Properties

Label 6561.2.a.d.1.42
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.42
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.661372 q^{2} -1.56259 q^{4} +2.51349 q^{5} +4.11204 q^{7} -2.35619 q^{8} +1.66235 q^{10} -2.96060 q^{11} -3.24317 q^{13} +2.71959 q^{14} +1.56685 q^{16} +3.29829 q^{17} -3.28896 q^{19} -3.92756 q^{20} -1.95805 q^{22} -2.49612 q^{23} +1.31766 q^{25} -2.14494 q^{26} -6.42542 q^{28} -5.56701 q^{29} +6.42268 q^{31} +5.74866 q^{32} +2.18139 q^{34} +10.3356 q^{35} +2.73427 q^{37} -2.17522 q^{38} -5.92228 q^{40} +9.04853 q^{41} -7.81757 q^{43} +4.62619 q^{44} -1.65086 q^{46} +10.1199 q^{47} +9.90886 q^{49} +0.871461 q^{50} +5.06773 q^{52} +0.00988863 q^{53} -7.44144 q^{55} -9.68876 q^{56} -3.68186 q^{58} +11.3730 q^{59} +9.01190 q^{61} +4.24778 q^{62} +0.668297 q^{64} -8.15168 q^{65} +5.84527 q^{67} -5.15386 q^{68} +6.83567 q^{70} +2.37345 q^{71} +4.72541 q^{73} +1.80837 q^{74} +5.13928 q^{76} -12.1741 q^{77} +9.00201 q^{79} +3.93828 q^{80} +5.98444 q^{82} +3.70134 q^{83} +8.29022 q^{85} -5.17032 q^{86} +6.97574 q^{88} +12.4961 q^{89} -13.3360 q^{91} +3.90041 q^{92} +6.69304 q^{94} -8.26678 q^{95} -7.15193 q^{97} +6.55344 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.661372 0.467661 0.233830 0.972277i \(-0.424874\pi\)
0.233830 + 0.972277i \(0.424874\pi\)
\(3\) 0 0
\(4\) −1.56259 −0.781294
\(5\) 2.51349 1.12407 0.562035 0.827114i \(-0.310019\pi\)
0.562035 + 0.827114i \(0.310019\pi\)
\(6\) 0 0
\(7\) 4.11204 1.55420 0.777102 0.629374i \(-0.216689\pi\)
0.777102 + 0.629374i \(0.216689\pi\)
\(8\) −2.35619 −0.833041
\(9\) 0 0
\(10\) 1.66235 0.525683
\(11\) −2.96060 −0.892653 −0.446327 0.894870i \(-0.647268\pi\)
−0.446327 + 0.894870i \(0.647268\pi\)
\(12\) 0 0
\(13\) −3.24317 −0.899492 −0.449746 0.893156i \(-0.648486\pi\)
−0.449746 + 0.893156i \(0.648486\pi\)
\(14\) 2.71959 0.726840
\(15\) 0 0
\(16\) 1.56685 0.391713
\(17\) 3.29829 0.799952 0.399976 0.916526i \(-0.369018\pi\)
0.399976 + 0.916526i \(0.369018\pi\)
\(18\) 0 0
\(19\) −3.28896 −0.754539 −0.377269 0.926104i \(-0.623137\pi\)
−0.377269 + 0.926104i \(0.623137\pi\)
\(20\) −3.92756 −0.878228
\(21\) 0 0
\(22\) −1.95805 −0.417459
\(23\) −2.49612 −0.520477 −0.260239 0.965544i \(-0.583801\pi\)
−0.260239 + 0.965544i \(0.583801\pi\)
\(24\) 0 0
\(25\) 1.31766 0.263531
\(26\) −2.14494 −0.420657
\(27\) 0 0
\(28\) −6.42542 −1.21429
\(29\) −5.56701 −1.03377 −0.516884 0.856056i \(-0.672908\pi\)
−0.516884 + 0.856056i \(0.672908\pi\)
\(30\) 0 0
\(31\) 6.42268 1.15355 0.576774 0.816904i \(-0.304311\pi\)
0.576774 + 0.816904i \(0.304311\pi\)
\(32\) 5.74866 1.01623
\(33\) 0 0
\(34\) 2.18139 0.374106
\(35\) 10.3356 1.74703
\(36\) 0 0
\(37\) 2.73427 0.449511 0.224756 0.974415i \(-0.427842\pi\)
0.224756 + 0.974415i \(0.427842\pi\)
\(38\) −2.17522 −0.352868
\(39\) 0 0
\(40\) −5.92228 −0.936395
\(41\) 9.04853 1.41314 0.706571 0.707642i \(-0.250241\pi\)
0.706571 + 0.707642i \(0.250241\pi\)
\(42\) 0 0
\(43\) −7.81757 −1.19217 −0.596084 0.802922i \(-0.703278\pi\)
−0.596084 + 0.802922i \(0.703278\pi\)
\(44\) 4.62619 0.697424
\(45\) 0 0
\(46\) −1.65086 −0.243407
\(47\) 10.1199 1.47614 0.738072 0.674722i \(-0.235737\pi\)
0.738072 + 0.674722i \(0.235737\pi\)
\(48\) 0 0
\(49\) 9.90886 1.41555
\(50\) 0.871461 0.123243
\(51\) 0 0
\(52\) 5.06773 0.702768
\(53\) 0.00988863 0.00135831 0.000679154 1.00000i \(-0.499784\pi\)
0.000679154 1.00000i \(0.499784\pi\)
\(54\) 0 0
\(55\) −7.44144 −1.00340
\(56\) −9.68876 −1.29472
\(57\) 0 0
\(58\) −3.68186 −0.483452
\(59\) 11.3730 1.48064 0.740321 0.672253i \(-0.234673\pi\)
0.740321 + 0.672253i \(0.234673\pi\)
\(60\) 0 0
\(61\) 9.01190 1.15386 0.576928 0.816795i \(-0.304251\pi\)
0.576928 + 0.816795i \(0.304251\pi\)
\(62\) 4.24778 0.539469
\(63\) 0 0
\(64\) 0.668297 0.0835371
\(65\) −8.15168 −1.01109
\(66\) 0 0
\(67\) 5.84527 0.714113 0.357056 0.934083i \(-0.383780\pi\)
0.357056 + 0.934083i \(0.383780\pi\)
\(68\) −5.15386 −0.624997
\(69\) 0 0
\(70\) 6.83567 0.817018
\(71\) 2.37345 0.281677 0.140839 0.990033i \(-0.455020\pi\)
0.140839 + 0.990033i \(0.455020\pi\)
\(72\) 0 0
\(73\) 4.72541 0.553067 0.276534 0.961004i \(-0.410814\pi\)
0.276534 + 0.961004i \(0.410814\pi\)
\(74\) 1.80837 0.210219
\(75\) 0 0
\(76\) 5.13928 0.589516
\(77\) −12.1741 −1.38737
\(78\) 0 0
\(79\) 9.00201 1.01281 0.506403 0.862297i \(-0.330975\pi\)
0.506403 + 0.862297i \(0.330975\pi\)
\(80\) 3.93828 0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) 3.70134 0.406275 0.203138 0.979150i \(-0.434886\pi\)
0.203138 + 0.979150i \(0.434886\pi\)
\(84\) 0 0
\(85\) 8.29022 0.899201
\(86\) −5.17032 −0.557530
\(87\) 0 0
\(88\) 6.97574 0.743616
\(89\) 12.4961 1.32459 0.662293 0.749245i \(-0.269584\pi\)
0.662293 + 0.749245i \(0.269584\pi\)
\(90\) 0 0
\(91\) −13.3360 −1.39799
\(92\) 3.90041 0.406646
\(93\) 0 0
\(94\) 6.69304 0.690334
\(95\) −8.26678 −0.848153
\(96\) 0 0
\(97\) −7.15193 −0.726168 −0.363084 0.931756i \(-0.618276\pi\)
−0.363084 + 0.931756i \(0.618276\pi\)
\(98\) 6.55344 0.661997
\(99\) 0 0
\(100\) −2.05895 −0.205895
\(101\) 2.10610 0.209565 0.104783 0.994495i \(-0.466585\pi\)
0.104783 + 0.994495i \(0.466585\pi\)
\(102\) 0 0
\(103\) −2.06534 −0.203504 −0.101752 0.994810i \(-0.532445\pi\)
−0.101752 + 0.994810i \(0.532445\pi\)
\(104\) 7.64153 0.749314
\(105\) 0 0
\(106\) 0.00654006 0.000635227 0
\(107\) −14.2636 −1.37891 −0.689456 0.724327i \(-0.742150\pi\)
−0.689456 + 0.724327i \(0.742150\pi\)
\(108\) 0 0
\(109\) 13.4047 1.28394 0.641970 0.766730i \(-0.278117\pi\)
0.641970 + 0.766730i \(0.278117\pi\)
\(110\) −4.92156 −0.469252
\(111\) 0 0
\(112\) 6.44296 0.608803
\(113\) 2.96033 0.278485 0.139242 0.990258i \(-0.455533\pi\)
0.139242 + 0.990258i \(0.455533\pi\)
\(114\) 0 0
\(115\) −6.27399 −0.585053
\(116\) 8.69893 0.807676
\(117\) 0 0
\(118\) 7.52180 0.692438
\(119\) 13.5627 1.24329
\(120\) 0 0
\(121\) −2.23488 −0.203171
\(122\) 5.96021 0.539612
\(123\) 0 0
\(124\) −10.0360 −0.901259
\(125\) −9.25555 −0.827842
\(126\) 0 0
\(127\) 12.0319 1.06766 0.533828 0.845593i \(-0.320753\pi\)
0.533828 + 0.845593i \(0.320753\pi\)
\(128\) −11.0553 −0.977163
\(129\) 0 0
\(130\) −5.39129 −0.472848
\(131\) 5.13626 0.448757 0.224379 0.974502i \(-0.427965\pi\)
0.224379 + 0.974502i \(0.427965\pi\)
\(132\) 0 0
\(133\) −13.5243 −1.17271
\(134\) 3.86589 0.333962
\(135\) 0 0
\(136\) −7.77140 −0.666392
\(137\) −1.90105 −0.162417 −0.0812087 0.996697i \(-0.525878\pi\)
−0.0812087 + 0.996697i \(0.525878\pi\)
\(138\) 0 0
\(139\) 9.35782 0.793720 0.396860 0.917879i \(-0.370100\pi\)
0.396860 + 0.917879i \(0.370100\pi\)
\(140\) −16.1503 −1.36495
\(141\) 0 0
\(142\) 1.56973 0.131729
\(143\) 9.60170 0.802935
\(144\) 0 0
\(145\) −13.9926 −1.16203
\(146\) 3.12525 0.258648
\(147\) 0 0
\(148\) −4.27253 −0.351200
\(149\) 0.888642 0.0728004 0.0364002 0.999337i \(-0.488411\pi\)
0.0364002 + 0.999337i \(0.488411\pi\)
\(150\) 0 0
\(151\) −8.05855 −0.655796 −0.327898 0.944713i \(-0.606340\pi\)
−0.327898 + 0.944713i \(0.606340\pi\)
\(152\) 7.74942 0.628561
\(153\) 0 0
\(154\) −8.05159 −0.648816
\(155\) 16.1434 1.29667
\(156\) 0 0
\(157\) −14.4705 −1.15487 −0.577437 0.816435i \(-0.695947\pi\)
−0.577437 + 0.816435i \(0.695947\pi\)
\(158\) 5.95368 0.473649
\(159\) 0 0
\(160\) 14.4492 1.14231
\(161\) −10.2641 −0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) −14.1391 −1.10408
\(165\) 0 0
\(166\) 2.44796 0.189999
\(167\) −16.8824 −1.30640 −0.653198 0.757187i \(-0.726573\pi\)
−0.653198 + 0.757187i \(0.726573\pi\)
\(168\) 0 0
\(169\) −2.48188 −0.190914
\(170\) 5.48292 0.420521
\(171\) 0 0
\(172\) 12.2156 0.931434
\(173\) −6.72317 −0.511153 −0.255577 0.966789i \(-0.582265\pi\)
−0.255577 + 0.966789i \(0.582265\pi\)
\(174\) 0 0
\(175\) 5.41825 0.409582
\(176\) −4.63882 −0.349664
\(177\) 0 0
\(178\) 8.26458 0.619456
\(179\) 15.2057 1.13652 0.568262 0.822848i \(-0.307616\pi\)
0.568262 + 0.822848i \(0.307616\pi\)
\(180\) 0 0
\(181\) −5.60500 −0.416616 −0.208308 0.978063i \(-0.566796\pi\)
−0.208308 + 0.978063i \(0.566796\pi\)
\(182\) −8.82007 −0.653787
\(183\) 0 0
\(184\) 5.88135 0.433579
\(185\) 6.87257 0.505281
\(186\) 0 0
\(187\) −9.76489 −0.714079
\(188\) −15.8133 −1.15330
\(189\) 0 0
\(190\) −5.46741 −0.396648
\(191\) 4.29567 0.310824 0.155412 0.987850i \(-0.450329\pi\)
0.155412 + 0.987850i \(0.450329\pi\)
\(192\) 0 0
\(193\) 2.83368 0.203973 0.101986 0.994786i \(-0.467480\pi\)
0.101986 + 0.994786i \(0.467480\pi\)
\(194\) −4.73008 −0.339600
\(195\) 0 0
\(196\) −15.4835 −1.10596
\(197\) 21.2481 1.51387 0.756933 0.653492i \(-0.226697\pi\)
0.756933 + 0.653492i \(0.226697\pi\)
\(198\) 0 0
\(199\) 9.73222 0.689899 0.344949 0.938621i \(-0.387896\pi\)
0.344949 + 0.938621i \(0.387896\pi\)
\(200\) −3.10466 −0.219532
\(201\) 0 0
\(202\) 1.39292 0.0980053
\(203\) −22.8917 −1.60669
\(204\) 0 0
\(205\) 22.7434 1.58847
\(206\) −1.36596 −0.0951708
\(207\) 0 0
\(208\) −5.08157 −0.352343
\(209\) 9.73727 0.673541
\(210\) 0 0
\(211\) 19.5782 1.34782 0.673909 0.738815i \(-0.264614\pi\)
0.673909 + 0.738815i \(0.264614\pi\)
\(212\) −0.0154519 −0.00106124
\(213\) 0 0
\(214\) −9.43353 −0.644863
\(215\) −19.6494 −1.34008
\(216\) 0 0
\(217\) 26.4103 1.79285
\(218\) 8.86551 0.600448
\(219\) 0 0
\(220\) 11.6279 0.783953
\(221\) −10.6969 −0.719550
\(222\) 0 0
\(223\) −16.1663 −1.08257 −0.541287 0.840838i \(-0.682063\pi\)
−0.541287 + 0.840838i \(0.682063\pi\)
\(224\) 23.6387 1.57943
\(225\) 0 0
\(226\) 1.95788 0.130236
\(227\) −21.2304 −1.40911 −0.704556 0.709649i \(-0.748854\pi\)
−0.704556 + 0.709649i \(0.748854\pi\)
\(228\) 0 0
\(229\) −8.62949 −0.570253 −0.285126 0.958490i \(-0.592036\pi\)
−0.285126 + 0.958490i \(0.592036\pi\)
\(230\) −4.14944 −0.273606
\(231\) 0 0
\(232\) 13.1170 0.861170
\(233\) 14.9643 0.980347 0.490174 0.871625i \(-0.336933\pi\)
0.490174 + 0.871625i \(0.336933\pi\)
\(234\) 0 0
\(235\) 25.4364 1.65929
\(236\) −17.7714 −1.15682
\(237\) 0 0
\(238\) 8.96997 0.581437
\(239\) 3.61051 0.233545 0.116772 0.993159i \(-0.462745\pi\)
0.116772 + 0.993159i \(0.462745\pi\)
\(240\) 0 0
\(241\) −22.8914 −1.47457 −0.737283 0.675584i \(-0.763892\pi\)
−0.737283 + 0.675584i \(0.763892\pi\)
\(242\) −1.47808 −0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) 24.9059 1.59118
\(246\) 0 0
\(247\) 10.6666 0.678702
\(248\) −15.1331 −0.960952
\(249\) 0 0
\(250\) −6.12136 −0.387149
\(251\) 21.1728 1.33641 0.668207 0.743975i \(-0.267062\pi\)
0.668207 + 0.743975i \(0.267062\pi\)
\(252\) 0 0
\(253\) 7.39001 0.464606
\(254\) 7.95755 0.499301
\(255\) 0 0
\(256\) −8.64828 −0.540517
\(257\) 7.78703 0.485742 0.242871 0.970059i \(-0.421911\pi\)
0.242871 + 0.970059i \(0.421911\pi\)
\(258\) 0 0
\(259\) 11.2434 0.698632
\(260\) 12.7377 0.789959
\(261\) 0 0
\(262\) 3.39698 0.209866
\(263\) −1.52648 −0.0941268 −0.0470634 0.998892i \(-0.514986\pi\)
−0.0470634 + 0.998892i \(0.514986\pi\)
\(264\) 0 0
\(265\) 0.0248550 0.00152683
\(266\) −8.94460 −0.548429
\(267\) 0 0
\(268\) −9.13374 −0.557932
\(269\) 29.4387 1.79491 0.897454 0.441109i \(-0.145415\pi\)
0.897454 + 0.441109i \(0.145415\pi\)
\(270\) 0 0
\(271\) 14.5729 0.885238 0.442619 0.896710i \(-0.354049\pi\)
0.442619 + 0.896710i \(0.354049\pi\)
\(272\) 5.16793 0.313352
\(273\) 0 0
\(274\) −1.25730 −0.0759562
\(275\) −3.90105 −0.235242
\(276\) 0 0
\(277\) 10.2266 0.614456 0.307228 0.951636i \(-0.400599\pi\)
0.307228 + 0.951636i \(0.400599\pi\)
\(278\) 6.18900 0.371192
\(279\) 0 0
\(280\) −24.3527 −1.45535
\(281\) −7.02367 −0.418997 −0.209498 0.977809i \(-0.567183\pi\)
−0.209498 + 0.977809i \(0.567183\pi\)
\(282\) 0 0
\(283\) −21.6223 −1.28531 −0.642657 0.766154i \(-0.722168\pi\)
−0.642657 + 0.766154i \(0.722168\pi\)
\(284\) −3.70873 −0.220072
\(285\) 0 0
\(286\) 6.35029 0.375501
\(287\) 37.2079 2.19631
\(288\) 0 0
\(289\) −6.12131 −0.360077
\(290\) −9.25434 −0.543434
\(291\) 0 0
\(292\) −7.38386 −0.432108
\(293\) 10.9269 0.638356 0.319178 0.947695i \(-0.396593\pi\)
0.319178 + 0.947695i \(0.396593\pi\)
\(294\) 0 0
\(295\) 28.5861 1.66434
\(296\) −6.44247 −0.374461
\(297\) 0 0
\(298\) 0.587723 0.0340459
\(299\) 8.09534 0.468165
\(300\) 0 0
\(301\) −32.1462 −1.85287
\(302\) −5.32970 −0.306690
\(303\) 0 0
\(304\) −5.15331 −0.295563
\(305\) 22.6514 1.29701
\(306\) 0 0
\(307\) 4.59880 0.262468 0.131234 0.991351i \(-0.458106\pi\)
0.131234 + 0.991351i \(0.458106\pi\)
\(308\) 19.0231 1.08394
\(309\) 0 0
\(310\) 10.6768 0.606400
\(311\) 17.4391 0.988880 0.494440 0.869212i \(-0.335373\pi\)
0.494440 + 0.869212i \(0.335373\pi\)
\(312\) 0 0
\(313\) −15.8271 −0.894599 −0.447299 0.894384i \(-0.647614\pi\)
−0.447299 + 0.894384i \(0.647614\pi\)
\(314\) −9.57041 −0.540089
\(315\) 0 0
\(316\) −14.0664 −0.791298
\(317\) −19.6026 −1.10099 −0.550495 0.834838i \(-0.685561\pi\)
−0.550495 + 0.834838i \(0.685561\pi\)
\(318\) 0 0
\(319\) 16.4817 0.922795
\(320\) 1.67976 0.0939015
\(321\) 0 0
\(322\) −6.78842 −0.378304
\(323\) −10.8479 −0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) 5.32731 0.295053
\(327\) 0 0
\(328\) −21.3201 −1.17721
\(329\) 41.6135 2.29423
\(330\) 0 0
\(331\) −21.8785 −1.20255 −0.601276 0.799042i \(-0.705341\pi\)
−0.601276 + 0.799042i \(0.705341\pi\)
\(332\) −5.78367 −0.317420
\(333\) 0 0
\(334\) −11.1655 −0.610950
\(335\) 14.6920 0.802712
\(336\) 0 0
\(337\) −8.96292 −0.488242 −0.244121 0.969745i \(-0.578499\pi\)
−0.244121 + 0.969745i \(0.578499\pi\)
\(338\) −1.64144 −0.0892828
\(339\) 0 0
\(340\) −12.9542 −0.702540
\(341\) −19.0150 −1.02972
\(342\) 0 0
\(343\) 11.9613 0.645851
\(344\) 18.4197 0.993125
\(345\) 0 0
\(346\) −4.44651 −0.239046
\(347\) −19.2319 −1.03242 −0.516210 0.856462i \(-0.672658\pi\)
−0.516210 + 0.856462i \(0.672658\pi\)
\(348\) 0 0
\(349\) 21.3541 1.14306 0.571529 0.820582i \(-0.306350\pi\)
0.571529 + 0.820582i \(0.306350\pi\)
\(350\) 3.58348 0.191545
\(351\) 0 0
\(352\) −17.0195 −0.907140
\(353\) 14.7122 0.783053 0.391527 0.920167i \(-0.371947\pi\)
0.391527 + 0.920167i \(0.371947\pi\)
\(354\) 0 0
\(355\) 5.96566 0.316624
\(356\) −19.5263 −1.03489
\(357\) 0 0
\(358\) 10.0566 0.531507
\(359\) −10.7096 −0.565229 −0.282615 0.959234i \(-0.591202\pi\)
−0.282615 + 0.959234i \(0.591202\pi\)
\(360\) 0 0
\(361\) −8.18276 −0.430672
\(362\) −3.70699 −0.194835
\(363\) 0 0
\(364\) 20.8387 1.09224
\(365\) 11.8773 0.621686
\(366\) 0 0
\(367\) −3.96567 −0.207006 −0.103503 0.994629i \(-0.533005\pi\)
−0.103503 + 0.994629i \(0.533005\pi\)
\(368\) −3.91106 −0.203878
\(369\) 0 0
\(370\) 4.54532 0.236300
\(371\) 0.0406624 0.00211109
\(372\) 0 0
\(373\) −23.7229 −1.22832 −0.614162 0.789180i \(-0.710506\pi\)
−0.614162 + 0.789180i \(0.710506\pi\)
\(374\) −6.45822 −0.333947
\(375\) 0 0
\(376\) −23.8445 −1.22969
\(377\) 18.0547 0.929866
\(378\) 0 0
\(379\) −26.0188 −1.33650 −0.668249 0.743938i \(-0.732956\pi\)
−0.668249 + 0.743938i \(0.732956\pi\)
\(380\) 12.9176 0.662657
\(381\) 0 0
\(382\) 2.84104 0.145360
\(383\) 29.4253 1.50356 0.751780 0.659414i \(-0.229195\pi\)
0.751780 + 0.659414i \(0.229195\pi\)
\(384\) 0 0
\(385\) −30.5995 −1.55949
\(386\) 1.87411 0.0953899
\(387\) 0 0
\(388\) 11.1755 0.567351
\(389\) 26.5039 1.34380 0.671900 0.740642i \(-0.265478\pi\)
0.671900 + 0.740642i \(0.265478\pi\)
\(390\) 0 0
\(391\) −8.23292 −0.416357
\(392\) −23.3472 −1.17921
\(393\) 0 0
\(394\) 14.0529 0.707976
\(395\) 22.6265 1.13846
\(396\) 0 0
\(397\) −28.4605 −1.42839 −0.714197 0.699945i \(-0.753208\pi\)
−0.714197 + 0.699945i \(0.753208\pi\)
\(398\) 6.43662 0.322638
\(399\) 0 0
\(400\) 2.06458 0.103229
\(401\) 14.2226 0.710241 0.355121 0.934820i \(-0.384440\pi\)
0.355121 + 0.934820i \(0.384440\pi\)
\(402\) 0 0
\(403\) −20.8298 −1.03761
\(404\) −3.29097 −0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) −8.09506 −0.401257
\(408\) 0 0
\(409\) 3.11398 0.153976 0.0769882 0.997032i \(-0.475470\pi\)
0.0769882 + 0.997032i \(0.475470\pi\)
\(410\) 15.0419 0.742865
\(411\) 0 0
\(412\) 3.22727 0.158996
\(413\) 46.7663 2.30122
\(414\) 0 0
\(415\) 9.30330 0.456681
\(416\) −18.6439 −0.914091
\(417\) 0 0
\(418\) 6.43996 0.314989
\(419\) 6.85107 0.334697 0.167348 0.985898i \(-0.446480\pi\)
0.167348 + 0.985898i \(0.446480\pi\)
\(420\) 0 0
\(421\) −14.9325 −0.727765 −0.363882 0.931445i \(-0.618549\pi\)
−0.363882 + 0.931445i \(0.618549\pi\)
\(422\) 12.9485 0.630321
\(423\) 0 0
\(424\) −0.0232996 −0.00113153
\(425\) 4.34601 0.210812
\(426\) 0 0
\(427\) 37.0573 1.79333
\(428\) 22.2881 1.07734
\(429\) 0 0
\(430\) −12.9956 −0.626702
\(431\) −30.8667 −1.48680 −0.743399 0.668848i \(-0.766788\pi\)
−0.743399 + 0.668848i \(0.766788\pi\)
\(432\) 0 0
\(433\) −28.7698 −1.38259 −0.691295 0.722573i \(-0.742959\pi\)
−0.691295 + 0.722573i \(0.742959\pi\)
\(434\) 17.4670 0.838444
\(435\) 0 0
\(436\) −20.9461 −1.00313
\(437\) 8.20964 0.392720
\(438\) 0 0
\(439\) −4.42382 −0.211137 −0.105569 0.994412i \(-0.533666\pi\)
−0.105569 + 0.994412i \(0.533666\pi\)
\(440\) 17.5335 0.835876
\(441\) 0 0
\(442\) −7.07462 −0.336505
\(443\) 2.66758 0.126741 0.0633703 0.997990i \(-0.479815\pi\)
0.0633703 + 0.997990i \(0.479815\pi\)
\(444\) 0 0
\(445\) 31.4089 1.48893
\(446\) −10.6919 −0.506278
\(447\) 0 0
\(448\) 2.74806 0.129834
\(449\) 41.6366 1.96495 0.982475 0.186393i \(-0.0596799\pi\)
0.982475 + 0.186393i \(0.0596799\pi\)
\(450\) 0 0
\(451\) −26.7890 −1.26145
\(452\) −4.62578 −0.217578
\(453\) 0 0
\(454\) −14.0412 −0.658986
\(455\) −33.5200 −1.57144
\(456\) 0 0
\(457\) 7.66487 0.358547 0.179274 0.983799i \(-0.442625\pi\)
0.179274 + 0.983799i \(0.442625\pi\)
\(458\) −5.70730 −0.266685
\(459\) 0 0
\(460\) 9.80366 0.457098
\(461\) −22.0430 −1.02665 −0.513324 0.858195i \(-0.671586\pi\)
−0.513324 + 0.858195i \(0.671586\pi\)
\(462\) 0 0
\(463\) 37.1596 1.72695 0.863475 0.504391i \(-0.168283\pi\)
0.863475 + 0.504391i \(0.168283\pi\)
\(464\) −8.72268 −0.404940
\(465\) 0 0
\(466\) 9.89700 0.458470
\(467\) −8.31480 −0.384763 −0.192381 0.981320i \(-0.561621\pi\)
−0.192381 + 0.981320i \(0.561621\pi\)
\(468\) 0 0
\(469\) 24.0360 1.10988
\(470\) 16.8229 0.775983
\(471\) 0 0
\(472\) −26.7971 −1.23344
\(473\) 23.1447 1.06419
\(474\) 0 0
\(475\) −4.33372 −0.198845
\(476\) −21.1929 −0.971373
\(477\) 0 0
\(478\) 2.38789 0.109220
\(479\) −2.55297 −0.116648 −0.0583240 0.998298i \(-0.518576\pi\)
−0.0583240 + 0.998298i \(0.518576\pi\)
\(480\) 0 0
\(481\) −8.86769 −0.404332
\(482\) −15.1397 −0.689596
\(483\) 0 0
\(484\) 3.49219 0.158736
\(485\) −17.9763 −0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) −21.2338 −0.961208
\(489\) 0 0
\(490\) 16.4720 0.744131
\(491\) 36.4848 1.64653 0.823267 0.567654i \(-0.192149\pi\)
0.823267 + 0.567654i \(0.192149\pi\)
\(492\) 0 0
\(493\) −18.3616 −0.826964
\(494\) 7.05461 0.317402
\(495\) 0 0
\(496\) 10.0634 0.451860
\(497\) 9.75973 0.437784
\(498\) 0 0
\(499\) −31.7376 −1.42077 −0.710386 0.703812i \(-0.751480\pi\)
−0.710386 + 0.703812i \(0.751480\pi\)
\(500\) 14.4626 0.646787
\(501\) 0 0
\(502\) 14.0031 0.624989
\(503\) −6.03619 −0.269141 −0.134570 0.990904i \(-0.542965\pi\)
−0.134570 + 0.990904i \(0.542965\pi\)
\(504\) 0 0
\(505\) 5.29368 0.235566
\(506\) 4.88754 0.217278
\(507\) 0 0
\(508\) −18.8009 −0.834153
\(509\) −26.3035 −1.16588 −0.582940 0.812515i \(-0.698098\pi\)
−0.582940 + 0.812515i \(0.698098\pi\)
\(510\) 0 0
\(511\) 19.4311 0.859579
\(512\) 16.3909 0.724384
\(513\) 0 0
\(514\) 5.15013 0.227162
\(515\) −5.19122 −0.228753
\(516\) 0 0
\(517\) −29.9610 −1.31768
\(518\) 7.43608 0.326723
\(519\) 0 0
\(520\) 19.2069 0.842280
\(521\) 25.3081 1.10877 0.554384 0.832261i \(-0.312954\pi\)
0.554384 + 0.832261i \(0.312954\pi\)
\(522\) 0 0
\(523\) −2.94487 −0.128770 −0.0643851 0.997925i \(-0.520509\pi\)
−0.0643851 + 0.997925i \(0.520509\pi\)
\(524\) −8.02585 −0.350611
\(525\) 0 0
\(526\) −1.00957 −0.0440194
\(527\) 21.1838 0.922782
\(528\) 0 0
\(529\) −16.7694 −0.729103
\(530\) 0.0164384 0.000714039 0
\(531\) 0 0
\(532\) 21.1329 0.916229
\(533\) −29.3459 −1.27111
\(534\) 0 0
\(535\) −35.8514 −1.54999
\(536\) −13.7726 −0.594885
\(537\) 0 0
\(538\) 19.4699 0.839407
\(539\) −29.3361 −1.26360
\(540\) 0 0
\(541\) 17.6934 0.760698 0.380349 0.924843i \(-0.375804\pi\)
0.380349 + 0.924843i \(0.375804\pi\)
\(542\) 9.63808 0.413991
\(543\) 0 0
\(544\) 18.9607 0.812935
\(545\) 33.6927 1.44324
\(546\) 0 0
\(547\) 40.7507 1.74237 0.871186 0.490952i \(-0.163351\pi\)
0.871186 + 0.490952i \(0.163351\pi\)
\(548\) 2.97055 0.126896
\(549\) 0 0
\(550\) −2.58004 −0.110013
\(551\) 18.3096 0.780017
\(552\) 0 0
\(553\) 37.0166 1.57411
\(554\) 6.76357 0.287357
\(555\) 0 0
\(556\) −14.6224 −0.620128
\(557\) 30.2389 1.28126 0.640632 0.767848i \(-0.278672\pi\)
0.640632 + 0.767848i \(0.278672\pi\)
\(558\) 0 0
\(559\) 25.3537 1.07235
\(560\) 16.1944 0.684336
\(561\) 0 0
\(562\) −4.64526 −0.195948
\(563\) 18.4790 0.778798 0.389399 0.921069i \(-0.372683\pi\)
0.389399 + 0.921069i \(0.372683\pi\)
\(564\) 0 0
\(565\) 7.44078 0.313036
\(566\) −14.3004 −0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) −8.99772 −0.377204 −0.188602 0.982054i \(-0.560396\pi\)
−0.188602 + 0.982054i \(0.560396\pi\)
\(570\) 0 0
\(571\) −16.8780 −0.706324 −0.353162 0.935562i \(-0.614894\pi\)
−0.353162 + 0.935562i \(0.614894\pi\)
\(572\) −15.0035 −0.627328
\(573\) 0 0
\(574\) 24.6083 1.02713
\(575\) −3.28903 −0.137162
\(576\) 0 0
\(577\) −31.4038 −1.30736 −0.653678 0.756773i \(-0.726775\pi\)
−0.653678 + 0.756773i \(0.726775\pi\)
\(578\) −4.04846 −0.168394
\(579\) 0 0
\(580\) 21.8647 0.907883
\(581\) 15.2201 0.631434
\(582\) 0 0
\(583\) −0.0292762 −0.00121250
\(584\) −11.1340 −0.460727
\(585\) 0 0
\(586\) 7.22674 0.298534
\(587\) 1.37678 0.0568256 0.0284128 0.999596i \(-0.490955\pi\)
0.0284128 + 0.999596i \(0.490955\pi\)
\(588\) 0 0
\(589\) −21.1239 −0.870396
\(590\) 18.9060 0.778348
\(591\) 0 0
\(592\) 4.28420 0.176079
\(593\) 30.9859 1.27244 0.636219 0.771509i \(-0.280498\pi\)
0.636219 + 0.771509i \(0.280498\pi\)
\(594\) 0 0
\(595\) 34.0897 1.39754
\(596\) −1.38858 −0.0568785
\(597\) 0 0
\(598\) 5.35403 0.218942
\(599\) 24.2514 0.990885 0.495442 0.868641i \(-0.335006\pi\)
0.495442 + 0.868641i \(0.335006\pi\)
\(600\) 0 0
\(601\) 7.58637 0.309454 0.154727 0.987957i \(-0.450550\pi\)
0.154727 + 0.987957i \(0.450550\pi\)
\(602\) −21.2606 −0.866516
\(603\) 0 0
\(604\) 12.5922 0.512369
\(605\) −5.61735 −0.228378
\(606\) 0 0
\(607\) 29.9647 1.21623 0.608115 0.793849i \(-0.291926\pi\)
0.608115 + 0.793849i \(0.291926\pi\)
\(608\) −18.9071 −0.766784
\(609\) 0 0
\(610\) 14.9810 0.606562
\(611\) −32.8206 −1.32778
\(612\) 0 0
\(613\) −12.1961 −0.492597 −0.246298 0.969194i \(-0.579214\pi\)
−0.246298 + 0.969194i \(0.579214\pi\)
\(614\) 3.04152 0.122746
\(615\) 0 0
\(616\) 28.6845 1.15573
\(617\) 15.8902 0.639714 0.319857 0.947466i \(-0.396365\pi\)
0.319857 + 0.947466i \(0.396365\pi\)
\(618\) 0 0
\(619\) 23.2583 0.934829 0.467414 0.884038i \(-0.345186\pi\)
0.467414 + 0.884038i \(0.345186\pi\)
\(620\) −25.2254 −1.01308
\(621\) 0 0
\(622\) 11.5337 0.462460
\(623\) 51.3845 2.05868
\(624\) 0 0
\(625\) −29.8521 −1.19408
\(626\) −10.4676 −0.418369
\(627\) 0 0
\(628\) 22.6115 0.902296
\(629\) 9.01840 0.359587
\(630\) 0 0
\(631\) 12.2767 0.488726 0.244363 0.969684i \(-0.421421\pi\)
0.244363 + 0.969684i \(0.421421\pi\)
\(632\) −21.2105 −0.843708
\(633\) 0 0
\(634\) −12.9646 −0.514890
\(635\) 30.2421 1.20012
\(636\) 0 0
\(637\) −32.1361 −1.27328
\(638\) 10.9005 0.431555
\(639\) 0 0
\(640\) −27.7875 −1.09840
\(641\) 9.36448 0.369875 0.184937 0.982750i \(-0.440792\pi\)
0.184937 + 0.982750i \(0.440792\pi\)
\(642\) 0 0
\(643\) −19.6646 −0.775495 −0.387748 0.921766i \(-0.626747\pi\)
−0.387748 + 0.921766i \(0.626747\pi\)
\(644\) 16.0386 0.632010
\(645\) 0 0
\(646\) −7.17451 −0.282277
\(647\) 14.2593 0.560591 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) −2.82629 −0.110856
\(651\) 0 0
\(652\) −12.5866 −0.492928
\(653\) −40.7891 −1.59620 −0.798100 0.602525i \(-0.794161\pi\)
−0.798100 + 0.602525i \(0.794161\pi\)
\(654\) 0 0
\(655\) 12.9100 0.504434
\(656\) 14.1777 0.553547
\(657\) 0 0
\(658\) 27.5220 1.07292
\(659\) −2.58912 −0.100858 −0.0504289 0.998728i \(-0.516059\pi\)
−0.0504289 + 0.998728i \(0.516059\pi\)
\(660\) 0 0
\(661\) 30.0328 1.16814 0.584071 0.811703i \(-0.301459\pi\)
0.584071 + 0.811703i \(0.301459\pi\)
\(662\) −14.4698 −0.562386
\(663\) 0 0
\(664\) −8.72108 −0.338444
\(665\) −33.9933 −1.31820
\(666\) 0 0
\(667\) 13.8959 0.538052
\(668\) 26.3802 1.02068
\(669\) 0 0
\(670\) 9.71690 0.375397
\(671\) −26.6806 −1.02999
\(672\) 0 0
\(673\) 13.8680 0.534573 0.267286 0.963617i \(-0.413873\pi\)
0.267286 + 0.963617i \(0.413873\pi\)
\(674\) −5.92783 −0.228331
\(675\) 0 0
\(676\) 3.87815 0.149160
\(677\) −20.0377 −0.770110 −0.385055 0.922894i \(-0.625818\pi\)
−0.385055 + 0.922894i \(0.625818\pi\)
\(678\) 0 0
\(679\) −29.4090 −1.12861
\(680\) −19.5334 −0.749071
\(681\) 0 0
\(682\) −12.5760 −0.481558
\(683\) −31.9122 −1.22109 −0.610543 0.791983i \(-0.709049\pi\)
−0.610543 + 0.791983i \(0.709049\pi\)
\(684\) 0 0
\(685\) −4.77827 −0.182568
\(686\) 7.91089 0.302039
\(687\) 0 0
\(688\) −12.2490 −0.466988
\(689\) −0.0320705 −0.00122179
\(690\) 0 0
\(691\) 37.4436 1.42442 0.712211 0.701966i \(-0.247694\pi\)
0.712211 + 0.701966i \(0.247694\pi\)
\(692\) 10.5055 0.399361
\(693\) 0 0
\(694\) −12.7194 −0.482822
\(695\) 23.5208 0.892196
\(696\) 0 0
\(697\) 29.8446 1.13045
\(698\) 14.1230 0.534563
\(699\) 0 0
\(700\) −8.46650 −0.320003
\(701\) 23.1847 0.875673 0.437836 0.899055i \(-0.355745\pi\)
0.437836 + 0.899055i \(0.355745\pi\)
\(702\) 0 0
\(703\) −8.99289 −0.339173
\(704\) −1.97856 −0.0745696
\(705\) 0 0
\(706\) 9.73026 0.366203
\(707\) 8.66038 0.325707
\(708\) 0 0
\(709\) 4.98008 0.187031 0.0935155 0.995618i \(-0.470190\pi\)
0.0935155 + 0.995618i \(0.470190\pi\)
\(710\) 3.94552 0.148073
\(711\) 0 0
\(712\) −29.4433 −1.10343
\(713\) −16.0318 −0.600395
\(714\) 0 0
\(715\) 24.1338 0.902554
\(716\) −23.7602 −0.887959
\(717\) 0 0
\(718\) −7.08301 −0.264335
\(719\) −17.5070 −0.652901 −0.326450 0.945214i \(-0.605853\pi\)
−0.326450 + 0.945214i \(0.605853\pi\)
\(720\) 0 0
\(721\) −8.49276 −0.316287
\(722\) −5.41185 −0.201408
\(723\) 0 0
\(724\) 8.75829 0.325499
\(725\) −7.33540 −0.272430
\(726\) 0 0
\(727\) 8.03026 0.297826 0.148913 0.988850i \(-0.452423\pi\)
0.148913 + 0.988850i \(0.452423\pi\)
\(728\) 31.4223 1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) −25.7846 −0.953677
\(732\) 0 0
\(733\) −30.0782 −1.11096 −0.555482 0.831529i \(-0.687466\pi\)
−0.555482 + 0.831529i \(0.687466\pi\)
\(734\) −2.62278 −0.0968086
\(735\) 0 0
\(736\) −14.3494 −0.528925
\(737\) −17.3055 −0.637455
\(738\) 0 0
\(739\) 2.41162 0.0887129 0.0443565 0.999016i \(-0.485876\pi\)
0.0443565 + 0.999016i \(0.485876\pi\)
\(740\) −10.7390 −0.394773
\(741\) 0 0
\(742\) 0.0268930 0.000987273 0
\(743\) −19.6618 −0.721321 −0.360660 0.932697i \(-0.617449\pi\)
−0.360660 + 0.932697i \(0.617449\pi\)
\(744\) 0 0
\(745\) 2.23360 0.0818327
\(746\) −15.6897 −0.574439
\(747\) 0 0
\(748\) 15.2585 0.557906
\(749\) −58.6524 −2.14311
\(750\) 0 0
\(751\) −6.86957 −0.250674 −0.125337 0.992114i \(-0.540001\pi\)
−0.125337 + 0.992114i \(0.540001\pi\)
\(752\) 15.8564 0.578225
\(753\) 0 0
\(754\) 11.9409 0.434861
\(755\) −20.2551 −0.737160
\(756\) 0 0
\(757\) 13.0042 0.472645 0.236323 0.971675i \(-0.424058\pi\)
0.236323 + 0.971675i \(0.424058\pi\)
\(758\) −17.2081 −0.625027
\(759\) 0 0
\(760\) 19.4781 0.706546
\(761\) −17.4054 −0.630946 −0.315473 0.948935i \(-0.602163\pi\)
−0.315473 + 0.948935i \(0.602163\pi\)
\(762\) 0 0
\(763\) 55.1208 1.99551
\(764\) −6.71237 −0.242845
\(765\) 0 0
\(766\) 19.4610 0.703156
\(767\) −36.8846 −1.33183
\(768\) 0 0
\(769\) −18.6296 −0.671802 −0.335901 0.941897i \(-0.609041\pi\)
−0.335901 + 0.941897i \(0.609041\pi\)
\(770\) −20.2376 −0.729314
\(771\) 0 0
\(772\) −4.42787 −0.159363
\(773\) −28.9738 −1.04211 −0.521057 0.853522i \(-0.674462\pi\)
−0.521057 + 0.853522i \(0.674462\pi\)
\(774\) 0 0
\(775\) 8.46289 0.303996
\(776\) 16.8513 0.604928
\(777\) 0 0
\(778\) 17.5289 0.628442
\(779\) −29.7602 −1.06627
\(780\) 0 0
\(781\) −7.02683 −0.251440
\(782\) −5.44502 −0.194714
\(783\) 0 0
\(784\) 15.5257 0.554490
\(785\) −36.3716 −1.29816
\(786\) 0 0
\(787\) −14.8146 −0.528082 −0.264041 0.964511i \(-0.585055\pi\)
−0.264041 + 0.964511i \(0.585055\pi\)
\(788\) −33.2021 −1.18277
\(789\) 0 0
\(790\) 14.9645 0.532414
\(791\) 12.1730 0.432822
\(792\) 0 0
\(793\) −29.2271 −1.03788
\(794\) −18.8230 −0.668003
\(795\) 0 0
\(796\) −15.2074 −0.539013
\(797\) −17.6064 −0.623650 −0.311825 0.950140i \(-0.600940\pi\)
−0.311825 + 0.950140i \(0.600940\pi\)
\(798\) 0 0
\(799\) 33.3784 1.18084
\(800\) 7.57476 0.267808
\(801\) 0 0
\(802\) 9.40641 0.332152
\(803\) −13.9900 −0.493697
\(804\) 0 0
\(805\) −25.7989 −0.909291
\(806\) −13.7763 −0.485248
\(807\) 0 0
\(808\) −4.96239 −0.174576
\(809\) 13.3577 0.469632 0.234816 0.972040i \(-0.424551\pi\)
0.234816 + 0.972040i \(0.424551\pi\)
\(810\) 0 0
\(811\) 13.6700 0.480017 0.240009 0.970771i \(-0.422850\pi\)
0.240009 + 0.970771i \(0.422850\pi\)
\(812\) 35.7703 1.25529
\(813\) 0 0
\(814\) −5.35385 −0.187652
\(815\) 20.2461 0.709189
\(816\) 0 0
\(817\) 25.7117 0.899537
\(818\) 2.05950 0.0720087
\(819\) 0 0
\(820\) −35.5386 −1.24106
\(821\) −10.0404 −0.350411 −0.175205 0.984532i \(-0.556059\pi\)
−0.175205 + 0.984532i \(0.556059\pi\)
\(822\) 0 0
\(823\) −30.2488 −1.05441 −0.527204 0.849739i \(-0.676760\pi\)
−0.527204 + 0.849739i \(0.676760\pi\)
\(824\) 4.86634 0.169527
\(825\) 0 0
\(826\) 30.9299 1.07619
\(827\) 47.0379 1.63567 0.817835 0.575453i \(-0.195174\pi\)
0.817835 + 0.575453i \(0.195174\pi\)
\(828\) 0 0
\(829\) −3.50656 −0.121788 −0.0608939 0.998144i \(-0.519395\pi\)
−0.0608939 + 0.998144i \(0.519395\pi\)
\(830\) 6.15294 0.213572
\(831\) 0 0
\(832\) −2.16740 −0.0751410
\(833\) 32.6822 1.13237
\(834\) 0 0
\(835\) −42.4337 −1.46848
\(836\) −15.2153 −0.526233
\(837\) 0 0
\(838\) 4.53111 0.156524
\(839\) −36.8146 −1.27098 −0.635491 0.772108i \(-0.719202\pi\)
−0.635491 + 0.772108i \(0.719202\pi\)
\(840\) 0 0
\(841\) 1.99156 0.0686746
\(842\) −9.87592 −0.340347
\(843\) 0 0
\(844\) −30.5926 −1.05304
\(845\) −6.23819 −0.214600
\(846\) 0 0
\(847\) −9.18990 −0.315769
\(848\) 0.0154940 0.000532068 0
\(849\) 0 0
\(850\) 2.87433 0.0985886
\(851\) −6.82507 −0.233960
\(852\) 0 0
\(853\) −36.9110 −1.26381 −0.631904 0.775047i \(-0.717726\pi\)
−0.631904 + 0.775047i \(0.717726\pi\)
\(854\) 24.5086 0.838668
\(855\) 0 0
\(856\) 33.6078 1.14869
\(857\) −30.1017 −1.02826 −0.514128 0.857714i \(-0.671884\pi\)
−0.514128 + 0.857714i \(0.671884\pi\)
\(858\) 0 0
\(859\) −19.4472 −0.663530 −0.331765 0.943362i \(-0.607644\pi\)
−0.331765 + 0.943362i \(0.607644\pi\)
\(860\) 30.7039 1.04700
\(861\) 0 0
\(862\) −20.4144 −0.695317
\(863\) 28.7133 0.977411 0.488706 0.872449i \(-0.337469\pi\)
0.488706 + 0.872449i \(0.337469\pi\)
\(864\) 0 0
\(865\) −16.8986 −0.574571
\(866\) −19.0276 −0.646583
\(867\) 0 0
\(868\) −41.2684 −1.40074
\(869\) −26.6513 −0.904084
\(870\) 0 0
\(871\) −18.9572 −0.642339
\(872\) −31.5842 −1.06957
\(873\) 0 0
\(874\) 5.42962 0.183660
\(875\) −38.0592 −1.28664
\(876\) 0 0
\(877\) −19.1241 −0.645775 −0.322887 0.946437i \(-0.604654\pi\)
−0.322887 + 0.946437i \(0.604654\pi\)
\(878\) −2.92579 −0.0987406
\(879\) 0 0
\(880\) −11.6596 −0.393047
\(881\) −46.6937 −1.57315 −0.786576 0.617493i \(-0.788148\pi\)
−0.786576 + 0.617493i \(0.788148\pi\)
\(882\) 0 0
\(883\) −14.0085 −0.471423 −0.235712 0.971823i \(-0.575742\pi\)
−0.235712 + 0.971823i \(0.575742\pi\)
\(884\) 16.7148 0.562180
\(885\) 0 0
\(886\) 1.76426 0.0592716
\(887\) 10.3671 0.348092 0.174046 0.984738i \(-0.444316\pi\)
0.174046 + 0.984738i \(0.444316\pi\)
\(888\) 0 0
\(889\) 49.4755 1.65936
\(890\) 20.7730 0.696312
\(891\) 0 0
\(892\) 25.2612 0.845809
\(893\) −33.2840 −1.11381
\(894\) 0 0
\(895\) 38.2193 1.27753
\(896\) −45.4600 −1.51871
\(897\) 0 0
\(898\) 27.5372 0.918930
\(899\) −35.7551 −1.19250
\(900\) 0 0
\(901\) 0.0326155 0.00108658
\(902\) −17.7175 −0.589929
\(903\) 0 0
\(904\) −6.97512 −0.231989
\(905\) −14.0881 −0.468305
\(906\) 0 0
\(907\) −35.9662 −1.19424 −0.597119 0.802153i \(-0.703688\pi\)
−0.597119 + 0.802153i \(0.703688\pi\)
\(908\) 33.1744 1.10093
\(909\) 0 0
\(910\) −22.1692 −0.734902
\(911\) 6.36103 0.210750 0.105375 0.994433i \(-0.466396\pi\)
0.105375 + 0.994433i \(0.466396\pi\)
\(912\) 0 0
\(913\) −10.9582 −0.362663
\(914\) 5.06933 0.167678
\(915\) 0 0
\(916\) 13.4843 0.445535
\(917\) 21.1205 0.697460
\(918\) 0 0
\(919\) −46.5768 −1.53643 −0.768213 0.640195i \(-0.778854\pi\)
−0.768213 + 0.640195i \(0.778854\pi\)
\(920\) 14.7827 0.487373
\(921\) 0 0
\(922\) −14.5787 −0.480122
\(923\) −7.69750 −0.253366
\(924\) 0 0
\(925\) 3.60283 0.118460
\(926\) 24.5763 0.807627
\(927\) 0 0
\(928\) −32.0028 −1.05054
\(929\) 44.9047 1.47328 0.736638 0.676287i \(-0.236412\pi\)
0.736638 + 0.676287i \(0.236412\pi\)
\(930\) 0 0
\(931\) −32.5898 −1.06809
\(932\) −23.3831 −0.765939
\(933\) 0 0
\(934\) −5.49917 −0.179938
\(935\) −24.5440 −0.802675
\(936\) 0 0
\(937\) 51.4265 1.68003 0.840016 0.542562i \(-0.182546\pi\)
0.840016 + 0.542562i \(0.182546\pi\)
\(938\) 15.8967 0.519046
\(939\) 0 0
\(940\) −39.7466 −1.29639
\(941\) −10.4269 −0.339908 −0.169954 0.985452i \(-0.554362\pi\)
−0.169954 + 0.985452i \(0.554362\pi\)
\(942\) 0 0
\(943\) −22.5862 −0.735509
\(944\) 17.8199 0.579987
\(945\) 0 0
\(946\) 15.3072 0.497681
\(947\) −45.1474 −1.46709 −0.733547 0.679639i \(-0.762137\pi\)
−0.733547 + 0.679639i \(0.762137\pi\)
\(948\) 0 0
\(949\) −15.3253 −0.497480
\(950\) −2.86620 −0.0929918
\(951\) 0 0
\(952\) −31.9563 −1.03571
\(953\) −29.2978 −0.949050 −0.474525 0.880242i \(-0.657380\pi\)
−0.474525 + 0.880242i \(0.657380\pi\)
\(954\) 0 0
\(955\) 10.7972 0.349388
\(956\) −5.64174 −0.182467
\(957\) 0 0
\(958\) −1.68846 −0.0545517
\(959\) −7.81718 −0.252430
\(960\) 0 0
\(961\) 10.2508 0.330671
\(962\) −5.86484 −0.189090
\(963\) 0 0
\(964\) 35.7698 1.15207
\(965\) 7.12244 0.229279
\(966\) 0 0
\(967\) 46.8864 1.50776 0.753882 0.657010i \(-0.228179\pi\)
0.753882 + 0.657010i \(0.228179\pi\)
\(968\) 5.26580 0.169249
\(969\) 0 0
\(970\) −11.8890 −0.381734
\(971\) −45.6691 −1.46559 −0.732795 0.680449i \(-0.761785\pi\)
−0.732795 + 0.680449i \(0.761785\pi\)
\(972\) 0 0
\(973\) 38.4797 1.23360
\(974\) 10.8219 0.346756
\(975\) 0 0
\(976\) 14.1203 0.451980
\(977\) 1.23972 0.0396622 0.0198311 0.999803i \(-0.493687\pi\)
0.0198311 + 0.999803i \(0.493687\pi\)
\(978\) 0 0
\(979\) −36.9959 −1.18239
\(980\) −38.9176 −1.24318
\(981\) 0 0
\(982\) 24.1300 0.770019
\(983\) 36.5854 1.16689 0.583447 0.812151i \(-0.301704\pi\)
0.583447 + 0.812151i \(0.301704\pi\)
\(984\) 0 0
\(985\) 53.4071 1.70169
\(986\) −12.1438 −0.386738
\(987\) 0 0
\(988\) −16.6675 −0.530265
\(989\) 19.5136 0.620497
\(990\) 0 0
\(991\) −41.5663 −1.32040 −0.660199 0.751091i \(-0.729528\pi\)
−0.660199 + 0.751091i \(0.729528\pi\)
\(992\) 36.9218 1.17227
\(993\) 0 0
\(994\) 6.45481 0.204734
\(995\) 24.4619 0.775494
\(996\) 0 0
\(997\) 21.1634 0.670251 0.335126 0.942173i \(-0.391221\pi\)
0.335126 + 0.942173i \(0.391221\pi\)
\(998\) −20.9904 −0.664439
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.42 72
3.2 odd 2 6561.2.a.c.1.31 72
81.4 even 27 243.2.g.a.208.5 144
81.7 even 27 729.2.g.b.352.4 144
81.20 odd 54 81.2.g.a.76.4 yes 144
81.23 odd 54 729.2.g.c.379.5 144
81.31 even 27 729.2.g.a.622.4 144
81.34 even 27 729.2.g.a.109.4 144
81.47 odd 54 729.2.g.d.109.5 144
81.50 odd 54 729.2.g.d.622.5 144
81.58 even 27 729.2.g.b.379.4 144
81.61 even 27 243.2.g.a.118.5 144
81.74 odd 54 729.2.g.c.352.5 144
81.77 odd 54 81.2.g.a.16.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.4 144 81.77 odd 54
81.2.g.a.76.4 yes 144 81.20 odd 54
243.2.g.a.118.5 144 81.61 even 27
243.2.g.a.208.5 144 81.4 even 27
729.2.g.a.109.4 144 81.34 even 27
729.2.g.a.622.4 144 81.31 even 27
729.2.g.b.352.4 144 81.7 even 27
729.2.g.b.379.4 144 81.58 even 27
729.2.g.c.352.5 144 81.74 odd 54
729.2.g.c.379.5 144 81.23 odd 54
729.2.g.d.109.5 144 81.47 odd 54
729.2.g.d.622.5 144 81.50 odd 54
6561.2.a.c.1.31 72 3.2 odd 2
6561.2.a.d.1.42 72 1.1 even 1 trivial