
\(4\) 0.997916 0.498958
\(5\) 1.37705 0.615835 0.307918 0.951413i \(-0.400368\pi\)
0.307918 + 0.951413i \(0.400368\pi\)
\(6\) 0 0
\(7\) 3.28825 1.24284 0.621421 0.783477i \(-0.286556\pi\)
0.621421 + 0.783477i \(0.286556\pi\)
\(8\) −1.73506 −0.613435
\(9\) 0 0
\(10\) 2.38429 0.753979
\(11\) 0.205344 0.0619136 0.0309568 0.999521i \(-0.490145\pi\)
0.0309568 + 0.999521i \(0.490145\pi\)
\(12\) 0 0
\(13\) 5.25480 1.45742 0.728709 0.684823i \(-0.240121\pi\)
0.728709 + 0.684823i \(0.240121\pi\)
\(14\) 5.69344 1.52164
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −5.07493 −1.23085 −0.615426 0.788195i \(-0.711016\pi\)
−0.615426 + 0.788195i \(0.711016\pi\)
\(18\) 0 0
\(19\) −2.93751 −0.673910 −0.336955 0.941521i \(-0.609397\pi\)
−0.336955 + 0.941521i \(0.609397\pi\)
\(20\) 1.37418 0.307276
\(21\) 0 0
\(22\) 0.355543 0.0758021
\(23\) 3.76215 0.784464 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(24\) 0 0
\(25\) −3.10373 −0.620747
\(26\) 9.09842 1.78435
\(27\) 0 0
\(28\) 3.28140 0.620127
\(29\) 6.30823 1.17141 0.585704 0.810525i \(-0.300818\pi\)
0.585704 + 0.810525i \(0.300818\pi\)
\(30\) 0 0
\(31\) 5.08133 0.912633 0.456317 0.889817i \(-0.349168\pi\)
0.456317 + 0.889817i \(0.349168\pi\)
\(32\) −5.18713 −0.916963
\(33\) 0 0
\(34\) −8.78699 −1.50696
\(35\) 4.52809 0.765387
\(36\) 0 0
\(37\) 8.31960 1.36773 0.683867 0.729606i \(-0.260297\pi\)
0.683867 + 0.729606i \(0.260297\pi\)
\(38\) −5.08614 −0.825081
\(39\) 0 0
\(40\) −2.38926 −0.377775
\(41\) 2.76252 0.431432 0.215716 0.976456i \(-0.430791\pi\)
0.215716 + 0.976456i \(0.430791\pi\)
\(42\) 0 0
\(43\) −1.58659 −0.241953 −0.120977 0.992655i \(-0.538603\pi\)
−0.120977 + 0.992655i \(0.538603\pi\)
\(44\) 0.204916 0.0308923
\(45\) 0 0
\(46\) 6.51398 0.960434
\(47\) 2.08130 0.303589 0.151795 0.988412i \(-0.451495\pi\)
0.151795 + 0.988412i \(0.451495\pi\)
\(48\) 0 0
\(49\) 3.81261 0.544658
\(50\) −5.37396 −0.759992
\(51\) 0 0
\(52\) 5.24385 0.727191
\(53\) 9.03326 1.24081 0.620407 0.784280i \(-0.286967\pi\)
0.620407 + 0.784280i \(0.286967\pi\)
\(54\) 0 0
\(55\) 0.282769 0.0381286
\(56\) −5.70531 −0.762403
\(57\) 0 0
\(58\) 10.9224 1.43418
\(59\) 14.8459 1.93278 0.966389 0.257084i \(-0.0827618\pi\)
0.966389 + 0.257084i \(0.0827618\pi\)
\(60\) 0 0
\(61\) −1.50670 −0.192913 −0.0964566 0.995337i \(-0.530751\pi\)
−0.0964566 + 0.995337i \(0.530751\pi\)
\(62\) 8.79806 1.11735
\(63\) 0 0
\(64\) 1.01875 0.127343
\(65\) 7.23612 0.897530
\(66\) 0 0
\(67\) −13.4089 −1.63815 −0.819077 0.573683i \(-0.805514\pi\)
−0.819077 + 0.573683i \(0.805514\pi\)
\(68\) −5.06436 −0.614144
\(69\) 0 0
\(70\) 7.84015 0.937078
\(71\) 4.67402 0.554704 0.277352 0.960768i \(-0.410543\pi\)
0.277352 + 0.960768i \(0.410543\pi\)
\(72\) 0 0
\(73\) −16.2828 −1.90576 −0.952879 0.303350i \(-0.901895\pi\)
−0.952879 + 0.303350i \(0.901895\pi\)
\(74\) 14.4050 1.67454
\(75\) 0 0
\(76\) −2.93138 −0.336253
\(77\) 0.675224 0.0769489
\(78\) 0 0
\(79\) −1.48696 −0.167296 −0.0836478 0.996495i \(-0.526657\pi\)
−0.0836478 + 0.996495i \(0.526657\pi\)
\(80\) −6.88524 −0.769794
\(81\) 0 0
\(82\) 4.78316 0.528211
\(83\) 14.2514 1.56430 0.782149 0.623091i \(-0.214123\pi\)
0.782149 + 0.623091i \(0.214123\pi\)
\(84\) 0 0
\(85\) −6.98844 −0.758002
\(86\) −2.74710 −0.296228
\(87\) 0 0
\(88\) −0.356284 −0.0379800
\(89\) −5.14015 −0.544854 −0.272427 0.962176i \(-0.587826\pi\)
−0.272427 + 0.962176i \(0.587826\pi\)
\(90\) 0 0
\(91\) 17.2791 1.81134
\(92\) 3.75432 0.391415
\(93\) 0 0
\(94\) 3.60367 0.371690
\(95\) −4.04509 −0.415018
\(96\) 0 0
\(97\) −1.79542 −0.182297 −0.0911486 0.995837i \(-0.529054\pi\)
−0.0911486 + 0.995837i \(0.529054\pi\)
\(98\) 6.60133 0.666835
\(99\) 0 0
\(100\) −3.09727 −0.309727
\(101\) 11.4751 1.14181 0.570906 0.821016i \(-0.306592\pi\)
0.570906 + 0.821016i \(0.306592\pi\)
\(102\) 0 0
\(103\) 0.500196 0.0492858 0.0246429 0.999696i \(-0.492155\pi\)
0.0246429 + 0.999696i \(0.492155\pi\)
\(104\) −9.11737 −0.894032
\(105\) 0 0
\(106\) 15.6406 1.51915
\(107\) −5.44365 −0.526258 −0.263129 0.964761i \(-0.584754\pi\)
−0.263129 + 0.964761i \(0.584754\pi\)
\(108\) 0 0
\(109\) 16.7796 1.60719 0.803597 0.595174i \(-0.202917\pi\)
0.803597 + 0.595174i \(0.202917\pi\)
\(110\) 0.489601 0.0466816
\(111\) 0 0
\(112\) −16.4412 −1.55355
\(113\) 8.83243 0.830885 0.415443 0.909619i \(-0.363627\pi\)
0.415443 + 0.909619i \(0.363627\pi\)
\(114\) 0 0
\(115\) 5.18067 0.483100
\(116\) 6.29509 0.584484
\(117\) 0 0
\(118\) 25.7050 2.36634
\(119\) −16.6877 −1.52976
\(120\) 0 0
\(121\) −10.9578 −0.996167
\(122\) −2.60877 −0.236187
\(123\) 0 0
\(124\) 5.07074 0.455366
\(125\) −11.1592 −0.998113
\(126\) 0 0
\(127\) −6.97791 −0.619189 −0.309595 0.950869i \(-0.600193\pi\)
−0.309595 + 0.950869i \(0.600193\pi\)
\(128\) 12.1382 1.07287
\(129\) 0 0
\(130\) 12.5290 1.09886
\(131\) −5.63970 −0.492743 −0.246372 0.969175i \(-0.579238\pi\)
−0.246372 + 0.969175i \(0.579238\pi\)
\(132\) 0 0
\(133\) −9.65926 −0.837564
\(134\) −23.2168 −2.00562
\(135\) 0 0
\(136\) 8.80530 0.755048
\(137\) 1.11446 0.0952150 0.0476075 0.998866i \(-0.484840\pi\)
0.0476075 + 0.998866i \(0.484840\pi\)
\(138\) 0 0
\(139\) −4.75797 −0.403566 −0.201783 0.979430i \(-0.564674\pi\)
−0.201783 + 0.979430i \(0.564674\pi\)
\(140\) 4.51865 0.381896
\(141\) 0 0
\(142\) 8.09283 0.679135
\(143\) 1.07904 0.0902341
\(144\) 0 0
\(145\) 8.68675 0.721395
\(146\) −28.1929 −2.33326
\(147\) 0 0
\(148\) 8.30227 0.682442
\(149\) −7.67753 −0.628968 −0.314484 0.949263i \(-0.601831\pi\)
−0.314484 + 0.949263i \(0.601831\pi\)
\(150\) 0 0
\(151\) 3.08871 0.251356 0.125678 0.992071i \(-0.459889\pi\)
0.125678 + 0.992071i \(0.459889\pi\)
\(152\) 5.09674 0.413400
\(153\) 0 0
\(154\) 1.16912 0.0942100
\(155\) 6.99724 0.562032
\(156\) 0 0
\(157\) 6.13079 0.489291 0.244645 0.969613i \(-0.421328\pi\)
0.244645 + 0.969613i \(0.421328\pi\)
\(158\) −2.57459 −0.204823
\(159\) 0 0
\(160\) −7.14293 −0.564698
\(161\) 12.3709 0.974965
\(162\) 0 0
\(163\) −0.171894 −0.0134638 −0.00673188 0.999977i \(-0.502143\pi\)
−0.00673188 + 0.999977i \(0.502143\pi\)
\(164\) 2.75676 0.215267
\(165\) 0 0
\(166\) 24.6756 1.91520
\(167\) 0.294337 0.0227765 0.0113883 0.999935i \(-0.496375\pi\)
0.0113883 + 0.999935i \(0.496375\pi\)
\(168\) 0 0
\(169\) 14.6129 1.12407
\(170\) −12.1001 −0.928037
\(171\) 0 0
\(172\) −1.58329 −0.120724
\(173\) 2.68695 0.204285 0.102143 0.994770i \(-0.467430\pi\)
0.102143 + 0.994770i \(0.467430\pi\)
\(174\) 0 0
\(175\) −10.2059 −0.771491
\(176\) −1.02672 −0.0773920
\(177\) 0 0
\(178\) −8.89990 −0.667076
\(179\) 2.39354 0.178902 0.0894509 0.995991i \(-0.471489\pi\)
0.0894509 + 0.995991i \(0.471489\pi\)
\(180\) 0 0
\(181\) 16.7455 1.24468 0.622340 0.782747i \(-0.286182\pi\)
0.622340 + 0.782747i \(0.286182\pi\)
\(182\) 29.9179 2.21766
\(183\) 0 0
\(184\) −6.52755 −0.481218
\(185\) 11.4565 0.842299
\(186\) 0 0
\(187\) −1.04211 −0.0762065
\(188\) 2.07697 0.151478
\(189\) 0 0
\(190\) −7.00387 −0.508114
\(191\) −14.1908 −1.02681 −0.513405 0.858147i \(-0.671616\pi\)
−0.513405 + 0.858147i \(0.671616\pi\)
\(192\) 0 0
\(193\) −4.17589 −0.300587 −0.150294 0.988641i \(-0.548022\pi\)
−0.150294 + 0.988641i \(0.548022\pi\)
\(194\) −3.10868 −0.223190
\(195\) 0 0
\(196\) 3.80466 0.271762
\(197\) −20.7182 −1.47611 −0.738057 0.674739i \(-0.764256\pi\)
−0.738057 + 0.674739i \(0.764256\pi\)
\(198\) 0 0
\(199\) 2.87638 0.203901 0.101951 0.994789i \(-0.467492\pi\)
0.101951 + 0.994789i \(0.467492\pi\)
\(200\) 5.38515 0.380788
\(201\) 0 0
\(202\) 19.8685 1.39794
\(203\) 20.7431 1.45588
\(204\) 0 0
\(205\) 3.80412 0.265691
\(206\) 0.866064 0.0603416
\(207\) 0 0
\(208\) −26.2740 −1.82177
\(209\) −0.603200 −0.0417242
\(210\) 0 0
\(211\) −10.6139 −0.730690 −0.365345 0.930872i \(-0.619049\pi\)
−0.365345 + 0.930872i \(0.619049\pi\)
\(212\) 9.01444 0.619114
\(213\) 0 0
\(214\) −9.42540 −0.644307
\(215\) −2.18482 −0.149003
\(216\) 0 0
\(217\) 16.7087 1.13426
\(218\) 29.0530 1.96772
\(219\) 0 0
\(220\) 0.282180 0.0190246
\(221\) −26.6677 −1.79387
\(222\) 0 0
\(223\) −23.6751 −1.58540 −0.792700 0.609612i \(-0.791325\pi\)
−0.792700 + 0.609612i \(0.791325\pi\)
\(224\) −17.0566 −1.13964
\(225\) 0 0
\(226\) 15.2929 1.01727
\(227\) −0.459014 −0.0304658 −0.0152329 0.999884i \(-0.504849\pi\)
−0.0152329 + 0.999884i \(0.504849\pi\)
\(228\) 0 0
\(229\) 15.9932 1.05686 0.528430 0.848977i \(-0.322781\pi\)
0.528430 + 0.848977i \(0.322781\pi\)
\(230\) 8.97008 0.591469
\(231\) 0 0
\(232\) −10.9451 −0.718583
\(233\) −7.94808 −0.520696 −0.260348 0.965515i \(-0.583837\pi\)
−0.260348 + 0.965515i \(0.583837\pi\)
\(234\) 0 0
\(235\) 2.86606 0.186961
\(236\) 14.8150 0.964375
\(237\) 0 0
\(238\) −28.8938 −1.87291
\(239\) 21.2175 1.37244 0.686222 0.727392i \(-0.259268\pi\)
0.686222 + 0.727392i \(0.259268\pi\)
\(240\) 0 0
\(241\) −18.0698 −1.16398 −0.581988 0.813197i \(-0.697725\pi\)
−0.581988 + 0.813197i \(0.697725\pi\)
\(242\) −18.9729 −1.21963
\(243\) 0 0
\(244\) −1.50356 −0.0962556
\(245\) 5.25015 0.335420
\(246\) 0 0
\(247\) −15.4360 −0.982169
\(248\) −8.81639 −0.559841
\(249\) 0 0
\(250\) −19.3217 −1.22201
\(251\) 8.07484 0.509679 0.254840 0.966983i \(-0.417977\pi\)
0.254840 + 0.966983i \(0.417977\pi\)
\(252\) 0 0
\(253\) 0.772537 0.0485690
\(254\) −12.0819 −0.758086
\(255\) 0 0
\(256\) 18.9791 1.18619
\(257\) −16.5335 −1.03133 −0.515665 0.856790i \(-0.672455\pi\)
−0.515665 + 0.856790i \(0.672455\pi\)
\(258\) 0 0
\(259\) 27.3570 1.69988
\(260\) 7.22104 0.447830
\(261\) 0 0
\(262\) −9.76486 −0.603275
\(263\) 0.0167896 0.00103529 0.000517645 1.00000i \(-0.499835\pi\)
0.000517645 1.00000i \(0.499835\pi\)
\(264\) 0 0
\(265\) 12.4393 0.764137
\(266\) −16.7245 −1.02545
\(267\) 0 0
\(268\) −13.3809 −0.817371
\(269\) −6.32675 −0.385749 −0.192874 0.981223i \(-0.561781\pi\)
−0.192874 + 0.981223i \(0.561781\pi\)
\(270\) 0 0
\(271\) 19.9750 1.21340 0.606698 0.794932i \(-0.292494\pi\)
0.606698 + 0.794932i \(0.292494\pi\)
\(272\) 25.3746 1.53856
\(273\) 0 0
\(274\) 1.92964 0.116574
\(275\) −0.637334 −0.0384327
\(276\) 0 0
\(277\) 6.25577 0.375873 0.187936 0.982181i \(-0.439820\pi\)
0.187936 + 0.982181i \(0.439820\pi\)
\(278\) −8.23819 −0.494094
\(279\) 0 0
\(280\) −7.85649 −0.469515
\(281\) 5.82158 0.347286 0.173643 0.984809i \(-0.444446\pi\)
0.173643 + 0.984809i \(0.444446\pi\)
\(282\) 0 0
\(283\) −8.59696 −0.511036 −0.255518 0.966804i \(-0.582246\pi\)
−0.255518 + 0.966804i \(0.582246\pi\)
\(284\) 4.66428 0.276774
\(285\) 0 0
\(286\) 1.86831 0.110475
\(287\) 9.08385 0.536203
\(288\) 0 0
\(289\) 8.75494 0.514997
\(290\) 15.0407 0.883218
\(291\) 0 0
\(292\) −16.2489 −0.950894
\(293\) −6.43584 −0.375986 −0.187993 0.982170i \(-0.560198\pi\)
−0.187993 + 0.982170i \(0.560198\pi\)
\(294\) 0 0
\(295\) 20.4436 1.19027
\(296\) −14.4350 −0.839017
\(297\) 0 0
\(298\) −13.2933 −0.770057
\(299\) 19.7694 1.14329
\(300\) 0 0
\(301\) −5.21712 −0.300710
\(302\) 5.34795 0.307740
\(303\) 0 0
\(304\) 14.6875 0.842387
\(305\) −2.07480 −0.118803
\(306\) 0 0
\(307\) 24.5495 1.40111 0.700557 0.713596i \(-0.252935\pi\)
0.700557 + 0.713596i \(0.252935\pi\)
\(308\) 0.673817 0.0383943
\(309\) 0 0
\(310\) 12.1154 0.688107
\(311\) 12.9868 0.736413 0.368206 0.929744i \(-0.379972\pi\)
0.368206 + 0.929744i \(0.379972\pi\)
\(312\) 0 0
\(313\) 5.22809 0.295509 0.147754 0.989024i \(-0.452795\pi\)
0.147754 + 0.989024i \(0.452795\pi\)
\(314\) 10.6152 0.599048
\(315\) 0 0
\(316\) −1.48386 −0.0834735
\(317\) 30.5569 1.71624 0.858122 0.513446i \(-0.171631\pi\)
0.858122 + 0.513446i \(0.171631\pi\)
\(318\) 0 0
\(319\) 1.29536 0.0725262
\(320\) 1.40287 0.0784226
\(321\) 0 0
\(322\) 21.4196 1.19367
\(323\) 14.9076 0.829483
\(324\) 0 0
\(325\) −16.3095 −0.904688
\(326\) −0.297625 −0.0164839
\(327\) 0 0
\(328\) −4.79312 −0.264656
\(329\) 6.84385 0.377313
\(330\) 0 0
\(331\) 3.18367 0.174990 0.0874952 0.996165i \(-0.472114\pi\)
0.0874952 + 0.996165i \(0.472114\pi\)
\(332\) 14.2217 0.780520
\(333\) 0 0
\(334\) 0.509630 0.0278857
\(335\) −18.4647 −1.00883
\(336\) 0 0
\(337\) −32.7717 −1.78519 −0.892593 0.450863i \(-0.851116\pi\)
−0.892593 + 0.450863i \(0.851116\pi\)
\(338\) 25.3015 1.37622
\(339\) 0 0
\(340\) −6.97387 −0.378211
\(341\) 1.04342 0.0565045
\(342\) 0 0
\(343\) −10.4810 −0.565919
\(344\) 2.75283 0.148423
\(345\) 0 0
\(346\) 4.65232 0.250110
\(347\) 22.4072 1.20288 0.601441 0.798917i \(-0.294594\pi\)
0.601441 + 0.798917i \(0.294594\pi\)
\(348\) 0 0
\(349\) 22.0677 1.18126 0.590629 0.806944i \(-0.298880\pi\)
0.590629 + 0.806944i \(0.298880\pi\)
\(350\) −17.6709 −0.944551
\(351\) 0 0
\(352\) −1.06515 −0.0567725
\(353\) 10.9168 0.581043 0.290522 0.956868i \(-0.406171\pi\)
0.290522 + 0.956868i \(0.406171\pi\)
\(354\) 0 0
\(355\) 6.43636 0.341607
\(356\) −5.12944 −0.271860
\(357\) 0 0
\(358\) 4.14430 0.219033
\(359\) 24.7892 1.30832 0.654162 0.756354i \(-0.273021\pi\)
0.654162 + 0.756354i \(0.273021\pi\)
\(360\) 0 0
\(361\) −10.3711 −0.545845
\(362\) 28.9939 1.52389
\(363\) 0 0
\(364\) 17.2431 0.903784
\(365\) −22.4222 −1.17363
\(366\) 0 0
\(367\) −12.8486 −0.670689 −0.335345 0.942096i \(-0.608853\pi\)
−0.335345 + 0.942096i \(0.608853\pi\)
\(368\) −18.8108 −0.980579
\(369\) 0 0
\(370\) 19.8364 1.03124
\(371\) 29.7036 1.54214
\(372\) 0 0
\(373\) 2.23067 0.115500 0.0577499 0.998331i \(-0.481607\pi\)
0.0577499 + 0.998331i \(0.481607\pi\)
\(374\) −1.80436 −0.0933011
\(375\) 0 0
\(376\) −3.61118 −0.186232
\(377\) 33.1485 1.70723
\(378\) 0 0
\(379\) −7.35893 −0.378003 −0.189001 0.981977i \(-0.560525\pi\)
−0.189001 + 0.981977i \(0.560525\pi\)
\(380\) −4.03666 −0.207076
\(381\) 0 0
\(382\) −24.5706 −1.25714
\(383\) −14.4561 −0.738675 −0.369337 0.929295i \(-0.620415\pi\)
−0.369337 + 0.929295i \(0.620415\pi\)
\(384\) 0 0
\(385\) 0.929817 0.0473879
\(386\) −7.23034 −0.368015
\(387\) 0 0
\(388\) −1.79168 −0.0909587
\(389\) 8.50413 0.431177 0.215588 0.976484i \(-0.430833\pi\)
0.215588 + 0.976484i \(0.430833\pi\)
\(390\) 0 0
\(391\) −19.0927 −0.965558
\(392\) −6.61509 −0.334112
\(393\) 0 0
\(394\) −35.8726 −1.80723
\(395\) −2.04761 −0.103027
\(396\) 0 0
\(397\) 5.49229 0.275650 0.137825 0.990457i \(-0.455989\pi\)
0.137825 + 0.990457i \(0.455989\pi\)
\(398\) 4.98030 0.249640
\(399\) 0 0
\(400\) 15.5187 0.775933
\(401\) −9.40888 −0.469857 −0.234929 0.972013i \(-0.575486\pi\)
−0.234929 + 0.972013i \(0.575486\pi\)
\(402\) 0 0
\(403\) 26.7013 1.33009
\(404\) 11.4512 0.569716
\(405\) 0 0
\(406\) 35.9155 1.78246
\(407\) 1.70838 0.0846814
\(408\) 0 0
\(409\) −15.4217 −0.762555 −0.381278 0.924461i \(-0.624516\pi\)
−0.381278 + 0.924461i \(0.624516\pi\)
\(410\) 6.58664 0.325291
\(411\) 0 0
\(412\) 0.499154 0.0245916
\(413\) 48.8172 2.40214
\(414\) 0 0
\(415\) 19.6249 0.963350
\(416\) −27.2573 −1.33640
\(417\) 0 0
\(418\) −1.04441 −0.0510838
\(419\) −24.7048 −1.20691 −0.603453 0.797398i \(-0.706209\pi\)
−0.603453 + 0.797398i \(0.706209\pi\)
\(420\) 0 0
\(421\) −0.185793 −0.00905501 −0.00452750 0.999990i \(-0.501441\pi\)
−0.00452750 + 0.999990i \(0.501441\pi\)
\(422\) −18.3774 −0.894598
\(423\) 0 0
\(424\) −15.6732 −0.761159
\(425\) 15.7512 0.764047
\(426\) 0 0
\(427\) −4.95441 −0.239761
\(428\) −5.43231 −0.262581
\(429\) 0 0
\(430\) −3.78290 −0.182428
\(431\) 14.5522 0.700956 0.350478 0.936571i \(-0.386019\pi\)
0.350478 + 0.936571i \(0.386019\pi\)
\(432\) 0 0
\(433\) −34.6192 −1.66369 −0.831846 0.555006i \(-0.812716\pi\)
−0.831846 + 0.555006i \(0.812716\pi\)
\(434\) 28.9302 1.38870
\(435\) 0 0
\(436\) 16.7446 0.801923
\(437\) −11.0513 −0.528658
\(438\) 0 0
\(439\) −1.96580 −0.0938227 −0.0469114 0.998899i \(-0.514938\pi\)
−0.0469114 + 0.998899i \(0.514938\pi\)
\(440\) −0.490621 −0.0233894
\(441\) 0 0
\(442\) −46.1738 −2.19627
\(443\) −31.8086 −1.51127 −0.755635 0.654993i \(-0.772672\pi\)
−0.755635 + 0.654993i \(0.772672\pi\)
\(444\) 0 0
\(445\) −7.07824 −0.335541
\(446\) −40.9922 −1.94104
\(447\) 0 0
\(448\) 3.34990 0.158268
\(449\) 29.7873 1.40575 0.702875 0.711313i \(-0.251899\pi\)
0.702875 + 0.711313i \(0.251899\pi\)
\(450\) 0 0
\(451\) 0.567267 0.0267116
\(452\) 8.81403 0.414577
\(453\) 0 0
\(454\) −0.794759 −0.0372999
\(455\) 23.7942 1.11549
\(456\) 0 0
\(457\) 12.7464 0.596252 0.298126 0.954527i \(-0.403638\pi\)
0.298126 + 0.954527i \(0.403638\pi\)
\(458\) 27.6914 1.29394
\(459\) 0 0
\(460\) 5.16988 0.241047
\(461\) −20.6680 −0.962606 −0.481303 0.876554i \(-0.659836\pi\)
−0.481303 + 0.876554i \(0.659836\pi\)
\(462\) 0 0
\(463\) −16.6502 −0.773801 −0.386900 0.922121i \(-0.626454\pi\)
−0.386900 + 0.922121i \(0.626454\pi\)
\(464\) −31.5411 −1.46426
\(465\) 0 0
\(466\) −13.7617 −0.637498
\(467\) 29.2955 1.35563 0.677817 0.735231i \(-0.262926\pi\)
0.677817 + 0.735231i \(0.262926\pi\)
\(468\) 0 0
\(469\) −44.0918 −2.03597
\(470\) 4.96243 0.228900
\(471\) 0 0
\(472\) −25.7586 −1.18563
\(473\) −0.325798 −0.0149802
\(474\) 0 0
\(475\) 9.11723 0.418327
\(476\) −16.6529 −0.763284
\(477\) 0 0
\(478\) 36.7370 1.68031
\(479\) −22.3619 −1.02174 −0.510871 0.859657i \(-0.670677\pi\)
−0.510871 + 0.859657i \(0.670677\pi\)
\(480\) 0 0
\(481\) 43.7178 1.99336
\(482\) −31.2869 −1.42508
\(483\) 0 0
\(484\) −10.9350 −0.497046
\(485\) −2.47238 −0.112265
\(486\) 0 0
\(487\) 3.73936 0.169447 0.0847233 0.996405i \(-0.472999\pi\)
0.0847233 + 0.996405i \(0.472999\pi\)
\(488\) 2.61421 0.118340
\(489\) 0 0
\(490\) 9.09036 0.410661
\(491\) 1.20669 0.0544573 0.0272286 0.999629i \(-0.491332\pi\)
0.0272286 + 0.999629i \(0.491332\pi\)
\(492\) 0 0
\(493\) −32.0138 −1.44183
\(494\) −26.7266 −1.20249
\(495\) 0 0
\(496\) −25.4066 −1.14079
\(497\) 15.3694 0.689410
\(498\) 0 0
\(499\) 3.33790 0.149425 0.0747124 0.997205i \(-0.476196\pi\)
0.0747124 + 0.997205i \(0.476196\pi\)
\(500\) −11.1360 −0.498017
\(501\) 0 0
\(502\) 13.9812 0.624010
\(503\) −24.4252 −1.08907 −0.544534 0.838739i \(-0.683293\pi\)
−0.544534 + 0.838739i \(0.683293\pi\)
\(504\) 0 0
\(505\) 15.8017 0.703168
\(506\) 1.33761 0.0594640
\(507\) 0 0
\(508\) −6.96337 −0.308950
\(509\) −30.9390 −1.37135 −0.685674 0.727909i \(-0.740493\pi\)
−0.685674 + 0.727909i \(0.740493\pi\)
\(510\) 0 0
\(511\) −53.5420 −2.36856
\(512\) 8.58505 0.379409
\(513\) 0 0
\(514\) −28.6269 −1.26268
\(515\) 0.688795 0.0303519
\(516\) 0 0
\(517\) 0.427383 0.0187963
\(518\) 47.3672 2.08119
\(519\) 0 0
\(520\) −12.5551 −0.550577
\(521\) −14.2527 −0.624421 −0.312210 0.950013i \(-0.601069\pi\)
−0.312210 + 0.950013i \(0.601069\pi\)
\(522\) 0 0
\(523\) 1.35308 0.0591662 0.0295831 0.999562i \(-0.490582\pi\)
0.0295831 + 0.999562i \(0.490582\pi\)
\(524\) −5.62795 −0.245858
\(525\) 0 0
\(526\) 0.0290703 0.00126753
\(527\) −25.7874 −1.12332
\(528\) 0 0
\(529\) −8.84619 −0.384617
\(530\) 21.5379 0.935548
\(531\) 0 0
\(532\) −9.63913 −0.417909
\(533\) 14.5165 0.628778
\(534\) 0 0
\(535\) −7.49618 −0.324088
\(536\) 23.2652 1.00490
\(537\) 0 0
\(538\) −10.9544 −0.472280
\(539\) 0.782897 0.0337218
\(540\) 0 0
\(541\) −25.0121 −1.07535 −0.537676 0.843151i \(-0.680698\pi\)
−0.537676 + 0.843151i \(0.680698\pi\)
\(542\) 34.5857 1.48558
\(543\) 0 0
\(544\) 26.3243 1.12865
\(545\) 23.1063 0.989767
\(546\) 0 0
\(547\) 28.3991 1.21426 0.607128 0.794604i \(-0.292321\pi\)
0.607128 + 0.794604i \(0.292321\pi\)
\(548\) 1.11214 0.0475083
\(549\) 0 0
\(550\) −1.10351 −0.0470539
\(551\) −18.5305 −0.789424
\(552\) 0 0
\(553\) −4.88949 −0.207922
\(554\) 10.8315 0.460188
\(555\) 0 0
\(556\) −4.74806 −0.201363
\(557\) −36.8866 −1.56294 −0.781468 0.623945i \(-0.785529\pi\)
−0.781468 + 0.623945i \(0.785529\pi\)
\(558\) 0 0
\(559\) −8.33722 −0.352627
\(560\) −22.6404 −0.956732
\(561\) 0 0
\(562\) 10.0798 0.425189
\(563\) −22.1570 −0.933806 −0.466903 0.884309i \(-0.654630\pi\)
−0.466903 + 0.884309i \(0.654630\pi\)
\(564\) 0 0
\(565\) 12.1627 0.511689
\(566\) −14.8852 −0.625671
\(567\) 0 0
\(568\) −8.10969 −0.340275
\(569\) −6.40315 −0.268434 −0.134217 0.990952i \(-0.542852\pi\)
−0.134217 + 0.990952i \(0.542852\pi\)
\(570\) 0 0
\(571\) −5.52381 −0.231164 −0.115582 0.993298i \(-0.536873\pi\)
−0.115582 + 0.993298i \(0.536873\pi\)
\(572\) 1.07679 0.0450230
\(573\) 0 0
\(574\) 15.7282 0.656483
\(575\) −11.6767 −0.486953
\(576\) 0 0
\(577\) −39.1190 −1.62855 −0.814273 0.580482i \(-0.802864\pi\)
−0.814273 + 0.580482i \(0.802864\pi\)
\(578\) 15.1587 0.630520
\(579\) 0 0
\(580\) 8.66865 0.359946
\(581\) 46.8623 1.94418
\(582\) 0 0
\(583\) 1.85493 0.0768233
\(584\) 28.2516 1.16906
\(585\) 0 0
\(586\) −11.1433 −0.460327
\(587\) −13.9082 −0.574051 −0.287026 0.957923i \(-0.592666\pi\)
−0.287026 + 0.957923i \(0.592666\pi\)
\(588\) 0 0
\(589\) −14.9264 −0.615033
\(590\) 35.3971 1.45727
\(591\) 0 0
\(592\) −41.5980 −1.70967
\(593\) 17.3598 0.712881 0.356441 0.934318i \(-0.383990\pi\)
0.356441 + 0.934318i \(0.383990\pi\)
\(594\) 0 0
\(595\) −22.9797 −0.942078
\(596\) −7.66153 −0.313829
\(597\) 0 0
\(598\) 34.2296 1.39975
\(599\) −41.5732 −1.69864 −0.849318 0.527882i \(-0.822986\pi\)
−0.849318 + 0.527882i \(0.822986\pi\)
\(600\) 0 0
\(601\) −9.23455 −0.376685 −0.188343 0.982103i \(-0.560312\pi\)
−0.188343 + 0.982103i \(0.560312\pi\)
\(602\) −9.03317 −0.368165
\(603\) 0 0
\(604\) 3.08228 0.125416
\(605\) −15.0895 −0.613475
\(606\) 0 0
\(607\) −13.4897 −0.547531 −0.273766 0.961796i \(-0.588269\pi\)
−0.273766 + 0.961796i \(0.588269\pi\)
\(608\) 15.2372 0.617950
\(609\) 0 0
\(610\) −3.59241 −0.145453
\(611\) 10.9368 0.442456
\(612\) 0 0
\(613\) −3.88721 −0.157003 −0.0785015 0.996914i \(-0.525014\pi\)
−0.0785015 + 0.996914i \(0.525014\pi\)
\(614\) 42.5062 1.71541
\(615\) 0 0
\(616\) −1.17155 −0.0472032
\(617\) −24.0144 −0.966783 −0.483392 0.875404i \(-0.660595\pi\)
−0.483392 + 0.875404i \(0.660595\pi\)
\(618\) 0 0
\(619\) −10.1787 −0.409115 −0.204557 0.978855i \(-0.565575\pi\)
−0.204557 + 0.978855i \(0.565575\pi\)
\(620\) 6.98266 0.280430
\(621\) 0 0
\(622\) 22.4860 0.901605
\(623\) −16.9021 −0.677168
\(624\) 0 0
\(625\) 0.151831 0.00607326
\(626\) 9.05217 0.361797
\(627\) 0 0
\(628\) 6.11802 0.244136
\(629\) −42.2214 −1.68348
\(630\) 0 0
\(631\) −49.2350 −1.96001 −0.980007 0.198965i \(-0.936242\pi\)
−0.980007 + 0.198965i \(0.936242\pi\)
\(632\) 2.57995 0.102625
\(633\) 0 0
\(634\) 52.9076 2.10123
\(635\) −9.60893 −0.381319
\(636\) 0 0
\(637\) 20.0345 0.793795
\(638\) 2.24285 0.0887952
\(639\) 0 0
\(640\) 16.7149 0.660713
\(641\) 34.0792 1.34605 0.673024 0.739621i \(-0.264995\pi\)
0.673024 + 0.739621i \(0.264995\pi\)
\(642\) 0 0
\(643\) −19.8762 −0.783842 −0.391921 0.919999i \(-0.628189\pi\)
−0.391921 + 0.919999i \(0.628189\pi\)
\(644\) 12.3451 0.486467
\(645\) 0 0
\(646\) 25.8118 1.01555
\(647\) 37.1636 1.46105 0.730525 0.682886i \(-0.239275\pi\)
0.730525 + 0.682886i \(0.239275\pi\)
\(648\) 0 0
\(649\) 3.04853 0.119665
\(650\) −28.2391 −1.10763
\(651\) 0 0
\(652\) −0.171536 −0.00671785
\(653\) 5.50755 0.215527 0.107763 0.994177i \(-0.465631\pi\)
0.107763 + 0.994177i \(0.465631\pi\)
\(654\) 0 0
\(655\) −7.76615 −0.303449
\(656\) −13.8126 −0.539290
\(657\) 0 0
\(658\) 11.8498 0.461952
\(659\) −38.0834 −1.48352 −0.741759 0.670666i \(-0.766008\pi\)
−0.741759 + 0.670666i \(0.766008\pi\)
\(660\) 0 0
\(661\) −28.1777 −1.09598 −0.547992 0.836483i \(-0.684608\pi\)
−0.547992 + 0.836483i \(0.684608\pi\)
\(662\) 5.51237 0.214244
\(663\) 0 0
\(664\) −24.7271 −0.959596
\(665\) −13.3013 −0.515802
\(666\) 0 0
\(667\) 23.7325 0.918928
\(668\) 0.293724 0.0113645
\(669\) 0 0
\(670\) −31.9707 −1.23513
\(671\) −0.309392 −0.0119440
\(672\) 0 0
\(673\) 24.8452 0.957714 0.478857 0.877893i \(-0.341051\pi\)
0.478857 + 0.877893i \(0.341051\pi\)
\(674\) −56.7425 −2.18564
\(675\) 0 0
\(676\) 14.5825 0.560864
\(677\) −35.2849 −1.35611 −0.678055 0.735011i \(-0.737177\pi\)
−0.678055 + 0.735011i \(0.737177\pi\)
\(678\) 0 0
\(679\) −5.90379 −0.226567
\(680\) 12.1253 0.464985
\(681\) 0 0
\(682\) 1.80663 0.0691795
\(683\) 39.5379 1.51288 0.756438 0.654065i \(-0.226938\pi\)
0.756438 + 0.654065i \(0.226938\pi\)
\(684\) 0 0
\(685\) 1.53467 0.0586368
\(686\) −18.1472 −0.692865
\(687\) 0 0
\(688\) 7.93295 0.302441
\(689\) 47.4680 1.80839
\(690\) 0 0
\(691\) −16.9909 −0.646366 −0.323183 0.946337i \(-0.604753\pi\)
−0.323183 + 0.946337i \(0.604753\pi\)
\(692\) 2.68136 0.101930
\(693\) 0 0
\(694\) 38.7969 1.47271
\(695\) −6.55197 −0.248530
\(696\) 0 0
\(697\) −14.0196 −0.531030
\(698\) 38.2091 1.44624
\(699\) 0 0
\(700\) −10.1846 −0.384942
\(701\) 32.7483 1.23688 0.618442 0.785830i \(-0.287764\pi\)
0.618442 + 0.785830i \(0.287764\pi\)
\(702\) 0 0
\(703\) −24.4389 −0.921730
\(704\) 0.209194 0.00788430
\(705\) 0 0
\(706\) 18.9019 0.711383
\(707\) 37.7329 1.41909
\(708\) 0 0
\(709\) 32.8193 1.23255 0.616277 0.787529i \(-0.288640\pi\)
0.616277 + 0.787529i \(0.288640\pi\)
\(710\) 11.1442 0.418236
\(711\) 0 0
\(712\) 8.91845 0.334233
\(713\) 19.1167 0.715928
\(714\) 0 0
\(715\) 1.48590 0.0555693
\(716\) 2.38856 0.0892645
\(717\) 0 0
\(718\) 42.9213 1.60181
\(719\) −16.8406 −0.628049 −0.314025 0.949415i \(-0.601677\pi\)
−0.314025 + 0.949415i \(0.601677\pi\)
\(720\) 0 0
\(721\) 1.64477 0.0612545
\(722\) −17.9570 −0.668289
\(723\) 0 0
\(724\) 16.7106 0.621044
\(725\) −19.5791 −0.727148
\(726\) 0 0
\(727\) −8.40284 −0.311644 −0.155822 0.987785i \(-0.549803\pi\)
−0.155822 + 0.987785i \(0.549803\pi\)
\(728\) −29.9802 −1.11114
\(729\) 0 0
\(730\) −38.8230 −1.43690
\(731\) 8.05185 0.297808
\(732\) 0 0
\(733\) 12.3466 0.456032 0.228016 0.973657i \(-0.426776\pi\)
0.228016 + 0.973657i \(0.426776\pi\)
\(734\) −22.2466 −0.821138
\(735\) 0 0
\(736\) −19.5148 −0.719324
\(737\) −2.75344 −0.101424
\(738\) 0 0
\(739\) −39.7974 −1.46397 −0.731985 0.681321i \(-0.761406\pi\)
−0.731985 + 0.681321i \(0.761406\pi\)
\(740\) 11.4326 0.420272
\(741\) 0 0
\(742\) 51.4304 1.88807
\(743\) −19.8382 −0.727794 −0.363897 0.931439i \(-0.618554\pi\)
−0.363897 + 0.931439i \(0.618554\pi\)
\(744\) 0 0
\(745\) −10.5723 −0.387341
\(746\) 3.86229 0.141409
\(747\) 0 0
\(748\) −1.03994 −0.0380239
\(749\) −17.9001 −0.654055
\(750\) 0 0
\(751\) 38.3777 1.40042 0.700212 0.713935i \(-0.253089\pi\)
0.700212 + 0.713935i \(0.253089\pi\)
\(752\) −10.4065 −0.379486
\(753\) 0 0
\(754\) 57.3949 2.09020
\(755\) 4.25331 0.154794
\(756\) 0 0
\(757\) −14.1489 −0.514249 −0.257125 0.966378i \(-0.582775\pi\)
−0.257125 + 0.966378i \(0.582775\pi\)
\(758\) −12.7416 −0.462796
\(759\) 0 0
\(760\) 7.01846 0.254586
\(761\) −9.47907 −0.343616 −0.171808 0.985130i \(-0.554961\pi\)
−0.171808 + 0.985130i \(0.554961\pi\)
\(762\) 0 0
\(763\) 55.1756 1.99749
\(764\) −14.1612 −0.512335
\(765\) 0 0
\(766\) −25.0301 −0.904374
\(767\) 78.0125 2.81687
\(768\) 0 0
\(769\) −12.5213 −0.451529 −0.225764 0.974182i \(-0.572488\pi\)
−0.225764 + 0.974182i \(0.572488\pi\)
\(770\) 1.60993 0.0580179
\(771\) 0 0
\(772\) −4.16719 −0.149980
\(773\) −35.9038 −1.29137 −0.645684 0.763604i \(-0.723428\pi\)
−0.645684 + 0.763604i \(0.723428\pi\)
\(774\) 0 0
\(775\) −15.7711 −0.566514
\(776\) 3.11516 0.111828
\(777\) 0 0
\(778\) 14.7245 0.527898
\(779\) −8.11490 −0.290747
\(780\) 0 0
\(781\) 0.959784 0.0343438
\(782\) −33.0580 −1.18215
\(783\) 0 0
\(784\) −19.0630 −0.680822
\(785\) 8.44241 0.301322
\(786\) 0 0
\(787\) 39.9512 1.42411 0.712053 0.702126i \(-0.247766\pi\)
0.712053 + 0.702126i \(0.247766\pi\)
\(788\) −20.6751 −0.736519
\(789\) 0 0
\(790\) −3.54534 −0.126137
\(791\) 29.0433 1.03266
\(792\) 0 0
\(793\) −7.91740 −0.281155
\(794\) 9.50962 0.337484
\(795\) 0 0
\(796\) 2.87039 0.101738
\(797\) 34.0861 1.20739 0.603696 0.797214i \(-0.293694\pi\)
0.603696 + 0.797214i \(0.293694\pi\)
\(798\) 0 0
\(799\) −10.5625 −0.373673
\(800\) 16.0995 0.569202
\(801\) 0 0
\(802\) −16.2910 −0.575255
\(803\) −3.34358 −0.117992
\(804\) 0 0
\(805\) 17.0354 0.600418
\(806\) 46.2320 1.62845
\(807\) 0 0
\(808\) −19.9099 −0.700427
\(809\) −7.57622 −0.266366 −0.133183 0.991091i \(-0.542520\pi\)
−0.133183 + 0.991091i \(0.542520\pi\)
\(810\) 0 0
\(811\) 20.5558 0.721810 0.360905 0.932602i \(-0.382468\pi\)
0.360905 + 0.932602i \(0.382468\pi\)
\(812\) 20.6998 0.726422
\(813\) 0 0
\(814\) 2.95798 0.103677
\(815\) −0.236706 −0.00829146
\(816\) 0 0
\(817\) 4.66062 0.163055
\(818\) −26.7019 −0.933612
\(819\) 0 0
\(820\) 3.79620 0.132569
\(821\) 30.4750 1.06359 0.531793 0.846874i \(-0.321518\pi\)
0.531793 + 0.846874i \(0.321518\pi\)
\(822\) 0 0
\(823\) −22.3183 −0.777968 −0.388984 0.921245i \(-0.627174\pi\)
−0.388984 + 0.921245i \(0.627174\pi\)
\(824\) −0.867869 −0.0302336
\(825\) 0 0
\(826\) 84.5246 2.94099
\(827\) 35.5735 1.23701 0.618506 0.785780i \(-0.287738\pi\)
0.618506 + 0.785780i \(0.287738\pi\)
\(828\) 0 0
\(829\) −17.5603 −0.609894 −0.304947 0.952369i \(-0.598639\pi\)
−0.304947 + 0.952369i \(0.598639\pi\)
\(830\) 33.9796 1.17945
\(831\) 0 0
\(832\) 5.35331 0.185593
\(833\) −19.3487 −0.670393
\(834\) 0 0
\(835\) 0.405317 0.0140266
\(836\) −0.601943 −0.0208186
\(837\) 0 0
\(838\) −42.7751 −1.47764
\(839\) 38.3315 1.32335 0.661676 0.749790i \(-0.269845\pi\)
0.661676 + 0.749790i \(0.269845\pi\)
\(840\) 0 0
\(841\) 10.7938 0.372199
\(842\) −0.321692 −0.0110862
\(843\) 0 0
\(844\) −10.5918 −0.364584
\(845\) 20.1227 0.692242
\(846\) 0 0
\(847\) −36.0321 −1.23808
\(848\) −45.1663 −1.55102
\(849\) 0 0
\(850\) 27.2725 0.935438
\(851\) 31.2996 1.07294
\(852\) 0 0
\(853\) 8.39467 0.287428 0.143714 0.989619i \(-0.454095\pi\)
0.143714 + 0.989619i \(0.454095\pi\)
\(854\) −8.57831 −0.293544
\(855\) 0 0
\(856\) 9.44504 0.322825
\(857\) −48.1216 −1.64380 −0.821900 0.569631i \(-0.807086\pi\)
−0.821900 + 0.569631i \(0.807086\pi\)
\(858\) 0 0
\(859\) 51.0803 1.74284 0.871419 0.490539i \(-0.163200\pi\)
0.871419 + 0.490539i \(0.163200\pi\)
\(860\) −2.18026 −0.0743464
\(861\) 0 0
\(862\) 25.1965 0.858195
\(863\) −36.7771 −1.25191 −0.625953 0.779861i \(-0.715290\pi\)
−0.625953 + 0.779861i \(0.715290\pi\)
\(864\) 0 0
\(865\) 3.70007 0.125806
\(866\) −59.9414 −2.03689
\(867\) 0 0
\(868\) 16.6739 0.565948
\(869\) −0.305338 −0.0103579
\(870\) 0 0
\(871\) −70.4609 −2.38748
\(872\) −29.1136 −0.985909
\(873\) 0 0
\(874\) −19.1349 −0.647246
\(875\) −36.6944 −1.24050
\(876\) 0 0
\(877\) −4.05984 −0.137091 −0.0685456 0.997648i \(-0.521836\pi\)
−0.0685456 + 0.997648i \(0.521836\pi\)
\(878\) −3.40369 −0.114869
\(879\) 0 0
\(880\) −1.41385 −0.0476607
\(881\) 40.6754 1.37039 0.685194 0.728361i \(-0.259717\pi\)
0.685194 + 0.728361i \(0.259717\pi\)
\(882\) 0 0
\(883\) 26.1833 0.881139 0.440570 0.897718i \(-0.354776\pi\)
0.440570 + 0.897718i \(0.354776\pi\)
\(884\) −26.6122 −0.895064
\(885\) 0 0
\(886\) −55.0749 −1.85028
\(887\) −21.7392 −0.729932 −0.364966 0.931021i \(-0.618919\pi\)
−0.364966 + 0.931021i \(0.618919\pi\)
\(888\) 0 0
\(889\) −22.9451 −0.769555
\(890\) −12.2556 −0.410809
\(891\) 0 0
\(892\) −23.6257 −0.791048
\(893\) −6.11383 −0.204592
\(894\) 0 0
\(895\) 3.29603 0.110174
\(896\) 39.9133 1.33341
\(897\) 0 0
\(898\) 51.5752 1.72109
\(899\) 32.0542 1.06907
\(900\) 0 0
\(901\) −45.8432 −1.52726
\(902\) 0.982194 0.0327035
\(903\) 0 0
\(904\) −15.3248 −0.509694
\(905\) 23.0593 0.766519
\(906\) 0 0
\(907\) −52.7124 −1.75029 −0.875143 0.483864i \(-0.839233\pi\)
−0.875143 + 0.483864i \(0.839233\pi\)
\(908\) −0.458058 −0.0152012
\(909\) 0 0
\(910\) 41.1984 1.36571
\(911\) −43.0525 −1.42639 −0.713196 0.700964i \(-0.752753\pi\)
−0.713196 + 0.700964i \(0.752753\pi\)
\(912\) 0 0
\(913\) 2.92645 0.0968514
\(914\) 22.0698 0.730003
\(915\) 0 0
\(916\) 15.9599 0.527329
\(917\) −18.5448 −0.612402
\(918\) 0 0
\(919\) 50.4271 1.66344 0.831719 0.555197i \(-0.187357\pi\)
0.831719 + 0.555197i \(0.187357\pi\)
\(920\) −8.98877 −0.296351
\(921\) 0 0
\(922\) −35.7856 −1.17854
\(923\) 24.5610 0.808436
\(924\) 0 0
\(925\) −25.8218 −0.849017
\(926\) −28.8290 −0.947380
\(927\) 0 0
\(928\) −32.7216 −1.07414
\(929\) 15.8902 0.521339 0.260670 0.965428i \(-0.416057\pi\)
0.260670 + 0.965428i \(0.416057\pi\)
\(930\) 0 0
\(931\) −11.1995 −0.367050
\(932\) −7.93152 −0.259806
\(933\) 0 0
\(934\) 50.7236 1.65973
\(935\) −1.43504 −0.0469307
\(936\) 0 0
\(937\) 22.9252 0.748935 0.374468 0.927240i \(-0.377826\pi\)
0.374468 + 0.927240i \(0.377826\pi\)
\(938\) −76.3426 −2.49268
\(939\) 0 0
\(940\) 2.86008 0.0932857
\(941\) −14.1397 −0.460940 −0.230470 0.973079i \(-0.574026\pi\)
−0.230470 + 0.973079i \(0.574026\pi\)
\(942\) 0 0
\(943\) 10.3930 0.338443
\(944\) −74.2297 −2.41597
\(945\) 0 0
\(946\) −0.564102 −0.0183405
\(947\) 57.0898 1.85517 0.927585 0.373611i \(-0.121881\pi\)
0.927585 + 0.373611i \(0.121881\pi\)
\(948\) 0 0
\(949\) −85.5629 −2.77749
\(950\) 15.7860 0.512166
\(951\) 0 0
\(952\) 28.9540 0.938406
\(953\) 17.7295 0.574316 0.287158 0.957883i \(-0.407290\pi\)
0.287158 + 0.957883i \(0.407290\pi\)
\(954\) 0 0
\(955\) −19.5414 −0.632345
\(956\) 21.1733 0.684792
\(957\) 0 0
\(958\) −38.7185 −1.25094
\(959\) 3.66464 0.118337
\(960\) 0 0
\(961\) −5.18011 −0.167100
\(962\) 75.6952 2.44051
\(963\) 0 0
\(964\) −18.0321 −0.580776
\(965\) −5.75041 −0.185112
\(966\) 0 0
\(967\) −22.1182 −0.711273 −0.355636 0.934624i \(-0.615736\pi\)
−0.355636 + 0.934624i \(0.615736\pi\)
\(968\) 19.0125 0.611084
\(969\) 0 0
\(970\) −4.28081 −0.137448
\(971\) 5.09901 0.163635 0.0818176 0.996647i \(-0.473928\pi\)
0.0818176 + 0.996647i \(0.473928\pi\)
\(972\) 0 0
\(973\) −15.6454 −0.501569
\(974\) 6.47451 0.207457
\(975\) 0 0
\(976\) 7.53349 0.241141
\(977\) −23.2327 −0.743279 −0.371640 0.928377i \(-0.621204\pi\)
−0.371640 + 0.928377i \(0.621204\pi\)
\(978\) 0 0
\(979\) −1.05550 −0.0337339
\(980\) 5.23921 0.167360
\(981\) 0 0
\(982\) 2.08933 0.0666731
\(983\) 16.8541 0.537563 0.268781 0.963201i \(-0.413379\pi\)
0.268781 + 0.963201i \(0.413379\pi\)
\(984\) 0 0
\(985\) −28.5300 −0.909043
\(986\) −55.4303 −1.76526
\(987\) 0 0
\(988\) −15.4038 −0.490061
\(989\) −5.96901 −0.189803
\(990\) 0 0
\(991\) −0.413097 −0.0131225 −0.00656123 0.999978i \(-0.502089\pi\)
−0.00656123 + 0.999978i \(0.502089\pi\)
\(992\) −26.3575 −0.836851
\(993\) 0 0
\(994\) 26.6113 0.844058
\(995\) 3.96092 0.125570
\(996\) 0 0
\(997\) 5.84183 0.185013 0.0925063 0.995712i \(-0.470512\pi\)
0.0925063 + 0.995712i \(0.470512\pi\)
\(998\) 5.77940 0.182944
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.56 72
3.2 odd 2 6561.2.a.c.1.17 72
81.2 odd 54 729.2.g.c.433.7 144
81.13 even 27 729.2.g.a.541.7 144
81.14 odd 54 81.2.g.a.34.2 yes 144
81.25 even 27 729.2.g.a.190.7 144
81.29 odd 54 81.2.g.a.31.2 144
81.40 even 27 729.2.g.b.298.2 144
81.41 odd 54 729.2.g.c.298.7 144
81.52 even 27 243.2.g.a.145.7 144
81.56 odd 54 729.2.g.d.190.2 144
81.67 even 27 243.2.g.a.181.7 144
81.68 odd 54 729.2.g.d.541.2 144
81.79 even 27 729.2.g.b.433.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.31.2 144 81.29 odd 54
81.2.g.a.34.2 yes 144 81.14 odd 54
243.2.g.a.145.7 144 81.52 even 27
243.2.g.a.181.7 144 81.67 even 27
729.2.g.a.190.7 144 81.25 even 27
729.2.g.a.541.7 144 81.13 even 27
729.2.g.b.298.2 144 81.40 even 27
729.2.g.b.433.2 144 81.79 even 27
729.2.g.c.298.7 144 81.41 odd 54
729.2.g.c.433.7 144 81.2 odd 54
729.2.g.d.190.2 144 81.56 odd 54
729.2.g.d.541.2 144 81.68 odd 54
6561.2.a.c.1.17 72 3.2 odd 2
6561.2.a.d.1.56 72 1.1 even 1 trivial