Properties

Label 6561.2.a.d.1.43
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.43
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.781548 q^{2} -1.38918 q^{4} +1.48073 q^{5} -3.80126 q^{7} -2.64881 q^{8} +1.15726 q^{10} -5.05444 q^{11} -4.49226 q^{13} -2.97087 q^{14} +0.708195 q^{16} -4.58215 q^{17} -4.46448 q^{19} -2.05700 q^{20} -3.95028 q^{22} +3.45493 q^{23} -2.80745 q^{25} -3.51091 q^{26} +5.28065 q^{28} -0.652939 q^{29} +0.658151 q^{31} +5.85111 q^{32} -3.58117 q^{34} -5.62863 q^{35} +1.00016 q^{37} -3.48921 q^{38} -3.92216 q^{40} +0.682813 q^{41} +8.39308 q^{43} +7.02154 q^{44} +2.70019 q^{46} -7.93477 q^{47} +7.44960 q^{49} -2.19416 q^{50} +6.24057 q^{52} -4.14938 q^{53} -7.48424 q^{55} +10.0688 q^{56} -0.510303 q^{58} -5.26997 q^{59} -6.79097 q^{61} +0.514376 q^{62} +3.15653 q^{64} -6.65180 q^{65} +5.30120 q^{67} +6.36545 q^{68} -4.39904 q^{70} +6.13308 q^{71} -4.40156 q^{73} +0.781671 q^{74} +6.20199 q^{76} +19.2132 q^{77} +11.2425 q^{79} +1.04864 q^{80} +0.533651 q^{82} -1.62164 q^{83} -6.78492 q^{85} +6.55959 q^{86} +13.3882 q^{88} +1.04284 q^{89} +17.0762 q^{91} -4.79953 q^{92} -6.20140 q^{94} -6.61068 q^{95} +4.98814 q^{97} +5.82222 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.781548 0.552638 0.276319 0.961066i \(-0.410885\pi\)
0.276319 + 0.961066i \(0.410885\pi\)
\(3\) 0 0
\(4\) −1.38918 −0.694591
\(5\) 1.48073 0.662201 0.331100 0.943596i \(-0.392580\pi\)
0.331100 + 0.943596i \(0.392580\pi\)
\(6\) 0 0
\(7\) −3.80126 −1.43674 −0.718371 0.695660i \(-0.755112\pi\)
−0.718371 + 0.695660i \(0.755112\pi\)
\(8\) −2.64881 −0.936495
\(9\) 0 0
\(10\) 1.15726 0.365957
\(11\) −5.05444 −1.52397 −0.761985 0.647595i \(-0.775775\pi\)
−0.761985 + 0.647595i \(0.775775\pi\)
\(12\) 0 0
\(13\) −4.49226 −1.24593 −0.622964 0.782251i \(-0.714072\pi\)
−0.622964 + 0.782251i \(0.714072\pi\)
\(14\) −2.97087 −0.793998
\(15\) 0 0
\(16\) 0.708195 0.177049
\(17\) −4.58215 −1.11134 −0.555668 0.831404i \(-0.687537\pi\)
−0.555668 + 0.831404i \(0.687537\pi\)
\(18\) 0 0
\(19\) −4.46448 −1.02422 −0.512112 0.858919i \(-0.671137\pi\)
−0.512112 + 0.858919i \(0.671137\pi\)
\(20\) −2.05700 −0.459959
\(21\) 0 0
\(22\) −3.95028 −0.842203
\(23\) 3.45493 0.720403 0.360201 0.932875i \(-0.382708\pi\)
0.360201 + 0.932875i \(0.382708\pi\)
\(24\) 0 0
\(25\) −2.80745 −0.561490
\(26\) −3.51091 −0.688547
\(27\) 0 0
\(28\) 5.28065 0.997949
\(29\) −0.652939 −0.121248 −0.0606239 0.998161i \(-0.519309\pi\)
−0.0606239 + 0.998161i \(0.519309\pi\)
\(30\) 0 0
\(31\) 0.658151 0.118207 0.0591037 0.998252i \(-0.481176\pi\)
0.0591037 + 0.998252i \(0.481176\pi\)
\(32\) 5.85111 1.03434
\(33\) 0 0
\(34\) −3.58117 −0.614166
\(35\) −5.62863 −0.951412
\(36\) 0 0
\(37\) 1.00016 0.164425 0.0822124 0.996615i \(-0.473801\pi\)
0.0822124 + 0.996615i \(0.473801\pi\)
\(38\) −3.48921 −0.566024
\(39\) 0 0
\(40\) −3.92216 −0.620148
\(41\) 0.682813 0.106637 0.0533187 0.998578i \(-0.483020\pi\)
0.0533187 + 0.998578i \(0.483020\pi\)
\(42\) 0 0
\(43\) 8.39308 1.27993 0.639966 0.768403i \(-0.278948\pi\)
0.639966 + 0.768403i \(0.278948\pi\)
\(44\) 7.02154 1.05854
\(45\) 0 0
\(46\) 2.70019 0.398122
\(47\) −7.93477 −1.15741 −0.578703 0.815539i \(-0.696441\pi\)
−0.578703 + 0.815539i \(0.696441\pi\)
\(48\) 0 0
\(49\) 7.44960 1.06423
\(50\) −2.19416 −0.310301
\(51\) 0 0
\(52\) 6.24057 0.865411
\(53\) −4.14938 −0.569962 −0.284981 0.958533i \(-0.591987\pi\)
−0.284981 + 0.958533i \(0.591987\pi\)
\(54\) 0 0
\(55\) −7.48424 −1.00917
\(56\) 10.0688 1.34550
\(57\) 0 0
\(58\) −0.510303 −0.0670061
\(59\) −5.26997 −0.686092 −0.343046 0.939319i \(-0.611459\pi\)
−0.343046 + 0.939319i \(0.611459\pi\)
\(60\) 0 0
\(61\) −6.79097 −0.869495 −0.434747 0.900553i \(-0.643162\pi\)
−0.434747 + 0.900553i \(0.643162\pi\)
\(62\) 0.514376 0.0653259
\(63\) 0 0
\(64\) 3.15653 0.394566
\(65\) −6.65180 −0.825055
\(66\) 0 0
\(67\) 5.30120 0.647645 0.323822 0.946118i \(-0.395032\pi\)
0.323822 + 0.946118i \(0.395032\pi\)
\(68\) 6.36545 0.771924
\(69\) 0 0
\(70\) −4.39904 −0.525786
\(71\) 6.13308 0.727863 0.363932 0.931426i \(-0.381434\pi\)
0.363932 + 0.931426i \(0.381434\pi\)
\(72\) 0 0
\(73\) −4.40156 −0.515163 −0.257582 0.966257i \(-0.582926\pi\)
−0.257582 + 0.966257i \(0.582926\pi\)
\(74\) 0.781671 0.0908674
\(75\) 0 0
\(76\) 6.20199 0.711417
\(77\) 19.2132 2.18955
\(78\) 0 0
\(79\) 11.2425 1.26488 0.632442 0.774608i \(-0.282053\pi\)
0.632442 + 0.774608i \(0.282053\pi\)
\(80\) 1.04864 0.117242
\(81\) 0 0
\(82\) 0.533651 0.0589319
\(83\) −1.62164 −0.177999 −0.0889993 0.996032i \(-0.528367\pi\)
−0.0889993 + 0.996032i \(0.528367\pi\)
\(84\) 0 0
\(85\) −6.78492 −0.735928
\(86\) 6.55959 0.707339
\(87\) 0 0
\(88\) 13.3882 1.42719
\(89\) 1.04284 0.110541 0.0552703 0.998471i \(-0.482398\pi\)
0.0552703 + 0.998471i \(0.482398\pi\)
\(90\) 0 0
\(91\) 17.0762 1.79008
\(92\) −4.79953 −0.500386
\(93\) 0 0
\(94\) −6.20140 −0.639626
\(95\) −6.61068 −0.678241
\(96\) 0 0
\(97\) 4.98814 0.506469 0.253235 0.967405i \(-0.418506\pi\)
0.253235 + 0.967405i \(0.418506\pi\)
\(98\) 5.82222 0.588133
\(99\) 0 0
\(100\) 3.90006 0.390006
\(101\) 9.57048 0.952299 0.476149 0.879364i \(-0.342032\pi\)
0.476149 + 0.879364i \(0.342032\pi\)
\(102\) 0 0
\(103\) 3.25514 0.320738 0.160369 0.987057i \(-0.448732\pi\)
0.160369 + 0.987057i \(0.448732\pi\)
\(104\) 11.8991 1.16681
\(105\) 0 0
\(106\) −3.24294 −0.314982
\(107\) −16.8136 −1.62543 −0.812716 0.582660i \(-0.802012\pi\)
−0.812716 + 0.582660i \(0.802012\pi\)
\(108\) 0 0
\(109\) 7.63544 0.731343 0.365671 0.930744i \(-0.380839\pi\)
0.365671 + 0.930744i \(0.380839\pi\)
\(110\) −5.84929 −0.557708
\(111\) 0 0
\(112\) −2.69204 −0.254373
\(113\) 10.0194 0.942543 0.471272 0.881988i \(-0.343795\pi\)
0.471272 + 0.881988i \(0.343795\pi\)
\(114\) 0 0
\(115\) 5.11581 0.477051
\(116\) 0.907052 0.0842176
\(117\) 0 0
\(118\) −4.11874 −0.379160
\(119\) 17.4180 1.59670
\(120\) 0 0
\(121\) 14.5473 1.32248
\(122\) −5.30747 −0.480516
\(123\) 0 0
\(124\) −0.914292 −0.0821058
\(125\) −11.5607 −1.03402
\(126\) 0 0
\(127\) 3.88574 0.344803 0.172402 0.985027i \(-0.444847\pi\)
0.172402 + 0.985027i \(0.444847\pi\)
\(128\) −9.23523 −0.816287
\(129\) 0 0
\(130\) −5.19870 −0.455956
\(131\) 16.6492 1.45465 0.727324 0.686294i \(-0.240764\pi\)
0.727324 + 0.686294i \(0.240764\pi\)
\(132\) 0 0
\(133\) 16.9707 1.47154
\(134\) 4.14314 0.357913
\(135\) 0 0
\(136\) 12.1373 1.04076
\(137\) −9.27589 −0.792492 −0.396246 0.918144i \(-0.629687\pi\)
−0.396246 + 0.918144i \(0.629687\pi\)
\(138\) 0 0
\(139\) 15.9212 1.35042 0.675208 0.737628i \(-0.264054\pi\)
0.675208 + 0.737628i \(0.264054\pi\)
\(140\) 7.81920 0.660843
\(141\) 0 0
\(142\) 4.79330 0.402245
\(143\) 22.7058 1.89876
\(144\) 0 0
\(145\) −0.966824 −0.0802904
\(146\) −3.44003 −0.284699
\(147\) 0 0
\(148\) −1.38940 −0.114208
\(149\) −23.3418 −1.91223 −0.956116 0.292988i \(-0.905350\pi\)
−0.956116 + 0.292988i \(0.905350\pi\)
\(150\) 0 0
\(151\) −2.33209 −0.189783 −0.0948915 0.995488i \(-0.530250\pi\)
−0.0948915 + 0.995488i \(0.530250\pi\)
\(152\) 11.8256 0.959180
\(153\) 0 0
\(154\) 15.0161 1.21003
\(155\) 0.974541 0.0782770
\(156\) 0 0
\(157\) −19.6833 −1.57089 −0.785447 0.618929i \(-0.787567\pi\)
−0.785447 + 0.618929i \(0.787567\pi\)
\(158\) 8.78658 0.699023
\(159\) 0 0
\(160\) 8.66389 0.684940
\(161\) −13.1331 −1.03503
\(162\) 0 0
\(163\) −17.6622 −1.38341 −0.691707 0.722179i \(-0.743141\pi\)
−0.691707 + 0.722179i \(0.743141\pi\)
\(164\) −0.948552 −0.0740695
\(165\) 0 0
\(166\) −1.26739 −0.0983688
\(167\) −3.39014 −0.262337 −0.131168 0.991360i \(-0.541873\pi\)
−0.131168 + 0.991360i \(0.541873\pi\)
\(168\) 0 0
\(169\) 7.18037 0.552336
\(170\) −5.30274 −0.406701
\(171\) 0 0
\(172\) −11.6595 −0.889030
\(173\) 18.6790 1.42014 0.710069 0.704132i \(-0.248664\pi\)
0.710069 + 0.704132i \(0.248664\pi\)
\(174\) 0 0
\(175\) 10.6719 0.806716
\(176\) −3.57953 −0.269817
\(177\) 0 0
\(178\) 0.815027 0.0610889
\(179\) −11.8846 −0.888294 −0.444147 0.895954i \(-0.646493\pi\)
−0.444147 + 0.895954i \(0.646493\pi\)
\(180\) 0 0
\(181\) −15.7848 −1.17328 −0.586638 0.809849i \(-0.699549\pi\)
−0.586638 + 0.809849i \(0.699549\pi\)
\(182\) 13.3459 0.989264
\(183\) 0 0
\(184\) −9.15145 −0.674654
\(185\) 1.48096 0.108882
\(186\) 0 0
\(187\) 23.1602 1.69364
\(188\) 11.0228 0.803924
\(189\) 0 0
\(190\) −5.16656 −0.374822
\(191\) −5.76661 −0.417257 −0.208629 0.977995i \(-0.566900\pi\)
−0.208629 + 0.977995i \(0.566900\pi\)
\(192\) 0 0
\(193\) 0.175757 0.0126513 0.00632564 0.999980i \(-0.497986\pi\)
0.00632564 + 0.999980i \(0.497986\pi\)
\(194\) 3.89847 0.279894
\(195\) 0 0
\(196\) −10.3489 −0.739204
\(197\) −11.2155 −0.799069 −0.399535 0.916718i \(-0.630828\pi\)
−0.399535 + 0.916718i \(0.630828\pi\)
\(198\) 0 0
\(199\) −20.4783 −1.45167 −0.725834 0.687870i \(-0.758546\pi\)
−0.725834 + 0.687870i \(0.758546\pi\)
\(200\) 7.43640 0.525833
\(201\) 0 0
\(202\) 7.47979 0.526276
\(203\) 2.48199 0.174202
\(204\) 0 0
\(205\) 1.01106 0.0706154
\(206\) 2.54405 0.177252
\(207\) 0 0
\(208\) −3.18139 −0.220590
\(209\) 22.5655 1.56089
\(210\) 0 0
\(211\) 1.19139 0.0820184 0.0410092 0.999159i \(-0.486943\pi\)
0.0410092 + 0.999159i \(0.486943\pi\)
\(212\) 5.76425 0.395891
\(213\) 0 0
\(214\) −13.1406 −0.898275
\(215\) 12.4279 0.847573
\(216\) 0 0
\(217\) −2.50180 −0.169834
\(218\) 5.96746 0.404168
\(219\) 0 0
\(220\) 10.3970 0.700964
\(221\) 20.5842 1.38464
\(222\) 0 0
\(223\) −14.8999 −0.997770 −0.498885 0.866668i \(-0.666257\pi\)
−0.498885 + 0.866668i \(0.666257\pi\)
\(224\) −22.2416 −1.48608
\(225\) 0 0
\(226\) 7.83062 0.520885
\(227\) 24.5988 1.63268 0.816340 0.577572i \(-0.196000\pi\)
0.816340 + 0.577572i \(0.196000\pi\)
\(228\) 0 0
\(229\) 1.52698 0.100906 0.0504528 0.998726i \(-0.483934\pi\)
0.0504528 + 0.998726i \(0.483934\pi\)
\(230\) 3.99825 0.263637
\(231\) 0 0
\(232\) 1.72951 0.113548
\(233\) −14.0599 −0.921094 −0.460547 0.887635i \(-0.652347\pi\)
−0.460547 + 0.887635i \(0.652347\pi\)
\(234\) 0 0
\(235\) −11.7492 −0.766435
\(236\) 7.32096 0.476554
\(237\) 0 0
\(238\) 13.6130 0.882399
\(239\) 22.9174 1.48240 0.741201 0.671283i \(-0.234257\pi\)
0.741201 + 0.671283i \(0.234257\pi\)
\(240\) 0 0
\(241\) −7.06874 −0.455338 −0.227669 0.973739i \(-0.573110\pi\)
−0.227669 + 0.973739i \(0.573110\pi\)
\(242\) 11.3694 0.730855
\(243\) 0 0
\(244\) 9.43390 0.603943
\(245\) 11.0308 0.704733
\(246\) 0 0
\(247\) 20.0556 1.27611
\(248\) −1.74332 −0.110701
\(249\) 0 0
\(250\) −9.03524 −0.571439
\(251\) −0.0664671 −0.00419537 −0.00209768 0.999998i \(-0.500668\pi\)
−0.00209768 + 0.999998i \(0.500668\pi\)
\(252\) 0 0
\(253\) −17.4627 −1.09787
\(254\) 3.03689 0.190551
\(255\) 0 0
\(256\) −13.5308 −0.845677
\(257\) −19.3437 −1.20663 −0.603313 0.797504i \(-0.706153\pi\)
−0.603313 + 0.797504i \(0.706153\pi\)
\(258\) 0 0
\(259\) −3.80186 −0.236236
\(260\) 9.24057 0.573076
\(261\) 0 0
\(262\) 13.0122 0.803893
\(263\) −15.0601 −0.928646 −0.464323 0.885666i \(-0.653702\pi\)
−0.464323 + 0.885666i \(0.653702\pi\)
\(264\) 0 0
\(265\) −6.14410 −0.377429
\(266\) 13.2634 0.813231
\(267\) 0 0
\(268\) −7.36434 −0.449848
\(269\) 11.7365 0.715585 0.357792 0.933801i \(-0.383530\pi\)
0.357792 + 0.933801i \(0.383530\pi\)
\(270\) 0 0
\(271\) −2.88026 −0.174963 −0.0874817 0.996166i \(-0.527882\pi\)
−0.0874817 + 0.996166i \(0.527882\pi\)
\(272\) −3.24506 −0.196761
\(273\) 0 0
\(274\) −7.24955 −0.437961
\(275\) 14.1901 0.855694
\(276\) 0 0
\(277\) −2.30102 −0.138255 −0.0691276 0.997608i \(-0.522022\pi\)
−0.0691276 + 0.997608i \(0.522022\pi\)
\(278\) 12.4431 0.746290
\(279\) 0 0
\(280\) 14.9092 0.890993
\(281\) −6.34551 −0.378541 −0.189271 0.981925i \(-0.560612\pi\)
−0.189271 + 0.981925i \(0.560612\pi\)
\(282\) 0 0
\(283\) −14.6818 −0.872741 −0.436371 0.899767i \(-0.643736\pi\)
−0.436371 + 0.899767i \(0.643736\pi\)
\(284\) −8.51998 −0.505568
\(285\) 0 0
\(286\) 17.7457 1.04932
\(287\) −2.59555 −0.153211
\(288\) 0 0
\(289\) 3.99614 0.235067
\(290\) −0.755619 −0.0443715
\(291\) 0 0
\(292\) 6.11457 0.357828
\(293\) 25.3553 1.48127 0.740635 0.671908i \(-0.234525\pi\)
0.740635 + 0.671908i \(0.234525\pi\)
\(294\) 0 0
\(295\) −7.80339 −0.454331
\(296\) −2.64923 −0.153983
\(297\) 0 0
\(298\) −18.2427 −1.05677
\(299\) −15.5204 −0.897570
\(300\) 0 0
\(301\) −31.9043 −1.83893
\(302\) −1.82264 −0.104881
\(303\) 0 0
\(304\) −3.16173 −0.181337
\(305\) −10.0556 −0.575780
\(306\) 0 0
\(307\) −12.1833 −0.695339 −0.347670 0.937617i \(-0.613027\pi\)
−0.347670 + 0.937617i \(0.613027\pi\)
\(308\) −26.6907 −1.52084
\(309\) 0 0
\(310\) 0.761651 0.0432589
\(311\) 25.1356 1.42531 0.712656 0.701514i \(-0.247492\pi\)
0.712656 + 0.701514i \(0.247492\pi\)
\(312\) 0 0
\(313\) 29.5629 1.67099 0.835497 0.549495i \(-0.185180\pi\)
0.835497 + 0.549495i \(0.185180\pi\)
\(314\) −15.3834 −0.868136
\(315\) 0 0
\(316\) −15.6179 −0.878578
\(317\) −4.28813 −0.240845 −0.120423 0.992723i \(-0.538425\pi\)
−0.120423 + 0.992723i \(0.538425\pi\)
\(318\) 0 0
\(319\) 3.30024 0.184778
\(320\) 4.67396 0.261282
\(321\) 0 0
\(322\) −10.2641 −0.571999
\(323\) 20.4570 1.13826
\(324\) 0 0
\(325\) 12.6118 0.699576
\(326\) −13.8039 −0.764526
\(327\) 0 0
\(328\) −1.80864 −0.0998655
\(329\) 30.1622 1.66289
\(330\) 0 0
\(331\) −27.8313 −1.52975 −0.764874 0.644179i \(-0.777199\pi\)
−0.764874 + 0.644179i \(0.777199\pi\)
\(332\) 2.25276 0.123636
\(333\) 0 0
\(334\) −2.64956 −0.144977
\(335\) 7.84963 0.428871
\(336\) 0 0
\(337\) 26.9017 1.46543 0.732715 0.680536i \(-0.238253\pi\)
0.732715 + 0.680536i \(0.238253\pi\)
\(338\) 5.61180 0.305242
\(339\) 0 0
\(340\) 9.42549 0.511169
\(341\) −3.32658 −0.180144
\(342\) 0 0
\(343\) −1.70905 −0.0922799
\(344\) −22.2317 −1.19865
\(345\) 0 0
\(346\) 14.5985 0.784822
\(347\) 30.4987 1.63726 0.818629 0.574322i \(-0.194734\pi\)
0.818629 + 0.574322i \(0.194734\pi\)
\(348\) 0 0
\(349\) −7.97533 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(350\) 8.34056 0.445822
\(351\) 0 0
\(352\) −29.5740 −1.57630
\(353\) 21.8302 1.16190 0.580952 0.813938i \(-0.302681\pi\)
0.580952 + 0.813938i \(0.302681\pi\)
\(354\) 0 0
\(355\) 9.08142 0.481992
\(356\) −1.44869 −0.0767805
\(357\) 0 0
\(358\) −9.28835 −0.490905
\(359\) 17.3105 0.913611 0.456805 0.889567i \(-0.348994\pi\)
0.456805 + 0.889567i \(0.348994\pi\)
\(360\) 0 0
\(361\) 0.931623 0.0490328
\(362\) −12.3366 −0.648397
\(363\) 0 0
\(364\) −23.7220 −1.24337
\(365\) −6.51750 −0.341142
\(366\) 0 0
\(367\) −23.9067 −1.24792 −0.623961 0.781456i \(-0.714477\pi\)
−0.623961 + 0.781456i \(0.714477\pi\)
\(368\) 2.44676 0.127546
\(369\) 0 0
\(370\) 1.15744 0.0601725
\(371\) 15.7729 0.818888
\(372\) 0 0
\(373\) −11.5309 −0.597046 −0.298523 0.954402i \(-0.596494\pi\)
−0.298523 + 0.954402i \(0.596494\pi\)
\(374\) 18.1008 0.935971
\(375\) 0 0
\(376\) 21.0177 1.08390
\(377\) 2.93317 0.151066
\(378\) 0 0
\(379\) 20.7311 1.06489 0.532443 0.846466i \(-0.321274\pi\)
0.532443 + 0.846466i \(0.321274\pi\)
\(380\) 9.18344 0.471101
\(381\) 0 0
\(382\) −4.50688 −0.230592
\(383\) 15.8552 0.810162 0.405081 0.914281i \(-0.367243\pi\)
0.405081 + 0.914281i \(0.367243\pi\)
\(384\) 0 0
\(385\) 28.4496 1.44992
\(386\) 0.137363 0.00699158
\(387\) 0 0
\(388\) −6.92944 −0.351789
\(389\) 28.5090 1.44547 0.722733 0.691128i \(-0.242886\pi\)
0.722733 + 0.691128i \(0.242886\pi\)
\(390\) 0 0
\(391\) −15.8310 −0.800609
\(392\) −19.7326 −0.996645
\(393\) 0 0
\(394\) −8.76543 −0.441596
\(395\) 16.6471 0.837608
\(396\) 0 0
\(397\) 31.6207 1.58700 0.793498 0.608573i \(-0.208258\pi\)
0.793498 + 0.608573i \(0.208258\pi\)
\(398\) −16.0048 −0.802246
\(399\) 0 0
\(400\) −1.98822 −0.0994111
\(401\) −17.0478 −0.851325 −0.425662 0.904882i \(-0.639959\pi\)
−0.425662 + 0.904882i \(0.639959\pi\)
\(402\) 0 0
\(403\) −2.95658 −0.147278
\(404\) −13.2952 −0.661458
\(405\) 0 0
\(406\) 1.93980 0.0962705
\(407\) −5.05523 −0.250579
\(408\) 0 0
\(409\) −23.8370 −1.17866 −0.589331 0.807892i \(-0.700608\pi\)
−0.589331 + 0.807892i \(0.700608\pi\)
\(410\) 0.790191 0.0390248
\(411\) 0 0
\(412\) −4.52198 −0.222782
\(413\) 20.0326 0.985738
\(414\) 0 0
\(415\) −2.40121 −0.117871
\(416\) −26.2847 −1.28871
\(417\) 0 0
\(418\) 17.6360 0.862604
\(419\) 15.7362 0.768765 0.384382 0.923174i \(-0.374414\pi\)
0.384382 + 0.923174i \(0.374414\pi\)
\(420\) 0 0
\(421\) −23.5578 −1.14814 −0.574070 0.818806i \(-0.694636\pi\)
−0.574070 + 0.818806i \(0.694636\pi\)
\(422\) 0.931125 0.0453265
\(423\) 0 0
\(424\) 10.9909 0.533767
\(425\) 12.8642 0.624004
\(426\) 0 0
\(427\) 25.8143 1.24924
\(428\) 23.3572 1.12901
\(429\) 0 0
\(430\) 9.71296 0.468401
\(431\) 1.41170 0.0679990 0.0339995 0.999422i \(-0.489176\pi\)
0.0339995 + 0.999422i \(0.489176\pi\)
\(432\) 0 0
\(433\) 13.0105 0.625244 0.312622 0.949878i \(-0.398793\pi\)
0.312622 + 0.949878i \(0.398793\pi\)
\(434\) −1.95528 −0.0938564
\(435\) 0 0
\(436\) −10.6070 −0.507984
\(437\) −15.4245 −0.737853
\(438\) 0 0
\(439\) 20.7384 0.989789 0.494895 0.868953i \(-0.335207\pi\)
0.494895 + 0.868953i \(0.335207\pi\)
\(440\) 19.8243 0.945087
\(441\) 0 0
\(442\) 16.0875 0.765207
\(443\) −33.9675 −1.61384 −0.806921 0.590659i \(-0.798868\pi\)
−0.806921 + 0.590659i \(0.798868\pi\)
\(444\) 0 0
\(445\) 1.54416 0.0732001
\(446\) −11.6450 −0.551406
\(447\) 0 0
\(448\) −11.9988 −0.566890
\(449\) −1.20059 −0.0566596 −0.0283298 0.999599i \(-0.509019\pi\)
−0.0283298 + 0.999599i \(0.509019\pi\)
\(450\) 0 0
\(451\) −3.45123 −0.162512
\(452\) −13.9187 −0.654683
\(453\) 0 0
\(454\) 19.2251 0.902280
\(455\) 25.2853 1.18539
\(456\) 0 0
\(457\) −32.0532 −1.49939 −0.749693 0.661786i \(-0.769799\pi\)
−0.749693 + 0.661786i \(0.769799\pi\)
\(458\) 1.19341 0.0557643
\(459\) 0 0
\(460\) −7.10679 −0.331356
\(461\) −0.336685 −0.0156810 −0.00784049 0.999969i \(-0.502496\pi\)
−0.00784049 + 0.999969i \(0.502496\pi\)
\(462\) 0 0
\(463\) −2.95273 −0.137225 −0.0686125 0.997643i \(-0.521857\pi\)
−0.0686125 + 0.997643i \(0.521857\pi\)
\(464\) −0.462408 −0.0214668
\(465\) 0 0
\(466\) −10.9885 −0.509032
\(467\) −3.78427 −0.175115 −0.0875576 0.996159i \(-0.527906\pi\)
−0.0875576 + 0.996159i \(0.527906\pi\)
\(468\) 0 0
\(469\) −20.1513 −0.930498
\(470\) −9.18258 −0.423561
\(471\) 0 0
\(472\) 13.9592 0.642522
\(473\) −42.4223 −1.95058
\(474\) 0 0
\(475\) 12.5338 0.575091
\(476\) −24.1968 −1.10906
\(477\) 0 0
\(478\) 17.9110 0.819231
\(479\) 3.16676 0.144693 0.0723465 0.997380i \(-0.476951\pi\)
0.0723465 + 0.997380i \(0.476951\pi\)
\(480\) 0 0
\(481\) −4.49296 −0.204862
\(482\) −5.52456 −0.251637
\(483\) 0 0
\(484\) −20.2089 −0.918586
\(485\) 7.38607 0.335384
\(486\) 0 0
\(487\) 1.22501 0.0555106 0.0277553 0.999615i \(-0.491164\pi\)
0.0277553 + 0.999615i \(0.491164\pi\)
\(488\) 17.9880 0.814278
\(489\) 0 0
\(490\) 8.62111 0.389462
\(491\) 40.5477 1.82989 0.914946 0.403577i \(-0.132233\pi\)
0.914946 + 0.403577i \(0.132233\pi\)
\(492\) 0 0
\(493\) 2.99187 0.134747
\(494\) 15.6744 0.705225
\(495\) 0 0
\(496\) 0.466099 0.0209285
\(497\) −23.3135 −1.04575
\(498\) 0 0
\(499\) −41.1516 −1.84220 −0.921100 0.389325i \(-0.872708\pi\)
−0.921100 + 0.389325i \(0.872708\pi\)
\(500\) 16.0599 0.718222
\(501\) 0 0
\(502\) −0.0519473 −0.00231852
\(503\) 10.1538 0.452735 0.226368 0.974042i \(-0.427315\pi\)
0.226368 + 0.974042i \(0.427315\pi\)
\(504\) 0 0
\(505\) 14.1713 0.630613
\(506\) −13.6480 −0.606726
\(507\) 0 0
\(508\) −5.39800 −0.239498
\(509\) −24.2472 −1.07474 −0.537369 0.843347i \(-0.680582\pi\)
−0.537369 + 0.843347i \(0.680582\pi\)
\(510\) 0 0
\(511\) 16.7315 0.740157
\(512\) 7.89547 0.348934
\(513\) 0 0
\(514\) −15.1180 −0.666827
\(515\) 4.81997 0.212393
\(516\) 0 0
\(517\) 40.1058 1.76385
\(518\) −2.97134 −0.130553
\(519\) 0 0
\(520\) 17.6194 0.772660
\(521\) 6.35050 0.278221 0.139110 0.990277i \(-0.455576\pi\)
0.139110 + 0.990277i \(0.455576\pi\)
\(522\) 0 0
\(523\) 28.1100 1.22916 0.614582 0.788853i \(-0.289325\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(524\) −23.1288 −1.01039
\(525\) 0 0
\(526\) −11.7702 −0.513205
\(527\) −3.01575 −0.131368
\(528\) 0 0
\(529\) −11.0635 −0.481020
\(530\) −4.80191 −0.208582
\(531\) 0 0
\(532\) −23.5754 −1.02212
\(533\) −3.06737 −0.132863
\(534\) 0 0
\(535\) −24.8963 −1.07636
\(536\) −14.0419 −0.606516
\(537\) 0 0
\(538\) 9.17261 0.395459
\(539\) −37.6535 −1.62185
\(540\) 0 0
\(541\) 2.68780 0.115558 0.0577788 0.998329i \(-0.481598\pi\)
0.0577788 + 0.998329i \(0.481598\pi\)
\(542\) −2.25106 −0.0966914
\(543\) 0 0
\(544\) −26.8107 −1.14950
\(545\) 11.3060 0.484296
\(546\) 0 0
\(547\) 32.8075 1.40275 0.701373 0.712794i \(-0.252571\pi\)
0.701373 + 0.712794i \(0.252571\pi\)
\(548\) 12.8859 0.550458
\(549\) 0 0
\(550\) 11.0902 0.472889
\(551\) 2.91504 0.124185
\(552\) 0 0
\(553\) −42.7358 −1.81731
\(554\) −1.79836 −0.0764050
\(555\) 0 0
\(556\) −22.1174 −0.937987
\(557\) −9.89968 −0.419463 −0.209731 0.977759i \(-0.567259\pi\)
−0.209731 + 0.977759i \(0.567259\pi\)
\(558\) 0 0
\(559\) −37.7039 −1.59470
\(560\) −3.98617 −0.168446
\(561\) 0 0
\(562\) −4.95932 −0.209196
\(563\) 7.03550 0.296511 0.148256 0.988949i \(-0.452634\pi\)
0.148256 + 0.988949i \(0.452634\pi\)
\(564\) 0 0
\(565\) 14.8359 0.624153
\(566\) −11.4745 −0.482310
\(567\) 0 0
\(568\) −16.2454 −0.681640
\(569\) −3.93812 −0.165095 −0.0825473 0.996587i \(-0.526306\pi\)
−0.0825473 + 0.996587i \(0.526306\pi\)
\(570\) 0 0
\(571\) 25.5675 1.06996 0.534982 0.844863i \(-0.320318\pi\)
0.534982 + 0.844863i \(0.320318\pi\)
\(572\) −31.5425 −1.31886
\(573\) 0 0
\(574\) −2.02855 −0.0846700
\(575\) −9.69954 −0.404499
\(576\) 0 0
\(577\) 4.69942 0.195639 0.0978197 0.995204i \(-0.468813\pi\)
0.0978197 + 0.995204i \(0.468813\pi\)
\(578\) 3.12318 0.129907
\(579\) 0 0
\(580\) 1.34310 0.0557690
\(581\) 6.16430 0.255738
\(582\) 0 0
\(583\) 20.9728 0.868605
\(584\) 11.6589 0.482448
\(585\) 0 0
\(586\) 19.8163 0.818606
\(587\) −27.7731 −1.14632 −0.573159 0.819444i \(-0.694282\pi\)
−0.573159 + 0.819444i \(0.694282\pi\)
\(588\) 0 0
\(589\) −2.93830 −0.121071
\(590\) −6.09872 −0.251080
\(591\) 0 0
\(592\) 0.708306 0.0291112
\(593\) 14.3326 0.588570 0.294285 0.955718i \(-0.404918\pi\)
0.294285 + 0.955718i \(0.404918\pi\)
\(594\) 0 0
\(595\) 25.7913 1.05734
\(596\) 32.4260 1.32822
\(597\) 0 0
\(598\) −12.1300 −0.496031
\(599\) −27.5031 −1.12375 −0.561873 0.827223i \(-0.689919\pi\)
−0.561873 + 0.827223i \(0.689919\pi\)
\(600\) 0 0
\(601\) 18.7502 0.764836 0.382418 0.923989i \(-0.375091\pi\)
0.382418 + 0.923989i \(0.375091\pi\)
\(602\) −24.9347 −1.01626
\(603\) 0 0
\(604\) 3.23970 0.131822
\(605\) 21.5406 0.875750
\(606\) 0 0
\(607\) 26.4087 1.07190 0.535948 0.844251i \(-0.319954\pi\)
0.535948 + 0.844251i \(0.319954\pi\)
\(608\) −26.1222 −1.05939
\(609\) 0 0
\(610\) −7.85891 −0.318198
\(611\) 35.6450 1.44204
\(612\) 0 0
\(613\) −34.9615 −1.41208 −0.706042 0.708170i \(-0.749521\pi\)
−0.706042 + 0.708170i \(0.749521\pi\)
\(614\) −9.52185 −0.384271
\(615\) 0 0
\(616\) −50.8922 −2.05051
\(617\) 7.15141 0.287905 0.143952 0.989585i \(-0.454019\pi\)
0.143952 + 0.989585i \(0.454019\pi\)
\(618\) 0 0
\(619\) −18.8216 −0.756504 −0.378252 0.925703i \(-0.623475\pi\)
−0.378252 + 0.925703i \(0.623475\pi\)
\(620\) −1.35382 −0.0543706
\(621\) 0 0
\(622\) 19.6447 0.787681
\(623\) −3.96410 −0.158818
\(624\) 0 0
\(625\) −3.08098 −0.123239
\(626\) 23.1048 0.923454
\(627\) 0 0
\(628\) 27.3436 1.09113
\(629\) −4.58288 −0.182731
\(630\) 0 0
\(631\) 23.4802 0.934732 0.467366 0.884064i \(-0.345203\pi\)
0.467366 + 0.884064i \(0.345203\pi\)
\(632\) −29.7793 −1.18456
\(633\) 0 0
\(634\) −3.35138 −0.133100
\(635\) 5.75371 0.228329
\(636\) 0 0
\(637\) −33.4655 −1.32595
\(638\) 2.57929 0.102115
\(639\) 0 0
\(640\) −13.6749 −0.540546
\(641\) 4.35901 0.172171 0.0860853 0.996288i \(-0.472564\pi\)
0.0860853 + 0.996288i \(0.472564\pi\)
\(642\) 0 0
\(643\) 19.0120 0.749760 0.374880 0.927073i \(-0.377684\pi\)
0.374880 + 0.927073i \(0.377684\pi\)
\(644\) 18.2443 0.718925
\(645\) 0 0
\(646\) 15.9881 0.629043
\(647\) 20.6268 0.810924 0.405462 0.914112i \(-0.367111\pi\)
0.405462 + 0.914112i \(0.367111\pi\)
\(648\) 0 0
\(649\) 26.6367 1.04558
\(650\) 9.85671 0.386612
\(651\) 0 0
\(652\) 24.5361 0.960907
\(653\) −5.99076 −0.234437 −0.117218 0.993106i \(-0.537398\pi\)
−0.117218 + 0.993106i \(0.537398\pi\)
\(654\) 0 0
\(655\) 24.6529 0.963269
\(656\) 0.483565 0.0188800
\(657\) 0 0
\(658\) 23.5732 0.918978
\(659\) 38.8389 1.51295 0.756475 0.654022i \(-0.226920\pi\)
0.756475 + 0.654022i \(0.226920\pi\)
\(660\) 0 0
\(661\) 30.9957 1.20559 0.602796 0.797896i \(-0.294053\pi\)
0.602796 + 0.797896i \(0.294053\pi\)
\(662\) −21.7515 −0.845397
\(663\) 0 0
\(664\) 4.29543 0.166695
\(665\) 25.1289 0.974458
\(666\) 0 0
\(667\) −2.25586 −0.0873472
\(668\) 4.70953 0.182217
\(669\) 0 0
\(670\) 6.13486 0.237010
\(671\) 34.3245 1.32508
\(672\) 0 0
\(673\) −38.5896 −1.48752 −0.743760 0.668447i \(-0.766959\pi\)
−0.743760 + 0.668447i \(0.766959\pi\)
\(674\) 21.0250 0.809852
\(675\) 0 0
\(676\) −9.97485 −0.383648
\(677\) −3.98869 −0.153298 −0.0766489 0.997058i \(-0.524422\pi\)
−0.0766489 + 0.997058i \(0.524422\pi\)
\(678\) 0 0
\(679\) −18.9612 −0.727666
\(680\) 17.9719 0.689193
\(681\) 0 0
\(682\) −2.59988 −0.0995547
\(683\) −42.1155 −1.61151 −0.805753 0.592252i \(-0.798239\pi\)
−0.805753 + 0.592252i \(0.798239\pi\)
\(684\) 0 0
\(685\) −13.7350 −0.524789
\(686\) −1.33570 −0.0509974
\(687\) 0 0
\(688\) 5.94394 0.226610
\(689\) 18.6401 0.710131
\(690\) 0 0
\(691\) −8.55061 −0.325281 −0.162640 0.986685i \(-0.552001\pi\)
−0.162640 + 0.986685i \(0.552001\pi\)
\(692\) −25.9485 −0.986415
\(693\) 0 0
\(694\) 23.8362 0.904811
\(695\) 23.5749 0.894246
\(696\) 0 0
\(697\) −3.12875 −0.118510
\(698\) −6.23310 −0.235926
\(699\) 0 0
\(700\) −14.8252 −0.560338
\(701\) −0.881949 −0.0333108 −0.0166554 0.999861i \(-0.505302\pi\)
−0.0166554 + 0.999861i \(0.505302\pi\)
\(702\) 0 0
\(703\) −4.46519 −0.168408
\(704\) −15.9545 −0.601307
\(705\) 0 0
\(706\) 17.0613 0.642112
\(707\) −36.3799 −1.36821
\(708\) 0 0
\(709\) −40.2337 −1.51101 −0.755504 0.655144i \(-0.772608\pi\)
−0.755504 + 0.655144i \(0.772608\pi\)
\(710\) 7.09756 0.266367
\(711\) 0 0
\(712\) −2.76228 −0.103521
\(713\) 2.27387 0.0851569
\(714\) 0 0
\(715\) 33.6211 1.25736
\(716\) 16.5098 0.617001
\(717\) 0 0
\(718\) 13.5289 0.504896
\(719\) 13.7722 0.513615 0.256807 0.966463i \(-0.417329\pi\)
0.256807 + 0.966463i \(0.417329\pi\)
\(720\) 0 0
\(721\) −12.3736 −0.460818
\(722\) 0.728108 0.0270974
\(723\) 0 0
\(724\) 21.9280 0.814948
\(725\) 1.83309 0.0680794
\(726\) 0 0
\(727\) −12.4849 −0.463039 −0.231520 0.972830i \(-0.574370\pi\)
−0.231520 + 0.972830i \(0.574370\pi\)
\(728\) −45.2317 −1.67640
\(729\) 0 0
\(730\) −5.09374 −0.188528
\(731\) −38.4584 −1.42243
\(732\) 0 0
\(733\) −26.8730 −0.992575 −0.496288 0.868158i \(-0.665304\pi\)
−0.496288 + 0.868158i \(0.665304\pi\)
\(734\) −18.6843 −0.689649
\(735\) 0 0
\(736\) 20.2152 0.745141
\(737\) −26.7946 −0.986991
\(738\) 0 0
\(739\) −24.3811 −0.896874 −0.448437 0.893815i \(-0.648019\pi\)
−0.448437 + 0.893815i \(0.648019\pi\)
\(740\) −2.05732 −0.0756287
\(741\) 0 0
\(742\) 12.3273 0.452549
\(743\) 36.0700 1.32328 0.661640 0.749822i \(-0.269861\pi\)
0.661640 + 0.749822i \(0.269861\pi\)
\(744\) 0 0
\(745\) −34.5628 −1.26628
\(746\) −9.01192 −0.329950
\(747\) 0 0
\(748\) −32.1738 −1.17639
\(749\) 63.9129 2.33533
\(750\) 0 0
\(751\) −2.33641 −0.0852570 −0.0426285 0.999091i \(-0.513573\pi\)
−0.0426285 + 0.999091i \(0.513573\pi\)
\(752\) −5.61937 −0.204917
\(753\) 0 0
\(754\) 2.29241 0.0834847
\(755\) −3.45319 −0.125674
\(756\) 0 0
\(757\) −16.1729 −0.587815 −0.293907 0.955834i \(-0.594956\pi\)
−0.293907 + 0.955834i \(0.594956\pi\)
\(758\) 16.2024 0.588496
\(759\) 0 0
\(760\) 17.5104 0.635170
\(761\) 45.3568 1.64418 0.822092 0.569355i \(-0.192807\pi\)
0.822092 + 0.569355i \(0.192807\pi\)
\(762\) 0 0
\(763\) −29.0243 −1.05075
\(764\) 8.01088 0.289823
\(765\) 0 0
\(766\) 12.3916 0.447726
\(767\) 23.6741 0.854821
\(768\) 0 0
\(769\) 18.3658 0.662289 0.331144 0.943580i \(-0.392565\pi\)
0.331144 + 0.943580i \(0.392565\pi\)
\(770\) 22.2347 0.801283
\(771\) 0 0
\(772\) −0.244159 −0.00878748
\(773\) −29.4789 −1.06028 −0.530141 0.847910i \(-0.677861\pi\)
−0.530141 + 0.847910i \(0.677861\pi\)
\(774\) 0 0
\(775\) −1.84773 −0.0663722
\(776\) −13.2126 −0.474306
\(777\) 0 0
\(778\) 22.2812 0.798819
\(779\) −3.04841 −0.109221
\(780\) 0 0
\(781\) −30.9993 −1.10924
\(782\) −12.3727 −0.442447
\(783\) 0 0
\(784\) 5.27577 0.188420
\(785\) −29.1455 −1.04025
\(786\) 0 0
\(787\) 32.0568 1.14270 0.571351 0.820706i \(-0.306419\pi\)
0.571351 + 0.820706i \(0.306419\pi\)
\(788\) 15.5803 0.555027
\(789\) 0 0
\(790\) 13.0105 0.462894
\(791\) −38.0863 −1.35419
\(792\) 0 0
\(793\) 30.5068 1.08333
\(794\) 24.7131 0.877034
\(795\) 0 0
\(796\) 28.4481 1.00832
\(797\) −11.7864 −0.417496 −0.208748 0.977969i \(-0.566939\pi\)
−0.208748 + 0.977969i \(0.566939\pi\)
\(798\) 0 0
\(799\) 36.3584 1.28627
\(800\) −16.4267 −0.580771
\(801\) 0 0
\(802\) −13.3236 −0.470474
\(803\) 22.2474 0.785093
\(804\) 0 0
\(805\) −19.4465 −0.685400
\(806\) −2.31071 −0.0813913
\(807\) 0 0
\(808\) −25.3504 −0.891823
\(809\) −21.4155 −0.752929 −0.376464 0.926431i \(-0.622860\pi\)
−0.376464 + 0.926431i \(0.622860\pi\)
\(810\) 0 0
\(811\) 1.73790 0.0610258 0.0305129 0.999534i \(-0.490286\pi\)
0.0305129 + 0.999534i \(0.490286\pi\)
\(812\) −3.44794 −0.120999
\(813\) 0 0
\(814\) −3.95091 −0.138479
\(815\) −26.1529 −0.916097
\(816\) 0 0
\(817\) −37.4708 −1.31094
\(818\) −18.6297 −0.651373
\(819\) 0 0
\(820\) −1.40455 −0.0490489
\(821\) 8.91880 0.311268 0.155634 0.987815i \(-0.450258\pi\)
0.155634 + 0.987815i \(0.450258\pi\)
\(822\) 0 0
\(823\) 1.85218 0.0645628 0.0322814 0.999479i \(-0.489723\pi\)
0.0322814 + 0.999479i \(0.489723\pi\)
\(824\) −8.62224 −0.300370
\(825\) 0 0
\(826\) 15.6564 0.544756
\(827\) −21.0373 −0.731537 −0.365769 0.930706i \(-0.619194\pi\)
−0.365769 + 0.930706i \(0.619194\pi\)
\(828\) 0 0
\(829\) 5.67239 0.197010 0.0985050 0.995137i \(-0.468594\pi\)
0.0985050 + 0.995137i \(0.468594\pi\)
\(830\) −1.87666 −0.0651399
\(831\) 0 0
\(832\) −14.1799 −0.491601
\(833\) −34.1352 −1.18272
\(834\) 0 0
\(835\) −5.01987 −0.173720
\(836\) −31.3475 −1.08418
\(837\) 0 0
\(838\) 12.2986 0.424849
\(839\) −23.9284 −0.826099 −0.413050 0.910709i \(-0.635536\pi\)
−0.413050 + 0.910709i \(0.635536\pi\)
\(840\) 0 0
\(841\) −28.5737 −0.985299
\(842\) −18.4116 −0.634505
\(843\) 0 0
\(844\) −1.65505 −0.0569693
\(845\) 10.6322 0.365757
\(846\) 0 0
\(847\) −55.2982 −1.90007
\(848\) −2.93857 −0.100911
\(849\) 0 0
\(850\) 10.0540 0.344848
\(851\) 3.45547 0.118452
\(852\) 0 0
\(853\) 6.75335 0.231230 0.115615 0.993294i \(-0.463116\pi\)
0.115615 + 0.993294i \(0.463116\pi\)
\(854\) 20.1751 0.690377
\(855\) 0 0
\(856\) 44.5360 1.52221
\(857\) 18.8564 0.644123 0.322062 0.946719i \(-0.395624\pi\)
0.322062 + 0.946719i \(0.395624\pi\)
\(858\) 0 0
\(859\) 32.4166 1.10604 0.553019 0.833168i \(-0.313476\pi\)
0.553019 + 0.833168i \(0.313476\pi\)
\(860\) −17.2646 −0.588717
\(861\) 0 0
\(862\) 1.10331 0.0375788
\(863\) 47.2242 1.60753 0.803765 0.594947i \(-0.202827\pi\)
0.803765 + 0.594947i \(0.202827\pi\)
\(864\) 0 0
\(865\) 27.6585 0.940416
\(866\) 10.1683 0.345533
\(867\) 0 0
\(868\) 3.47546 0.117965
\(869\) −56.8247 −1.92765
\(870\) 0 0
\(871\) −23.8143 −0.806918
\(872\) −20.2248 −0.684899
\(873\) 0 0
\(874\) −12.0550 −0.407766
\(875\) 43.9452 1.48562
\(876\) 0 0
\(877\) 5.63165 0.190167 0.0950837 0.995469i \(-0.469688\pi\)
0.0950837 + 0.995469i \(0.469688\pi\)
\(878\) 16.2080 0.546995
\(879\) 0 0
\(880\) −5.30030 −0.178673
\(881\) 5.67058 0.191047 0.0955234 0.995427i \(-0.469548\pi\)
0.0955234 + 0.995427i \(0.469548\pi\)
\(882\) 0 0
\(883\) 34.3021 1.15436 0.577179 0.816618i \(-0.304153\pi\)
0.577179 + 0.816618i \(0.304153\pi\)
\(884\) −28.5952 −0.961762
\(885\) 0 0
\(886\) −26.5472 −0.891871
\(887\) −26.8838 −0.902670 −0.451335 0.892355i \(-0.649052\pi\)
−0.451335 + 0.892355i \(0.649052\pi\)
\(888\) 0 0
\(889\) −14.7707 −0.495394
\(890\) 1.20683 0.0404531
\(891\) 0 0
\(892\) 20.6987 0.693043
\(893\) 35.4247 1.18544
\(894\) 0 0
\(895\) −17.5978 −0.588229
\(896\) 35.1055 1.17279
\(897\) 0 0
\(898\) −0.938322 −0.0313122
\(899\) −0.429732 −0.0143324
\(900\) 0 0
\(901\) 19.0131 0.633419
\(902\) −2.69731 −0.0898104
\(903\) 0 0
\(904\) −26.5394 −0.882687
\(905\) −23.3730 −0.776945
\(906\) 0 0
\(907\) 30.4385 1.01070 0.505348 0.862916i \(-0.331364\pi\)
0.505348 + 0.862916i \(0.331364\pi\)
\(908\) −34.1722 −1.13404
\(909\) 0 0
\(910\) 19.7616 0.655092
\(911\) −14.0660 −0.466026 −0.233013 0.972474i \(-0.574858\pi\)
−0.233013 + 0.972474i \(0.574858\pi\)
\(912\) 0 0
\(913\) 8.19650 0.271265
\(914\) −25.0511 −0.828617
\(915\) 0 0
\(916\) −2.12125 −0.0700882
\(917\) −63.2880 −2.08995
\(918\) 0 0
\(919\) 29.0015 0.956670 0.478335 0.878177i \(-0.341240\pi\)
0.478335 + 0.878177i \(0.341240\pi\)
\(920\) −13.5508 −0.446756
\(921\) 0 0
\(922\) −0.263135 −0.00866590
\(923\) −27.5514 −0.906865
\(924\) 0 0
\(925\) −2.80789 −0.0923229
\(926\) −2.30770 −0.0758357
\(927\) 0 0
\(928\) −3.82041 −0.125411
\(929\) 44.5589 1.46193 0.730965 0.682415i \(-0.239070\pi\)
0.730965 + 0.682415i \(0.239070\pi\)
\(930\) 0 0
\(931\) −33.2586 −1.09001
\(932\) 19.5318 0.639784
\(933\) 0 0
\(934\) −2.95759 −0.0967753
\(935\) 34.2939 1.12153
\(936\) 0 0
\(937\) −20.5920 −0.672710 −0.336355 0.941735i \(-0.609194\pi\)
−0.336355 + 0.941735i \(0.609194\pi\)
\(938\) −15.7492 −0.514229
\(939\) 0 0
\(940\) 16.3218 0.532359
\(941\) −56.7820 −1.85104 −0.925520 0.378698i \(-0.876372\pi\)
−0.925520 + 0.378698i \(0.876372\pi\)
\(942\) 0 0
\(943\) 2.35907 0.0768219
\(944\) −3.73217 −0.121472
\(945\) 0 0
\(946\) −33.1550 −1.07796
\(947\) 15.7756 0.512638 0.256319 0.966592i \(-0.417490\pi\)
0.256319 + 0.966592i \(0.417490\pi\)
\(948\) 0 0
\(949\) 19.7729 0.641856
\(950\) 9.79578 0.317817
\(951\) 0 0
\(952\) −46.1369 −1.49530
\(953\) 50.4349 1.63375 0.816873 0.576818i \(-0.195706\pi\)
0.816873 + 0.576818i \(0.195706\pi\)
\(954\) 0 0
\(955\) −8.53878 −0.276308
\(956\) −31.8364 −1.02966
\(957\) 0 0
\(958\) 2.47497 0.0799628
\(959\) 35.2601 1.13861
\(960\) 0 0
\(961\) −30.5668 −0.986027
\(962\) −3.51147 −0.113214
\(963\) 0 0
\(964\) 9.81978 0.316274
\(965\) 0.260248 0.00837769
\(966\) 0 0
\(967\) 21.8942 0.704070 0.352035 0.935987i \(-0.385490\pi\)
0.352035 + 0.935987i \(0.385490\pi\)
\(968\) −38.5331 −1.23850
\(969\) 0 0
\(970\) 5.77257 0.185346
\(971\) 21.3313 0.684555 0.342277 0.939599i \(-0.388802\pi\)
0.342277 + 0.939599i \(0.388802\pi\)
\(972\) 0 0
\(973\) −60.5205 −1.94020
\(974\) 0.957406 0.0306773
\(975\) 0 0
\(976\) −4.80933 −0.153943
\(977\) −7.17129 −0.229430 −0.114715 0.993398i \(-0.536595\pi\)
−0.114715 + 0.993398i \(0.536595\pi\)
\(978\) 0 0
\(979\) −5.27096 −0.168460
\(980\) −15.3238 −0.489502
\(981\) 0 0
\(982\) 31.6900 1.01127
\(983\) 41.4135 1.32089 0.660443 0.750876i \(-0.270369\pi\)
0.660443 + 0.750876i \(0.270369\pi\)
\(984\) 0 0
\(985\) −16.6070 −0.529144
\(986\) 2.33829 0.0744662
\(987\) 0 0
\(988\) −27.8609 −0.886374
\(989\) 28.9975 0.922067
\(990\) 0 0
\(991\) −54.5793 −1.73377 −0.866884 0.498509i \(-0.833881\pi\)
−0.866884 + 0.498509i \(0.833881\pi\)
\(992\) 3.85091 0.122267
\(993\) 0 0
\(994\) −18.2206 −0.577922
\(995\) −30.3227 −0.961295
\(996\) 0 0
\(997\) −26.5122 −0.839649 −0.419824 0.907605i \(-0.637908\pi\)
−0.419824 + 0.907605i \(0.637908\pi\)
\(998\) −32.1620 −1.01807
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.43 72
3.2 odd 2 6561.2.a.c.1.30 72
81.5 odd 54 81.2.g.a.25.4 yes 144
81.11 odd 54 729.2.g.d.514.5 144
81.16 even 27 243.2.g.a.10.5 144
81.22 even 27 729.2.g.a.217.4 144
81.32 odd 54 729.2.g.c.703.5 144
81.38 odd 54 729.2.g.c.28.5 144
81.43 even 27 729.2.g.b.28.4 144
81.49 even 27 729.2.g.b.703.4 144
81.59 odd 54 729.2.g.d.217.5 144
81.65 odd 54 81.2.g.a.13.4 144
81.70 even 27 729.2.g.a.514.4 144
81.76 even 27 243.2.g.a.73.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.4 144 81.65 odd 54
81.2.g.a.25.4 yes 144 81.5 odd 54
243.2.g.a.10.5 144 81.16 even 27
243.2.g.a.73.5 144 81.76 even 27
729.2.g.a.217.4 144 81.22 even 27
729.2.g.a.514.4 144 81.70 even 27
729.2.g.b.28.4 144 81.43 even 27
729.2.g.b.703.4 144 81.49 even 27
729.2.g.c.28.5 144 81.38 odd 54
729.2.g.c.703.5 144 81.32 odd 54
729.2.g.d.217.5 144 81.59 odd 54
729.2.g.d.514.5 144 81.11 odd 54
6561.2.a.c.1.30 72 3.2 odd 2
6561.2.a.d.1.43 72 1.1 even 1 trivial